Consider the following closet-point heuristic for building an approximate traveling-salesman tour whose cost function satisfies the triangle inequality. Begin with a trivial cycle consisting of a single arbitrarily chosen vertex. At each step, identify the vertex \(u \) that is not on the cycle but whose distance to any vertex on the cycle is minimum. Suppose that the vertex on the cycle that is nearest \(u \) is vertex \(v \). Extend the cycle to include \(u \) by inserting \(u \) just after \(v \). Repeat until all vertices are on the cycle. Prove that this heuristic return a tour whose total cost is not more than twice the cost of an optimal tour.

Solution:

Let’s denote the optimal tour at step \(i \) as \(H^*_i \), and the tour produced by the heuristic as \(H_i \). Suppose the vertex on the cycle that is nearest \(u \) is \(v \). Since the cost function satisfies the triangle inequality, it is easy to get \(c(H_i) \leq c(H_{i-1}) + 2c(u,v) \). So \(c(H_i) \leq 2\sum_i c(u,v) \).

Besides, we may notice that the way nodes and edges are added in closest-point heuristic is exactly the same as Prim’s algorithm. So the cost of MST produced by Prim’s algorithm is equal to \(\sum_i c(u,v) \).

In the test it is proved that: \(c(MST) \leq c(H^*) \), so we have \(c(H) \leq 2c(MST) \leq 2c(H^*) \). So it is proved.

35.4-2

The MAX-CNF satisfiability problem is like the MAX-3-CNF satisfiability problem, except that it does not restrict each clause to have exactly 3 literals. Give a randomized 2-approximation algorithm for the MAX-CNF satisfiability problem.

Solution:

Let each clause to have \(n \) literals. For a formula with \(k \) clauses, \(i = 1, 2, \ldots, k \), define

\[
y_i = \begin{cases} 0 & \text{if the } i\text{-th clause is not satisfied by the solution} \\ 1 & \text{if the } i\text{-th clause is satisfied by the solution} \end{cases}
\]

Then, number of satisfied clauses is \(\sum_{i=1}^{k} y_i \).

The expected cost of the solution of the randomized algorithm is \(\tau = E(\sum_{i=1}^{k} y_i) = \sum_{i=1}^{k} E(y_i) \).

The cost of optimal solution is \(c^* = k \).

Then, we have
\[
y_i = \begin{cases}
0 & \text{with the probability } \frac{1}{2^n}, \\
1 & \text{with the probability } 1 - \frac{1}{2^n}.
\end{cases}
\]

So \(T = \left(\frac{2^n - 1}{2^n}\right)k \).

So the approximation ratio is \(\frac{2}{k} = \frac{2^n - 1}{2^n} = \frac{2^n}{2^n - 1} \).

35.4-3

In the MAX-CUT problem, we are given an unweighted undirected graph \(G = (V, E) \). We define a cut \((S, V-S)\) as in Chapter 23 and the weight of a cut as the number of edges crossing the cut. The goal is to find a cut of maximum weight. Suppose that for each vertex \(v \), we randomly and independently place \(v \) in \(S \) with probability \(1/2 \) and in \(V-S \) with probability \(1/2 \). Show that this is algorithm is a randomized 2-approximation algorithm.

Solution:

Suppose that for each vertex \(v \), we randomly and independently place \(v \) in \(S \) with probability \(1/2 \) and in \(V-S \) with probability \(1/2 \). For an edge \(e_i \), we define the indicator random variable \(Y_i = I\{e_i \text{ crossing a cut}\} \). For an edge \(e_i \) crossing a cut, its two vertices \(u, v \) have to be in \(S \) and \(V-S \) separately. The probability of such an event is

\[
P_i \{e_i \text{ crossing a cut}\} = P_i \{u \text{ in } S \text{ and } v \text{ in } V-S\} = P_i \{u \text{ in } V-S \text{ and } v \text{ in } S\} = 1/2 \times 1/2 + 1/2 \times 1/2 = 1/2.
\]

So \(E(Y) = 1/2 \).

Let \(Y \) be the number of edges crossing a cut, so that \(Y = Y_1 + Y_2 + \ldots + Y_n = |E| \).

We have

\[
E(Y) = \frac{1}{2}n.
\]

Let \(c^* \) be the weight for the max-cut. The upper bound of \(c^* \) is the total number of edges, i.e. \(c^* \leq n \). Then, we have

\[
c^* \leq n
= 2^\frac{n}{2}
= 2E(Y)
\]

So \(\frac{c^*}{E(Y)} \leq 2 \).
35.4-4

Show that the constraints in line (35.19) are redundant in the sense that if we remove them from the linear program in lines (35.17)-(35.20), any optimal solution to the resulting linear program must satisfy $x(v) \leq 1$ for each $v \in V$.

Solution:
Assuming that \bar{x} is an optimal solution to the linear program in (35.17) and satisfies the constraints without the redundant (35.19). Round the solution to an integer algorithm as follow:

$$
\forall v \in V, \bar{x}(v) = \begin{cases}
0 & \text{if } \bar{x}(v) < 1/2 \\
1 & \text{if } \bar{x}(v) \geq 1/2
\end{cases}
$$

Return all the vertices in set $P = \{v \in V | \bar{x}(v) = 1\}$. The set P is still a vertex cover, because for every edge (u,v), $\bar{x}(v) + \bar{x}(u) \geq 1$ and $\max\{\bar{x}(v),\bar{x}(u)\} \geq 1/2$, therefore at least one of u, v belongs to P.

Considering this LP in (35.17) is a minimization problem, $\max\{\bar{x}(v),\bar{x}(u)\}$ need to be as small as possible. Because $\forall v \in V, \bar{x}(v) \geq 0$ and $\bar{x}(v) + \bar{x}(u) \geq 1$, $\max\{\bar{x}(v),\bar{x}(u)\}$ will be at most 1. Therefore (35.19) is a redundant constraint.