CSCE 411 – HW4 solution

Exercise 24-3

Description
Arbitrage is the use of discrepancies in currency exchange rates to transform one unit of a currency into more than one unit of the same currency. For example, suppose that 1 U.S. dollar buys 49 Indian rupees, 1 Indian rupee buys 2 Japanese yen, and 1 Japanese yen buys 0.0107 U.S. dollars. Then, by converting currencies, a trader can start with 1 U.S. dollar and buy $49 \times 20 \times 0.0107 = 10.486$ U.S. dollars, thus turning a profit of 4.86 percent.

Suppose that we are given \(n \) currencies \(c_1, c_2, \ldots, c_n \) and an \(n \times n \) table \(R \) of exchange rates, such that one unit of currency \(c_i \) buys \(R[i, j] \) units of currency \(c_j \).

(a). Give an efficient algorithm to determine whether or not there exists a sequence of currencies \(< c_{i_1}, c_{i_2}, \ldots, c_{i_k} >\) such that \(R[i_1, i_2] \cdot R[i_2, i_3] \cdots R[i_{k-1}, i_k] \cdot R[i_k, i_1] > 1 \). Analyze the running time of your algorithm.

(b). Give an efficient algorithm to print out such a sequence if one exists. Analyze the running time of your algorithm.

Solution:

(a). If there is a sequence \(< c_{i_1}, c_{i_2}, \ldots, c_{i_k} >\) such that \(R[i_1, i_2] \cdot R[i_2, i_3] \cdots R[i_{k-1}, i_k] \cdot R[i_k, i_1] > 1 \), then we have

\[
-\sum_{j=1}^{k-1} \log R[i_j, i_{j+1}] - \log R[i_k, i_1] < 0.
\]

We create a directed complete graph \(G = (V, E) \), where each currency \(c_i \) corresponds to a vertex \(v_i \) of \(G \). If \(R[i, j] > 0 \), let the weight of this edge \(w(i, j) \) be \(-\log R[i, j] \); otherwise, let the \(w(i, j) = 0 \). Run Bellman-Ford algorithm starting from an arbitrary vertex on this graph. If there is a negative cycle, then there exists such a sequence. The time complexity is \(O(|V||E|) \).

(b). To find such a sequence. We first create a graph \(G = (V, E) \) as part (a). Then we relax all the edges \(|V| - 1 \) times, as in the Bellman-Ford algorithm. Then we record all of the \(d \) values of the vertices. Then we relax all the edges \(|V| \) more times. Then we check which vertices had their \(d \) values decrease since we record them. All of these vertices must lie on some set of negative weight cycles. Call \(S \) this set of vertices. Run DFS on the induced graph by \(S \) to find a cycle. The time complexity is \(O(|V||E|) \).

Exercise 29.1-5

Description
Convert the following linear program into slack form:

\[
\text{maximize } 2x_1 - 6x_3 \\
\text{subject to: } x_1 + x_2 - x_3 \leq 7 \\
3x_1 - x_2 \geq 8 \\
-x_1 + 2x_2 + 2x_3 \geq 0 \\
x_1, x_2, x_3 \geq 0
\]

What are the basic and nonbasic variables?

Solution:
Step 1: Convert the linear program into standard form by multiple -1 to both sides of second and third constraint.

\[
\text{maximize } 2x_1 - 6x_3 \\
\text{subject to: } x_1 + x_2 - x_3 \leq 7 \\
-3x_1 + x_2 \leq -8 \\
x_1 - 2x_2 - 2x_3 \leq 0 \\
x_1, x_2, x_3 \geq 0
\]

Step 2: Convert the linear program into slack form:

\[
\begin{align*}
 z &= 2x_1 - 6x_3 \\
x_4 &= 7 - x_1 - x_2 + x_3 \\
x_5 &= -8 + 3x_1 - x_2 \\
x_6 &= -x_1 + 2x_2 + 2x_3 \\
x_1, x_2, x_3, x_4, x_5, x_6 &\geq 0
\end{align*}
\]

Thus the basic variables are \((x_4, x_5, x_6)\) and the nonbasic variables are \((x_1, x_2, x_3)\).

Exercise 29.3-5

Description

Solve the linear program (LP) using SIMPLEX algorithm:

\[
\text{maximize } 18x_1 + 12.5x_2 \\
\text{subject to: } x_1 + x_2 \leq 20 \\
x_1 \leq 12 \\
x_2 \leq 16 \\
x_1, x_2 \geq 0
\]

Solution.

Step 1: we convert the linear programming into slack form:

\[
\begin{align*}
 z &= 18x_1 + 12.5x_2 \\
x_3 &= 20 - x_1 - x_2 \\
x_4 &= 12 - x_1 \\
x_5 &= 16 - x_2 \\
x_1, x_2, x_3, x_4, x_5 &\geq 0
\end{align*}
\]

The basic solution is \((x_1, x_2, x_3, x_4, x_5) = (0, 0, 20, 12, 6)\) and its objective value is \(z = 0\). We choose to increase the value of \(x_1\).
Step 2:

\[z = 216 - 18x_4 + 12.5x_2 \]
\[x_1 = 12 - x_4 \]
\[x_3 = 8 - x_2 + x_4 \]
\[x_5 = 16 - x_2 \]
\[x_1, x_2, x_3, x_4, x_5 \geq 0 \]

The basic solution is \((x_1, x_2, x_3, x_4, x_5) = (12, 0, 8, 0, 16)\) and its objective value is \(z = 216\). We choose to increase the value of \(x_2\).

Step 3:

\[z = 316 - 5.5x_4 - 12.5x_3 \]
\[x_1 = 12 - x_4 \]
\[x_2 = 8 + x_4 - x_3 \]
\[x_5 = 8 - x_4 + x_3 \]
\[x_1, x_2, x_3, x_4, x_5 \geq 0 \]

The basic solution is \((x_1, x_2, x_3, x_4, x_5) = (12, 8, 0, 0, 8)\) and its objective value is \(z = 316\). Now, all coefficients in the objective function are negative. Thus the final solution is \(316\).

Exercise 29.3-6

Description

Solve the following linear program using SIMPLEX:

\[
\text{maximize } 5x_1 - 3x_2 \\
\text{subject to: } x_1 - x_2 \leq 1 \\
2x_1 + x_2 \leq 2 \\
x_1, x_2 \geq 0
\]

Solution.

Step 1: we convert the linear programming into slack form:

\[z = 5x_1 - 3x_2 \]
\[x_3 = 1 - x_1 + x_2 \]
\[x_4 = 2 - 2x_1 - x_2 \]
\[x_1, x_2, x_3, x_4 \geq 0 \]

The basic solution is \((x_1, x_2, x_3, x_4) = (0, 0, 1, 2)\) and its objective value is \(z = 0\). We choose to increase the value of \(x_1\).
Step 2:

\[z = 5 + 2x_2 - 5x_3 \]
\[x_1 = 1 - x_3 + x_2 \]
\[x_4 = -3x_2 + 2x_3 \]
\[x_1, x_2, x_3, x_4 \geq 0 \]

The basic solution is \((x_1, x_2, x_3, x_4) = (1, 0, 0, 0)\) and its objective value is \(z = 5\). We choose to increase the value \(x_2\).

Step 3:

\[z = 5 - \frac{11x_3}{3} - \frac{2x_4}{3} \]
\[x_1 = 1 - \frac{x_2 + x_4}{3} \]
\[x_2 = \frac{2x_3 - x_4}{3} \]
\[x_1, x_2, x_3, x_4 \geq 0 \]

The basic solution is \((x_1, x_2, x_3, x_4) = (1, 0, 0, 0)\) and its objective value is \(z = 5\). Now, all coefficients in the objective function are negative. Thus the final solution is 5.