Problem 1 (20 points, Problem 23.1-9). Let T be a minimum spanning tree of a graph $G = (V, E)$, and let V' be a subset of V. Let T' be the subgraph of T induced by V', and let G' be the subgraph of G induced by V'. Show that if T' is connected, then T' is a minimum spanning tree of G'.

Solution. We can prove it by contradiction. Assume T'' is a minimum spanning tree of G' such that $wt(T'') < wt(T')$, then we can get a spanning tree of G $T'' \cup \{T - T'\}$ with weight smaller than that of T, a contradiction.

Problem 2 (30 points, Problem 24.1-5). Let $G = (V, E)$ be a weighted, directed graph with weight function $w : E \to R$. Given an $O(VE)$-time algorithm to find, for each vertex $v \in V$, the value $\delta^*(v) = \min_{v \in V} \{\delta(u, v)\}$.

Solution. We create a new graph $G' = (V', E')$, where let $V' = V \cup \{s\}$ and $E' = E \cup \{(s, v) | v \in G\}$. Let $w(s, v) = 0$ for all $v \in G$. Then run the BELLMAN-FORD(G', w, s). The pseudocode is as follows:

```plaintext
Algorithm 1 BELLMAN-FORD(G', w, s)

1: for each vertex $v \in G'$ do
2:    let $\delta(v) = \infty$;
3: end for
4: let $\delta(s) = 0$;
5: for $i = 1$ to $|V'| - 1$ do
6:    for each edge $(u, v) \in E'$ do
7:        if $\delta(v) > \delta(u) + w(u, v)$ then
8:            let $\delta(v) = \delta(u) + w(u, v)$;
9:        end if
10:    end for
11: end for
12: for each edge $(u, v) \in E'$ do
13:    if $\delta(v) > \delta(u) + w(u, v)$ then
14:        return FALSE
15:    end if
16: end for
```

It's obvious that $\delta^*(v) = \delta(v)$ because $w(s, u) = 0$ for each $u \in G$. The correctness is ensured by the correctness of BELLMAN-FORD. And the complexity is $O(VE)$.
Problem 3 (50 points, Problem 24-3 Arbitrage). Arbitrage is the use of discrepancies in currency exchange rates to transform one unit of a currency into more than one unit of the same currency. For example, suppose that 1 U.S. dollar buys 49 Indian rupees, 1 Indian rupee buys 2 Japanese yen, and 1 Japanese yen buys 0.0107 U.S. dollars. Then, by converting currencies, a trader can start with 1 U.S. dollar and buy $49 \times 2 \times 0.0107 = 1.0486$ U.S. dollars, thus turning a profit of 4.86 percent.

Suppose that we are given n currencies c_1, c_2, \ldots, c_n and an $n \times n$ table R of exchange rates, such that one unit of currency c_i buys $R[i, j]$ units of currency c_j.

(a). Give an efficient algorithm to determine whether or not there exists a sequence of currencies $<c_{i_1}, c_{i_2}, \ldots, c_{i_k}>$ such that $R[i_1, i_2] \cdot R[i_2, i_3] \cdots R[i_{k-1}, i_k] \cdot R[i_k, i_1] > 1$. Analyze the running time of your algorithm.

(b). Give an efficient algorithm to print out such a sequence if one exists. Analyze the running time of your algorithm.

Solution. (a). If there is a sequence $<c_{i_1}, c_{i_2}, \ldots, c_{i_k}>$ such that $R[i_1, i_2] \cdot R[i_2, i_3] \cdots R[i_{k-1}, i_k] \cdot R[i_k, i_1] > 1$, then we have $-\sum_{j=1}^{k-1} \log R[i_j, i_{j+1}] - \log R[i_k, i_1] < 0$.

We create a directed complete graph $G = (V, E)$, where each currency c_i corresponds to a vertex v_i of G. If $R[i, j] > 0$, let the weight of this edge $w(i, j)$ be $-\log R[i, j]$; otherwise, let the $w(i, j) = 0$. Run Bellman-Ford algorithm starting from an arbitrary vertex on this graph. If there is a negative cycle, then there exists such a sequence. The time complexity is $O(|V||E|)$.

(b). To find such a sequence. We first create a graph $G = (V, E)$ as part (a). Then we relax all the edges $|V| - 1$ times, as in the Bellman-Ford algorithm. Then we record all of the d values of the vertices. Then we relax all the edges $|V|$ more times. Then we check which vertices had their d values decrease since we record them. All of these vertices must lie on some set of negative weight cycles. Call S this set of vertices. Run DFS on the induced graph by S to find a cycle. The time complexity is $O(|V||E|)$.