Problem 1 (20 points, Problem 23.1-9). Let T be a minimum spanning tree of a graph $G = (V, E)$, and let V' be a subset of V. Let T' be the subgraph of T induced by V', and let G' be the subgraph of G induced by V'. Show that if T' is connected, then T' is a minimum spanning tree of G'.

Solution. We can prove it by contradiction. Assume T'' is a minimum spanning tree of G' such that $wt(T'') < wt(T')$, then we can get a spanning tree of $G' \cup \{T - T'\}$ with weight smaller than that of T, a contradiction.

Problem 2 (30 points, Problem 24.1-5). Let $G = (V, E)$ be a weighted, directed graph with weight function $w : E \rightarrow R$. Given an $O(VE)$-time algorithm to find, for each vertex $v \in V$, the value $\delta^*(v) = \min_{u \in V} \{\delta(u, v)\}$. Let $w(s, v) = 0$ for all $v \in G$. Then run the BELLMAN-FORD(G', w, s). The pseudocode is as follows:

Algorithm 1 BELLMAN-FORD(G', w, s)

1: for each vertex $v \in G'$ do
2: let $\delta(v) = \infty$;
3: end for
4: let $\delta(s) = 0$;
5: for $i = 1$ to $|V'| - 1$ do
6: for each edge $(u, v) \in E'$ do
7: if $\delta(v) > \delta(u) + w(u, v)$ then
8: let $\delta(v) = \delta(u) + w(u, v)$;
9: end if
10: end for
11: end for
12: for each edge $(u, v) \in E'$ do
13: if $\delta(v) > \delta(u) + w(u, v)$ then
14: return FALSE
15: end if
16: end for

It’s obvious that $\delta^*(v) = \delta(v)$ because $w(s, u) = 0$ for each $u \in G$. The correctness is ensured by the correctness of BELLMAN-FORD. And the complexity is $O(VE)$.

Problem 3 (50 points, Problem 24-3 Arbitrage). Arbitrage is the use of discrepancies in currency exchange rates to transform one unit of a currency into more than one unit of the same currency. For example, suppose that 1 U.S. dollar buys 49 Indian rupees, 1 Indian rupee buys 2 Japanese yen, and 1 Japanese yen buys 0.0107 U.S. dollars. Then, by converting currencies, a trader can start with 1 U.S. dollar and buy $49 \times 2 \times 0.0107 = 1.0486$ U.S. dollars, thus turning a profit of 4.86 percent.
Suppose that we are given \(n \) currencies \(c_1, c_2, \ldots, c_n \) and an \(n \times n \) table \(R \) of exchange rates, such that one unit of currency \(c_i \) buys \(R[i, j] \) units of currency \(c_j \).

(a). Give an efficient algorithm to determine whether or not there exists a sequence of currencies \(< c_{i_1}, c_{i_2}, \ldots, c_{i_k} > \) such that \(R[i_1, i_2] \cdot R[i_2, i_3] \cdots R[i_{k-1}, i_k] \cdot R[i_k, i_1] > 1 \). Analyze the running time of your algorithm.

(b). Give an efficient algorithm to print out such a sequence if one exists. Analyze the running time of your algorithm.

Solution. (a). If there is a sequence \(< c_{i_1}, c_{i_2}, \ldots, c_{i_k} > \) such that
\[
R[i_1, i_2] \cdot R[i_2, i_3] \cdots R[i_{k-1}, i_k] \cdot R[i_k, i_1] > 1,
\]
then we have
\[
- \sum_{j=1}^{k-1} \log R[i_j, i_{j+1}] - \log R[i_k, i_1] < 0.
\]

We create a directed complete graph \(G = (V, E) \), where each currency \(c_i \) corresponds to a vertex \(v_i \) of \(G \). If \(R[i, j] > 0 \), let the weight of this edge \(w(i, j) \) be \(- \log R[i, j] \); otherwise, let the \(w(i, j) = 0 \). Run Bellman-Ford algorithm starting from an arbitrary vertex on this graph. If there is a negative cycle, then there exists such a sequence. The time complexity is \(O(|V||E|) \).

(b). To find such a sequence. We first create a graph \(G = (V, E) \) as part (a). Then we relax all the edges \(|V| - 1 \) times, as in the Bellman-Ford algorithm. Then we record all of the \(d \) values of the vertices. Then we relax all the edges \(|V| \) more times. Then we check which vertices had their \(d \) values decrease since we record them. All of these vertices must lie on some set of negative weight cycles. Call \(S \) this set of vertices. Run DFS on the induced graph by \(S \) to find a cycle. The time complexity is \(O(|V||E|) \).