CSCE 636 Neural Networks (Deep Learning)

Lecture 10: Advanced deep-learning best practices

Anxiao (Andrew) Jiang
Keras Functional API
But in general, the neural network model can be any directed acyclic graph (DAC).
Figure 7.2 A multi-input model

Figure 7.3 A multi-output (or multihead) model
Figure 7.4 An Inception module: a subgraph of layers with several parallel convolutional branches
Google “Inception” deep neural network architecture
Figure 7.5 A residual connection: reinjection of prior information downstream via feature-map addition
ResNet
Examples of functional API

• See every layer as a function $y = f(x)$
• Every input and output has a name, which makes it feasible to define the model graph conveniently.
from keras import Input, layers

input_tensor = Input(shape=(32,)) # A tensor

dense = layers.Dense(32, activation='relu') # A layer is a function.

output_tensor = dense(input_tensor) # A layer may be called on a tensor, and it returns a tensor.
from keras import Input, layers

input_tensor = Input(shape=(32,)) ← A tensor

dense = layers.Dense(32, activation='relu') ← A layer is a function.

output_tensor = dense(input_tensor) ← A layer may be called on a
tensor, and it returns a tensor.

input_tensor

(32,)
from keras import Input, layers

input_tensor = Input(shape=(32,)) # A tensor

dense = layers.Dense(32, activation='relu') # A layer is a function.

output_tensor = dense(input_tensor) # A layer may be called on a tensor, and it returns a tensor.
from keras import Input, layers

input_tensor = Input(shape=(32,)) # A tensor

dense = layers.Dense(32, activation='relu') # A layer is a function.

output_tensor = dense(input_tensor) # A layer may be called on a tensor, and it returns a tensor.
Another example

Sequential model

define the model

```python
seq_model = Sequential()
seq_model.add(layers.Dense(32, activation='relu', input_shape=(64,)))
seq_model.add(layers.Dense(32, activation='relu'))
seq_model.add(layers.Dense(10, activation='softmax'))
```

Diagram:

Name of model: `seq_model`
Sequential model

```python
seq_model = Sequential()
seq_model.add(layers.Dense(32, activation='relu', input_shape=(64,)))
seq_model.add(layers.Dense(32, activation='relu'))
seq_model.add(layers.Dense(10, activation='softmax'))
```

Equivalent functional API

```python
input_tensor = Input(shape=(64,))
x = layers.Dense(32, activation='relu')(input_tensor)
x = layers.Dense(32, activation='relu')(x)
output_tensor = layers.Dense(10, activation='softmax')(x)
model = Model(input_tensor, output_tensor)
```
Sequential model

```python
seq_model = Sequential()
seq_model.add(layers.Dense(32, activation='relu', input_shape=(64,)))
seq_model.add(layers.Dense(32, activation='relu'))
seq_model.add(layers.Dense(10, activation='softmax'))
```

Equivalent functional API

```python
input_tensor = Input(shape=(64,))
x = layers.Dense(32, activation='relu')(input_tensor)
x = layers.Dense(32, activation='relu')(x)
output_tensor = layers.Dense(10, activation='softmax')(x)
model = Model(input_tensor, output_tensor)
```
Sequential model

```python
seq_model = Sequential()
seq_model.add(layers.Dense(32, activation='relu', input_shape=(64,)))
seq_model.add(layers.Dense(32, activation='relu'))
seq_model.add(layers.Dense(10, activation='softmax'))
```

Equivalent functional API

```python
input_tensor = Input(shape=(64,))
x = layers.Dense(32, activation='relu')(input_tensor)
x = layers.Dense(32, activation='relu')(x)
output_tensor = layers.Dense(10, activation='softmax')(x)
model = Model(input_tensor, output_tensor)
```
Sequential model

```python
seq_model = Sequential()
seq_model.add(layers.Dense(32, activation='relu', input_shape=(64,)))
seq_model.add(layers.Dense(32, activation='relu'))
seq_model.add(layers.Dense(10, activation='softmax'))
```

Equivalent functional API

```python
input_tensor = Input(shape=(64,))
x = layers.Dense(32, activation='relu')(input_tensor)
x = layers.Dense(32, activation='relu')(x)
output_tensor = layers.Dense(10, activation='softmax')(x)
model = Model(input_tensor, output_tensor)
```
Sequential model

```python
seq_model = Sequential()
seq_model.add(layers.Dense(32, activation='relu', input_shape=(64,)))
seq_model.add(layers.Dense(32, activation='relu'))
seq_model.add(layers.Dense(10, activation='softmax'))
```

Equivalent functional API

```python
input_tensor = Input(shape=(64,))
x = layers.Dense(32, activation='relu')(input_tensor)
x = layers.Dense(32, activation='relu')(x)
output_tensor = layers.Dense(10, activation='softmax')(x)
model = Model(input_tensor, output_tensor)
```
Sequential model

```python
seq_model = Sequential()
seq_model.add(layers.Dense(32, activation='relu', input_shape=(64,)))
seq_model.add(layers.Dense(32, activation='relu'))
seq_model.add(layers.Dense(10, activation='softmax'))
```

Equivalent functional API

```python
input_tensor = Input(shape=(64,))
x = layers.Dense(32, activation='relu')(input_tensor)
x = layers.Dense(32, activation='relu')(x)
output_tensor = layers.Dense(10, activation='softmax')(x)
model = Model(input_tensor, output_tensor)
```

Name of model: `model`
Multi-input models
Example application: question-answering

Tom went out to buy wine and bread. He came back with only bread. What did Tom not buy?
from keras.models import Model
from keras import layers
from keras import Input

text_vocabulary_size = 10000
question_vocabulary_size = 10000
answer_vocabulary_size = 500

text_input = Input(shape=(None,), dtype='int32', name='text')

embedded_text = layers.Embedding(64, text_vocabulary_size)(text_input)
encoded_text = layers.LSTM(32)(encoded_text)

question_input = Input(shape=(None,),
 dtype='int32',
 name='question')

embedded_question = layers.Embedding(32, question_vocabulary_size)(question_input)
encoded_question = layers.LSTM(16)(encoded_question)

concatenated = layers.concatenate([encoded_text, encoded_question],
 axis=-1)

answer = layers.Dense(answer_vocabulary_size,
 activation='softmax')(concatenated)

model = Model([text_input, question_input], answer)
model.compile(optimizer='rmsprop',
 loss='categorical_crossentropy',
 metrics=['acc'])
Listing 7.1 Functional API implementation of a two-input question-answering model

```python
from keras.models import Model
from keras import layers
from keras import Input

text_vocabulary_size = 10000
question_vocabulary_size = 10000
answer_vocabulary_size = 500

text_input = Input(shape=(None,), dtype='int32', name='text')

eMBEDDED_Text = layers.Embedding(  
    64, text_vocabulary_size)(text_input)

encoded_text = layers.LSTM(32)(encoded_text)

question_input = Input(shape=(None,),  
    dtype='int32',  
    name='question')

encoded_question = layers.Embedding(  
    32, question_vocabulary_size)(question_input)

encoded_question = layers.LSTM(16)(encoded_question)

concatenated = layers.concatenate([encoded_text, encoded_question],  
    axis=-1)

answer = layers.Dense(answer_vocabulary_size,  
    activation='softmax')(concatenated)

model = Model([text_input, question_input], answer)

model.compile(optimizer='rmsprop',  
    loss='categorical_crossentropy',  
    metrics=['acc'])
```

The text input is a variable-length sequence of integers. Note that you can optionally name the inputs.

Embeds the inputs into a sequence of vectors of size 64

Encodes the vectors in a single vector via an LSTM

Same process (with different layer instances) for the question

Concatenates the encoded question and encoded text

Adds a softmax classifier on top

At model instantiation, you specify the two inputs and the output.
Listing 7.1 Functional API implementation of a two-input question-answering model

```python
from keras.models import Model
from keras import layers
from keras import Input

text_vocabulary_size = 10000
question_vocabulary_size = 10000
answer_vocabulary_size = 500

text_input = Input(shape=(None,), dtype='int32', name='text')

embedded_text = layers.Embedding(64, text_vocabulary_size)(text_input)
encoded_text = layers.LSTM(32)(encoded_text)

question_input = Input(shape=(None,),
                       dtype='int32',
                       name='question')

embedded_question = layers.Embedding(32, question_vocabulary_size)(question_input)
encoded_question = layers.LSTM(16)(encoded_question)

concatenated = layers.concatenate([encoded_text, encoded_question],
                                  axis=-1)
answer = layers.Dense(answer_vocabulary_size,
                      activation='softmax')(concatenated)

model = Model([text_input, question_input], answer)
model.compile(optimizer='rmsprop',
              loss='categorical_crossentropy',
              metrics=['acc'])
```

The text input is a variable-length sequence of integers. Note that you can optionally name the inputs.

Embedding layer

(None,)

Encodes the vectors in a single vector via an LSTM

Same process (with different layer instances) for the question

Concatenates the encoded question and encoded text

Adds a softmax classifier on top

At model instantiation, you specify the two inputs and the output.
Listing 7.1 Functional API implementation of a two-input question-answering model

```python
from keras.models import Model
from keras import layers

text_vocabulary_size = 10000
question_vocabulary_size = 10000
answer_vocabulary_size = 500

text_input = Input(shape=(None,), dtype='int32', name='text')

embedded_text = layers.Embedding(
    64, text_vocabulary_size)(text_input)

encoded_text = layers.LSTM(32)(embedded_text)

question_input = Input(shape=(None,),
    dtype='int32',
    name='question')

embedded_question = layers.Embedding(
    32, question_vocabulary_size)(question_input)
encoded_question = layers.LSTM(16)(embedded_question)

concatenated = layers.concatenate([encoded_text, encoded_question],
    axis=-1)

answer = layers.Dense(answer_vocabulary_size,
    activation='softmax')(concatenated)

model = Model([text_input, question_input], answer)
model.compile(optimizer='rmsprop',
    loss='categorical_crossentropy',
    metrics=['acc'])
```

The text input is a variable-length sequence of integers. Note that you can optionally name the inputs.

Embeds the inputs into a sequence of vectors of size 64

Encodes the vectors in a single vector via an LSTM

Same process (with different layer instances) for the question

Concatenates the encoded question and encoded text

Adds a softmax classifier on top

At model instantiation, you specify the two inputs and the output.
from keras.models import Model
from keras import layers

Set parameters

text_vocabulary_size = 10000
question_vocabulary_size = 10000
answer_vocabulary_size = 500

Define input layers

text_input = Input(shape=(None,), dtype='int32', name='text_input')

Embedding layer

embedded_text = layers.Embedding(
 64, text_vocabulary_size)(text_input)

LSTM layer

encoded_text = layers.LSTM(32)(embedded_text)

Question input

question_input = Input(shape=(None,),
 dtype='int32',
 name='question_input')

Question embedding

embedded_question = layers.Embedding(
 32, question_vocabulary_size)(question_input)

encoded_question = layers.LSTM(16)(embedded_question)

Concatenate text and question

concatenated = layers.concatenate([encoded_text, encoded_question],
 axis=-1)

Answer

answer = layers.Dense(answer_vocabulary_size,
 activation='softmax')(concatenated)

Model

model = Model([text_input, question_input, answer], answer)

Compile

model.compile(optimizer='rmsprop',
 loss='categorical_crossentropy',
 metrics=['acc'])
```python
from keras.models import Model
from keras import layers

text_vocabulary_size = 10000
question_vocabulary_size = 10000
answer_vocabulary_size = 500

text_input = Input(shape=(None,), dtype='int32')
embedded_text = layers.Embedding(64, text_vocabulary_size)(text_input)
encoded_text = layers.LSTM(32)(embedded_text)

question_input = Input(shape=(None,),
dtype='int32',
name='question')
embedded_question = layers.Embedding(32, question_vocabulary_size)(question_input)
encoded_question = layers.LSTM(16)(embedded_question)

concatenated = layers.concatenate([encoded_text, encoded_question],
axis=-1)

answer = layers.Dense(answer_vocabulary_size, activation='softmax')(concatenated)

model = Model([text_input, question_input], answer)
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['acc'])
```

Diagram

- **Embedding layer**
 - `text_input` → `embedded_text`
 - `text_input` → `encoded_text`
 - `question_input` → `embedded_question`
 - `question_input` → `encoded_question`

- **LSTM layer**
 - `encoded_text` → `(32,)`
 - `encoded_question` → `(32,)`

- **Concatenation**
 - `(32,)` + `(32,)` → `(32, 32)`

- **Dense layer**
 - `(32, 32)` → `(500)`

- **Softmax layer**
 - `(500)` → `(1)`

Listed example

Listing 7.1: Functional API implementation of a two-input model for text-to-text translation.
Listing 7.1 Functional API implementation of a two-input model

```python
from keras.models import Model
from keras import layers
import Input

text_vocabulary_size = 10000
question_vocabulary_size = 10000
answer_vocabulary_size = 500

text_input = Input(shape=(None,), dtype='int32')

embedded_text = layers.Embedding( 64, text_vocabulary_size)(text_input)

encoded_text = layers.LSTM(32)(embedded_text)

question_input = Input(shape=(None,),
                        dtype='int32',
                        name='question')

embedded_question = layers.Embedding( 32, question_vocabulary_size)(question_input)

encoded_question = layers.LSTM(16)(embedded_question)

concatenated = layers.concatenate([encoded_text, encoded_question], axis=-1)

answer = layers.Dense(answer_vocabulary_size, activation='softmax')(concatenated)

model = Model([text_input, question_input], answer)
model.compile(optimizer='rmsprop',
              loss='categorical_crossentropy',
              metrics=['acc'])
```

Diagram:
- `text_input` goes through an `Embedding` layer with shape `(None, 64)`.
- `encoded_text` goes through an `LSTM` layer with shape `(32,)`.
- `question_input` goes through an `Embedding` layer with shape `(None, 32)`.
- `encoded_question` goes through an `LSTM` layer with shape `(16,)`.
- Concatenation of `encoded_text` and `encoded_question`.
- `answer` is outputted by a `Dense` layer with softmax activation.
- Model is compiled with `rmsprop` optimizer and categorical cross-entropy loss.
- Model instantiation specifies two inputs and one output.
Listing 7.1 Functional API implementation of a two-input model:

```python
from keras.models import Model
from keras import layers

text_vocabulary_size = 10000
question_vocabulary_size = 10000
answer_vocabulary_size = 500

text_input = Input(shape=(None,), dtype='int32')

embedded_text = layers.Embedding(64, text_vocabulary_size)(text_input)
encoded_text = layers.LSTM(32)(embedded_text)

question_input = Input(shape=(None,),
                        dtype='int32',
                        name='question')

embedded_question = layers.Embedding(32, question_vocabulary_size)(question_input)
encoded_question = layers.LSTM(16)(embedded_question)

concatenated = layers.concatenate([encoded_text, encoded_question], axis=-1)

answer = layers.Dense(answer_vocabulary_size,
                       activation='softmax')(concatenated)

model = Model([text_input, question_input], answer)
model.compile(optimizer='rmsprop',
              loss='categorical_crossentropy',
              metrics=['acc'])
```

This listing demonstrates the implementation of a two-input model using the Functional API in Keras. It includes the definition of input layers, embedding layers, LSTM layers, a concatenate layer, and a dense layer for classification. The model is compiled with an optimizer, loss function, and metrics for evaluation.
Listing 7.1 Functional API implementation of a tw

from keras.models import Model
from keras import layers
from keras import Input

text_vocabulary_size = 10000
question_vocabulary_size = 10000
answer_vocabulary_size = 500

text_input = Input(shape=(None,), dtype='int32')

embedded_text = layers.Embedding(64, text_vocabulary_size)(text_input)
encoded_text = layers.LSTM(32)(embedded_text)

question_input = Input(shape=(None,),
 dtype='int32',
 name='question')

embedded_question = layers.Embedding(32, question_vocabulary_size)(question_input)
encoded_question = layers.LSTM(16)(embedded_question)

concatenated = layers.concatenate([[encoded_text, encoded_question],
 axis=-1)

answer = layers.Dense(answer_vocabulary_size,
 activation='softmax')(concatenated)

model = Model([text_input, question_input], answer)
model.compile(optimizer='rmsprop',
 loss='categorical_crossentropy',
 metrics=['acc'])

Concates the encoded question and encoded text

Add a softmax classifier on top

At model instantiation, you specify the two inputs and the output.
Listing 7.1 Functional API implementation of a tw

```python
from keras.models import Model
from keras import layers

text_vocabulary_size = 10000
question_vocabulary_size = 10000
answer_vocabulary_size = 500

text_input = Input(shape=(None,), dtype='int32')

encoded_text = layers.Embedding(64, text_vocabulary_size)(text_input)

encoded_question = layers.LSTM(32)(encoded_text)

question_input = Input(shape=(None,),
                        dtype='int32',
                        name='question')

embedded_question = layers.Embedding(32, question_vocabulary_size)(question_input)

concatenated = layers.concatenate([[encoded_text, encoded_question],
                                    axis=-1)

answer = layers.Dense(answer_vocabulary_size,
                       activation='softmax')(concatenated)

model = Model([text_input, question_input], answer)
model.compile(optimizer='rmsprop',
              loss='categorical_crossentropy',
              metrics=['acc'])
```

Diagram:
- `Embedding layer` for `text_input` and `question_input`.
- `LSTM layer` for `encoded_text` and `encoded_question`.
- `Concatenate layer` for `concatenated`.
- `Dense layer` for the final output `answer`.

Legend:
- Concatenates the encoded question and encoded text.
- Adds a softmax classifier on top.
- At model instantiation, you specify the two inputs and the output.
Now, how do you train this two-input model? There are two possible APIs: you can feed the model a list of Numpy arrays as inputs, or you can feed it a dictionary that maps input names to Numpy arrays. Naturally, the latter option is available only if you give names to your inputs.

```python
model = Model([text_input, question_input], answer)
model.compile(optimizer='rmsprop',
              loss='categorical_crossentropy',
              metrics=['acc'])
```
```python
model = Model([text_input, question_input], answer)
model.compile(optimizer='rmsprop',
            loss='categorical_crossentropy',
            metrics=['acc'])

# Fitting using a list of inputs
model.fit([text, question], answers, epochs=10, batch_size=128)

# Fitting using a dictionary of inputs (only if inputs are named)
model.fit({'text': text, 'question': question}, answers, epochs=10, batch_size=128)
```
Multi-output models
(see textbook for details)
How to train the multi-output model:

1. Choose a loss function for each output.
 (And we can choose a weight for each loss function.)
2. Keras will take their (weighted) sum as the overall loss function.
Listing 7.4 Compilation options of a multi-output model: multiple losses

model.compile(optimizer='rmsprop',
 loss=['mse', 'categorical_crossentropy', 'binary_crossentropy'])

model.compile(optimizer='rmsprop',
 loss={'age': 'mse',
 'income': 'categorical_crossentropy',
 'gender': 'binary_crossentropy'})

Equivalent (possible only if you give names to the output layers)
Listing 7.5 Compilation options of a multi-output model: loss weighting

model.compile(optimizer='rmsprop',
 loss=['mse', 'categorical_crossentropy', 'binary_crossentropy'],
 loss_weights=[0.25, 1., 10.])

model.compile(optimizer='rmsprop',
 loss={'age': 'mse',
 'income': 'categorical_crossentropy',
 'gender': 'binary_crossentropy'},
 loss_weights={'age': 0.25,
 'income': 1.,
 'gender': 10.})

Equivalent (possible only if you give names to the output layers)
Directed acyclic graphs of layers

A neural network model can be any directed acyclic graph.
Inception modules
Inception modules

Every branch has the same stride value (2), which is necessary to keep all branch outputs the same size so you can concatenate them.

```python
from keras import layers

branch_a = layers.Conv2D(128, 1,
                        activation='relu', strides=2)(x)
branch_b = layers.Conv2D(128, 1, activation='relu')(x)
branch_b = layers.Conv2D(128, 1, activation='relu', strides=2)(branch_b)
branch_c = layers.AveragePooling2D(3, strides=2)(x)
branch_c = layers.Conv2D(128, 1, activation='relu')(branch_c)
branch_d = layers.Conv2D(128, 1, activation='relu')(x)
branch_d = layers.Conv2D(128, 3, activation='relu')(branch_d)
branch_d = layers.Conv2D(128, 1, activation='relu', strides=2)(branch_d)
output = layers.concatenate([branch_a, branch_b, branch_c, branch_d], axis=-1)
```

In this branch, the striding occurs in the average pooling layer.
Inception modules

Xception (extreme inception) module: separating the learning of channel-wise and space-wise features to its logical extreme.

```python
from keras import layers

branch_a = layers.Conv2D(128, 1, activation='relu', strides=2)(x)
branch_b = layers.Conv2D(128, 1, activation='relu')(x)
branch_b = layers.Conv2D(128, 3, activation='relu', strides=2)(branch_b)
branch_c = layers.AveragePooling2D(3, strides=2)(x)
branch_c = layers.Conv2D(128, 3, activation='relu')(branch_c)
branch_d = layers.Conv2D(128, 1, activation='relu')(x)
branch_d = layers.Conv2D(128, 3, activation='relu')(branch_d)
branch_d = layers.Conv2D(128, 3, activation='relu', strides=2)(branch_d)

output = layers.concatenate([branch_a, branch_b, branch_c, branch_d], axis=-1)
```

In this branch, the striding occurs in the average pooling layer.
Residual connections

• Tackles two common problems: vanishing gradients and representation bottlenecks.

• Winning the ILSVRC ImageNet Challenge in 2015.

• In general, adding residual connections to any model that has more than 10 layers is likely to be beneficial.
Example:

Figure 7.5 A residual connection: reinjection of prior information downstream via feature-map addition
from keras import layers

x = ...
y = layers.Conv2D(128, 3, activation='relu', padding='same')(x)
y = layers.Conv2D(128, 3, activation='relu', padding='same')(y)
y = layers.Conv2D(128, 3, activation='relu', padding='same')(y)

y = layers.add([y, x])

Point-wise add. Here X and Y need to have the same shape.
Point-wise add. Here X and Y need to have the same shape.

```python
from keras import layers

x = ...
y = layers.Conv2D(128, 3, activation='relu', padding='same')(x)
y = layers.Conv2D(128, 3, activation='relu', padding='same')(y)
y = layers.MaxPooling2D(2, strides=2)(y)
residual = layers.Conv2D(128, 1, strides=2, padding='same')(x)
y = layers.add([y, residual])  # Adds the residual tensor back to the output features
```

Uses a 1×1 convolution to linearly downsample the original x tensor to the same shape as y.
Layer weight sharing

- It is useful to share weights. (Think of convolutional filters.)
- We can reuse a layer instance several times. The share the same weights (because they are the same layer instance).
For example, consider a model that attempts to assess the semantic similarity between two sentences. The model has two inputs (the two sentences to compare) and outputs a score between 0 and 1, where 0 means unrelated sentences and 1 means sentences that are either identical or reformulations of each other. Such a model could be useful in many applications, including deduplicating natural-language queries in a dialog system.
For example, consider a model that attempts to assess the semantic similarity between two sentences. The model has two inputs (the two sentences to compare) and outputs a score between 0 and 1, where 0 means unrelated sentences and 1 means sentences that are either identical or reformulations of each other. Such a model could be useful in many applications, including deduplicating natural-language queries in a dialog system.

We use the same LSTM layer to turn each sentence into a set of features.

We then compare the similarity of the two sets of features, to decide if the two sentences are similar or not.

The representations of this LSTM layer (its weights) are learned based on both inputs simultaneously. This is called a Siamese LSTM model or a shared LSTM.
from keras import layers
from keras import Input
from keras.models import Model

lstm = layers.LSTM(32)

left_input = Input(shape=(None, 128))
left_output = lstm(left_input)

right_input = Input(shape=(None, 128))
right_output = lstm(right_input)

merged = layers.concatenate([left_output, right_output], axis=-1)
predictions = layers.Dense(1, activation='sigmoid')(merged)

model = Model([left_input, right_input], predictions)
model.fit([left_data, right_data], targets)

Instantiates a single LSTM layer, once
Building the left branch of the model: inputs are variable-length sequences of vectors of size 128.
Building the right branch of the model: when you call an existing layer instance, you reuse its weights.

Builds the classifier on top
Instantiating and training the model: when you train such a model, the weights of the LSTM layer are updated based on both inputs.
from keras import layers
from keras import Input
from keras.models import Model

lstm = layers.LSTM(32)

left_input = Input(shape=(None, 128))
left_output = lstm(left_input)

right_input = Input(shape=(None, 128))
right_output = lstm(right_input)

merged = layers.concatenate([left_output, right_output], axis=-1)
predictions = layers.Dense(1, activation='sigmoid')(merged)

model = Model([left_input, right_input], predictions)
model.fit([left_data, right_data], targets)
Models as layers

• A model can be used like a layer. (We can think of model as a “bigger layer”.)

\[y = \text{model}(x) \]

If the model has multiple input tensors and multiple output tensors, it should be called with a list of tensors:

\[y_1, y_2 = \text{model}([x_1, x_2]) \]
Reuse weights of a model:

When you call a model instance, you’re reusing the weights of the model—exactly like what happens when you call a layer instance. Calling an instance, whether it’s a layer instance or a model instance, will always reuse the existing learned representations of the instance—which is intuitive.
Example: Dual camera that can perceive depth

We use the convolutional base of the Xception network (that is, we remove its top dense layer, which is used for classification) to extract features of the input image.

The same model can be used for both cameras.
(It is a Siamese vision model, or shared convolutional base.)
from keras import layers
from keras import applications
from keras import Input

xception_base = applications.Xception(weights=None, include_top=False)

left_input = Input(shape=(250, 250, 3))
right_input = Input(shape=(250, 250, 3))

left_features = xception_base(left_input)
right_features = xception_base(right_input)

merged_features = layers.concatenate([left_features, right_input], axis=-1)
from keras import layers
from keras import applications
from keras import Input

xception_base = applications.Xception(weights=None,
 include_top=False)

left_input = Input(shape=(250, 250, 3))
right_input = Input(shape=(250, 250, 3))

left_features = xception_base(left_input)
right_features = xception_base(right_input)

merged_features = layers.concatenate([left_features, right_input], axis=-1)
Inspecting and monitoring deep-learning models using Keras callbacks and TensorBoard
Using **callbacks** to act on a model during **training**

Here are some examples of ways you can use callbacks:

- **Model checkpointing**—Saving the current weights of the model at different points during training.
- **Early stopping**—Interrupting training when the validation loss is no longer improving (and of course, saving the best model obtained during training).
- **Dynamically adjusting the value of certain parameters during training**—Such as the learning rate of the optimizer.
- **Logging training and validation metrics during training, or visualizing the representations learned by the model as they’re updated**—The Keras progress bar that you’re familiar with is a callback!
Example: the **ModelCheckpoint** and **EarlyStopping** callbacks

- **Save the model (its weights) in a file**
- **Stop training when a monitored metric (such as accuracy or loss) stops improving**
Example: the **ModelCheckpoint** and **EarlyStopping** callbacks

Callbacks are passed to the model via the `callbacks` argument in `fit`, which takes a list of callbacks. You can pass any number of callbacks.

```python
import keras

callbacks_list = [
    keras.callbacks.EarlyStopping(
        monitor='acc',
        patience=1,
    ),
    keras.callbacks.ModelCheckpoint(
        filepath='my_model.h5',
        monitor='val_loss',
        save_best_only=True,
    )
]

model.compile(optimizer='rmsprop',
              loss='binary_crossentropy',
              metrics=['acc'])

model.fit(x, y,
           epochs=10,
           batch_size=32,
           callbacks=callbacks_list,
           validation_data=(x_val, y_val))
```

Interrupts training when improvement stops

Monitors the model's validation accuracy

Interrupts training when accuracy has stopped improving for more than one epoch (that is, two epochs)

Saves the current weights after every epoch

Path to the destination model file

These two arguments mean you won’t overwrite the model file unless `val_loss` has improved, which allows you to keep the best model seen during training.

You monitor accuracy, so it should be part of the model’s metrics.

Note that because the callback will monitor validation loss and validation accuracy, you need to pass `validation_data` to the call to `fit`.
Example: the `ReduceLROnPlateau` callback

- Reduce (or increase) the Learning Rate when the monitored metric (such as validation loss) has stopped improving.

- It is an effective way to get out of local minimal during training.
Example: the `ReduceLROnPlateau` callback

```python
callbacks_list = [
    keras.callbacks.ReduceLROnPlateau(
        monitor='val_loss',
        factor=0.1,
        patience=10,
    ),
]

model.fit(x, y,
    epochs=10,
    batch_size=32,
    callbacks=callbacks_list,
    validation_data=(x_val, y_val))
```

- Monitors the model’s validation loss
- Divides the learning rate by 10 when triggered
- The callback is triggered after the validation loss has stopped improving for 10 epochs.

Because the callback will monitor the validation loss, you need to pass validation_data to the call to fit.
Example: the **ReduceLROnPlateau** callback

```python
callbacks_list = [
    keras.callbacks.ReduceLROnPlateau(
        monitor='val_loss',
        factor=0.1,
        patience=10,
    ),
]
model.fit(x, y,
    epochs=10,
    batch_size=32,
    callbacks=callbacks_list,
    validation_data=(x_val, y_val))
```

- **Monitors the model’s validation loss**
- **Divides the learning rate by 10 when triggered**
- **The callback is triggered after the validation loss has stopped improving for 10 epochs.**

Because the callback will monitor the validation loss, you need to pass `validation_data` to the call to fit.

Your can write your own callbacks. (For details, see textbook.)
TensorBoard: the TensorFlow visualization framework

- TensorFlow is a library (platform) for deep learning.
- Keras is built on top of TensorFlow (and other platforms).
- TensorBoard is a nice visualization tool for deep learning.
Example: Visualize DNN training for IMDB dataset

```python
import keras
from keras import layers
from keras.datasets import imdb
from keras.preprocessing import sequence

max_features = 2000
max_len = 500

(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
x_train = sequence.pad_sequences(x_train, maxlen=max_len)
x_test = sequence.pad_sequences(x_test, maxlen=max_len)

model = keras.models.Sequential()
model.add(layers.Embedding(max_features, 128,
                           input_length=max_len,
                           name='embed'))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.MaxPooling1D(5))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.GlobalMaxPooling1D())
model.add(layers.Dense(1))
model.summary()
model.compile(optimizer='rmsprop',
              loss='binary_crossentropy',
              metrics=['acc'])
```
model = keras.models.Sequential()
model.add(layers.Embedding(max_features, 128,
 input_length=max_len,
 name='embed'))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.MaxPooling1D(5))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.GlobalMaxPooling1D())
model.add(layers.Dense(1))
model = keras.models.Sequential()
model.add(layers.Embedding(max_features, 128,
 input_length=max_len,
 name='embed'))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.MaxPooling1D(5))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.GlobalMaxPooling1D())
model.add(layers.Dense(1))
callbacks = [
 keras.callbacks.TensorBoard(
 log_dir='my_log_dir',
 histogram_freq=1,
 embeddings_freq=1,
),
]

history = model.fit(x_train, y_train,
 epochs=20,
 batch_size=128,
 validation_split=0.2,
 callbacks=callbacks)

Log files will be written at this location.

Records activation histograms every 1 epoch

Records embedding data every 1 epoch
You can then browse to http://localhost:6006 and look at your model training.

Figure 7.10 TensorBoard: metrics monitoring
Monitor word embedding (visualized in a 2-D space)

Words are forming two clusters: One positive cluster, One negative cluster.
from keras.utils import plot_model

plot_model(model, to_file='model.png')

Figure 7.14 A model plot as a graph of layers, generated with plot_model
from keras.utils import plot_model

plot_model(model, show_shapes=True, to_file='model.png')

Figure 7.15 A model plot with shape information
Getting the most out of your models

Techniques for improving DNN performance
Batch normalization is a type of layer (BatchNormalization in Keras) introduced in 2015 by Ioffe and Szegedy; it can adaptively normalize data even as the mean and variance change over time during training. It works by internally maintaining an exponential moving average of the batch-wise mean and variance of the data seen during training. The main effect of batch normalization is that it helps with gradient propagation—much like residual connections—and thus allows for deeper networks. Some very deep networks can only be trained if they include multiple BatchNormalization layers. For instance, BatchNormalization is used liberally in many of the advanced convnet architectures that come packaged with Keras, such as ResNet50, Inception V3, and Xception.
The BatchNormalization layer is typically used after a convolutional or densely connected layer:

```python
cnv_model.add(layers.Conv2D(32, 3, activation='relu')) ← After a Conv layer
cnv_model.add(layers.BatchNormalization())

dense_model.add(layers.Dense(32, activation='relu')) ← After a Dense layer
dense_model.add(layers.BatchNormalization())
```
Depthwise separable convolution

What if I told you that there’s a layer you can use as a drop-in replacement for Conv2D that will make your model lighter (fewer trainable weight parameters) and faster (fewer floating-point operations) and cause it to perform a few percentage points better on its task? That is precisely what the depthwise separable convolution layer does (SeparableConv2D). This layer performs a spatial convolution on each channel of its input, independently, before mixing output channels via a pointwise convolution (a 1 × 1 convolution), as shown in figure 7.16.
Depthwise convolution: independent spatial convs per channel

Figure 7.16 Depthwise separable convolution: a depthwise convolution followed by a pointwise convolution
from keras.models import Sequential, Model
from keras import layers

height = 64
dwidth = 64
channels = 3
num_classes = 10

model = Sequential()
model.add(layers.SeparableConv2D(32, 3,
 activation='relu',
 input_shape=(height, width, channels,)))
model.add(layers.SeparableConv2D(64, 3, activation='relu'))
model.add(layers.MaxPooling2D(2))
model.add(layers.SeparableConv2D(64, 3, activation='relu'))
model.add(layers.SeparableConv2D(128, 3, activation='relu'))
model.add(layers.MaxPooling2D(2))
model.add(layers.SeparableConv2D(64, 3, activation='relu'))
model.add(layers.SeparableConv2D(128, 3, activation='relu'))
model.add(layers.GlobalAveragePooling2D())
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(num_classes, activation='softmax'))
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
Hyper-parameter optimization

• Hyper-parameter: parameters that define the architecture of the model and the training process.

The process of optimizing hyperparameters typically looks like this:

1. Choose a set of hyperparameters (automatically).
2. Build the corresponding model.
3. Fit it to your training data, and measure the final performance on the validation data.
4. Choose the next set of hyperparameters to try (automatically).
5. Repeat.
6. Eventually, measure performance on your test data.

Challenges:

1. Long time: every time the hyper-parameters are tuned, a new model need be trained. Then we get to know if the new hyper-parameters work well or not.

2. Discrete choices: the hyper-parameters are often not continuous. So gradient descent usually cannot be used for optimization.
AutoML: automatically choose and optimize the network architecture and hyper-parameters

• Techniques: Bayesian optimization, genetic algorithms, random search, etc.

• Some easy-to-use tools: Hyperopt, Hyperas
Model ensembling

• Train a large set of very different models

• Combine their results to get the final result

```python
preds_a = model_a.predict(x_val)
preds_b = model_b.predict(x_val)
preds_c = model_c.predict(x_val)
preds_d = model_d.predict(x_val)

final_preds = 0.5 * preds_a + 0.25 * preds_b + 0.1 * preds_c + 0.15 * preds_d
```

These weights (0.5, 0.25, 0.1, 0.15) are assumed to be learned empirically.