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Abstract

In sensor network applications, sensors often need to
retrieve data from each other. Information brokerage
is a scheme that stores data (or index files of data) at
rendezvous nodes, so thal every sensor can efficiently
finds the data it needs. A very useful property for in-
formation brokerage is locality sensitivity, which means
that a sensor close the original source of the data should
also be able to retrieve the data with a small communi-
cation cost. Given the locality sensitivity requirement,
the key is to design an information brokerage scheme
that minimizes the storage cost.

In this paper, we present a locality sensitive infor-
mation brokerage scheme. It is designed for general
locality-sensitive requirements, which include the linear
data-retrieval cost (a frequently studied scenario) as a
special case. We also prove that for a large class of
networks, in the scenario of linear data-retrieval cost,
our scheme achieves the asymptotically optimal stor-
age cost. The result also proves the optimality of a few
other schemes in the literature.

1 Introduction

Wireless sensor networks have been widely deployed
for data collection, in-network processing and distrib-
uted control. In those networks, sensor often need to
retrieve data from each other to fulfill their functions.
When a sensor (consumer) retrieves the data acquired
by another sensor (producer), it does not know the lo-
cation of the producer. In fact, since sensors often have
limited memories, they often cannot afford to remem-
ber the location of the other sensors in a large network,
because the size of such information grows linearly in
the size of the network. This poses a challenge for data
retrieval. A simple solution is for the consumer to flood
the whole network to find out where the producer is and
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retrieve its data, but flooding consumes too much en-
ergy and is not appropriate for large sensor networks.
Therefore, an efficient information brokerage scheme
that enables efficient data retrieval is needed.

An information brokerage scheme stores data repli-
cas at rendezvous nodes so that consumers can retrieve
them efficiently. An information brokerage scheme
defines both a publish process and a data-retrieval
process. Here publish means that the producer trans-
mits its data to its rendezvous nodes, and stores them
there. When a consumer needs to retrieve the data, it
sends out a query message, which is routed along a pre-
designed path until it reaches a rendezvous node. The
data-retrieval process is also called data lookup. There
are three types of costs associated with an information
brokerage scheme: the publish cost (the communication
cost for transmitting the data replicas from a producer
to its rendezvous nodes), the storage cost (the number
of rendezvous nodes storing the data replicas), and the
lookup cost (the communication cost for a consumer to
retrieve the data). Since a producer publishes its data
only once, but the data replicas need to be persistently
stored and many consumer may access the data, the
latter two costs are relatively more important.

A very useful property for information brokerage
schemes is locality sensitivity, which means that con-
sumer sensors that are closer to the producer should
also be able to retrieve the data more efficiently. A
frequently studied scenario is linear lookup cost, which
means that the lookup cost for a consumer should be
linear in the shortest-path communication cost between
the consumer and the corresponding producer (e.g.,
in [1,12]). There are several reasons why a locality-
sensitive information brokerage scheme is desirable.
Sensors closer to each other are more likely to have cor-
related data and tasks and should collaborate closer to
perform network functions. It is beneficial to reduce
the lookup cost for them. What’s more, when the ra-
tio of the lookup cost and the shortest-path consumer-
producer communication cost is bounded, the total
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lookup cost for the network becomes close to the opti-
mal lookup cost for any data-retrieval pattern. In addi-
tion, a locality-sensitive scheme is more robust to net-
work partitions if rendezvous nodes store index files of
data, because a closer producer and rendezvous nodes
are more likely to be in the same network component
as the consumer.

Locality sensitive distributed services have been
studied in various contexts in the literature [1-3, 5,
7 13]. Most of the locality-sensitive schemes assume
the linear lookup cost, which we extend in this pa-
per. Also, the optimality of the proposed schemes still
needs exploration. In this paper, we present a locality-
sensitive information brokerage scheme for dense sensor
networks. The scheme is for general locality-sensitive
requirements, which include the linear lookup cost as
a special case. We prove that for a large family of net-
works — growth lower-bounded networks — the scheme
achieves the asymptotically optimal storage cost for lin-
ear lookup cost. The results also proves the optimality
of a few other schemes in the literature.

2 Related Work

There have been quite a few papers on informa-
tion brokerage schemes. A well known approach is
the Geographic Hash Table (GHT) [10], where a hash
function is used to determine the rendezvous locations
to store data. The same hash function is used by
both producers and consumers, so that the consumers
know where to find the data. GHT is not a locality-
sensitive scheme. Locality-sensitive information bro-
kerage has been studied in [12], where the authors pro-
posed a novel information brokerage scheme that stores
the data replicas on curves instead of isolated nodes.
The curve along which a producer replicates its data
is designed in a way that guarantees it to intersect the
lookup path of any consumer. Additional information
storage schemes based on landmarks, etc., have been
proposed in [5,7].

Information brokerage is related to the distributed
object locating and routing (DoLR) schemes for effi-
cient file sharing in networks, especially overlay net-
works. In the seminal work by Plaxton et al. [9],
a randomized locality-sensitive DoLR solution, called
PRR, was proposed for growth bounded networks. The
schemes Tapestry [13] and Pastry [11] inherited the ba-
sic ideas of PRR, and focused more on the self organi-
zation of overlay networks. PRR, Tapestry and Pastry
all have linear lookup cost in expectation. LAND [2]
is a DoLR scheme for growth bounded networks. It
achieves a deterministic 14 € stretch lookup cost in the
worst case.
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Information brokerage is also related to location ser-
vice in mobile networks, where a node uses the data
stored in location servers to learn the locations of
other nodes. The study of location service was pi-
oneered by Awerbuch and Peleg [3]. In their work,
the network was modeled by a general graph, and the
approach was based on hierarchical regional directo-
ries. LLS [1] adopted the ideas in [3] on tracking,
and obtained a locality-sensitive scheme for grid-like
networks. STALK [4] and MLS [6] achieved a similar
tracking performance. They also addressed the issues
of fault tolerance and robust performance. The above
schemes all have linear lookup costs. GLS is another
interesting scheme [8]. It is based on the hierarchical
decomposition of the network using a quad-tree struc-
ture. Although its lookup cost is not locality-sensitive
in the rigorous sense, it does limit the search process
within a smaller region, and thus achieves a perfor-
mance that is nearly locality sensitive.

3 Basic Concepts and Terms

We model the sensor network as a graph G = (V, E).
Each edge has an associated communication cost. The
length of a path is the summation of the communica-
tion cost of its edges. For two sensors u and v, the
distance d(u,v) is defined as the length of the short-
est path between them. When the context is clear,
we will also use d instead of d(u,v). As in many ex-
isting works [1, 8,10, 12], we assume that every sensor
knows its own physical location. For simplicity, we as-
sume that the Euclidean distance between two sensors
is bounded from below by some constant J.

Every sensor in the network can be both a producer
(when it provides data) and a consumer (when it re-
trieves data). When a pair of producer and consumer
sensors are discussed, we usually use u to denote the
producer sensor, and use v to denote the consumer sen-
sor. A producer u publishes its data by storing its data
(or the index files of the data) in a set of rendezvous
sensors, which we call the mirrors of u. When a con-
sumer v needs to retrieve the data of u, v sends a query
message along a pre-designed path, which is called the
lookup path of v. If the set of mirrors of v and the
lookup path of v share a common vertex w, we say
that the mirrors of u and the lookup path of v meet at
w. The design of an information brokerage schemes in-
cludes a policy that chooses the mirror nodes for each
producer, and a policy that chooses the lookup path
for each consumer.

For a producer u and a consumer v, let w be the
first node in the lookup path of v where the look path
and the mirrors of u meet. The lookup cost of v is



defined as the communication cost (i.e., length) of the
sub-path from v to w. That is, if the lookup path of v is
-, then the lookup
cost is d(v,v1) + d(v1,v2) + d(va,vs) + « -+ + d(v;, w).
(In reality, since the query message needs to return to
v, the actual communication cost is about twice the
lookup cost. But that does not affect the analysis in
the paper.)

Let g(x) be a positive and monotonically increasing
function. An information brokerage scheme is called
g-locality sensitive if for every consumer v and every
producer u, the lookup cost of v is at most g(d(u,v)).
When g(z) is linear in z, the information brokerage is
said to have a linear lookup cost.

The publish process of a producer has two associated
costs: the communication cost of transmitting the data
replicas to the mirror nodes, and the cost of storing the
data replicas in those mirrors. In this paper, we focus
on the storage cost, because the data are persistently
stored in the mirrors and the storage cost is substantial.
We do not study the communication cost here because
a producer only needs to transmit its data once, and
the cost is comparatively negligible. For an informa-
tion brokerage scheme, we define the storage cost of a
producer u as the number of mirrors it has, and denote
it by f(u). The storage cost of an information bro-
kerage scheme is defined as max,cy f(u). That is, we
focus on the maximum number of mirrors a producer
has.

Given the function g(x), the key to a g-locality sen-
sitive information brokerage scheme is to minimize the
storage cost.

V— V] — Vg — o — U — W — -

4 Grid-based Information Brokerage

In this section, we study information brokerage for
grid networks, where the = and y coordinates of each
grid node are a pair of integers. (Without loss of gen-
erality, the minimum distance between two grid nodes
is assumed to be one.)

In the following discussion, we assume that for any
two nodes u and v,

d(u,v) < c-|uw|,

(1)

where |uv| is the Euclidean distance between v and v,
and ¢ > 1 is some constant. (c is called the stretch fac-
tor.) That is, we assume the communication cost is at
most a constant times the Euclidean distance between
two nodes. Although for a grid network, it appears
natural to let ¢ be v/2 or a similar value, we choose
to let ¢ be a general constant for an important reason.
The grid network is an approximation of the underly-
ing physical sensor network with its own routing layer,
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and the routing stretch factor of the routing layer is
not necessarily v/2 or some other given constant.

We now present a locality-sensitive information bro-
kerage scheme for the grid network, which we call
GIB (grid-based information brokerage). We first
present a concise version of the scheme for linear lookup
cost, which achieves a logarithmic storage cost. We
then present its generic version for general locality-
sensitivity requirements.

4.1 Information Brokerage Scheme for
Linear Lookup Cost

The baseline version of the grid-based information
brokerage scheme is designed for linear lookup cost.
Specifically, g(z) = s-x, where s is an arbitrary positive
number called the brokerage stretch factor.

The scheme for linear lookup cost adopts a well
known technique called exponentially growing neigh-
borhoods, which was also explored by a number of re-
lated papers [1,2,4,6,9,11,13]. Although the baseline
GIB scheme differs from these schemes in details, it
is not meant to be a radically new design. Rather, it
serves as a basis for the discussion of the more flexible
general version to be presented in the next subsection.

Figure 1. The 1-, 2-, 3-mirrors of node «, and
the 1-, 2-, 3-neighbor of node v.

First, we introduce the notions of i-lattice, i-
resolution, ¢-neighbor, i-radius, and ¢-mirror. For
i=1,2,3---, let I; = 2"~ be an exponentially in-
creasing sequence. [; is called the i-resolution. Then,
the i-lattice nodes are defined to be the nodes whose x
and y coordinates are both multiples of the i-resolution
l;. For any node, the closest (in Euclidean distance) -
lattice node is called its ¢-neighbor. (Ties are broken
arbitrarily.)



Fori=1,2,3---, let 7} be defined as:

=2 (27 —1)/s, (2)

and let

rio= Thde-li/V2 (3)
r; is called the i-radius. For a producer u, the set of
i-lattice nodes within Euclidean distance r; to u are
called u’s ¢-mirrors.

Let I(d) denote the smallest integer such that

Tra) = d- By (2), we get

s-d
E+1ﬂ_1

The information brokerage scheme for linear lookup
cost is as follows:

1(d) = [log( (4)

e Publish policy: For every producer u, for i
1,2,3---, let M; denote the set of i-mirrors of wu.
The producer u stores its data replicas in the nodes
in M7 UM;UM;g---.

e Lookup policy: For every consumer v, for i
1,2,3---, let v; denote the i-neighbor of v. The
lookup path of v is v1 — v9 — v3---

We illustrate some of the above terms and concepts
in Figure 1. The 1-; 2- and 3-mirrors of a node u, are
shown in the figure with black dots. The figure also
shows the 1-, 2- and 3- of a node v. Since [; = 1,
v1 and v are the same node. In this figure, vs is the
first mirror of uw that v’s lookup path meets. So v will
retrieve the data of u (or the index files of the data)
from the mirror node v3.

Lemma 1. Let u be a producer and v be a consumer.
If d(u,v) < r} for some integer i > 1, then the mirrors
of u and the lookup path of v meet at the node v;, where
v; denotes the i-neighbor of v.

Proof. By equation (1), d(v,v;) < c¢- |vv;|. By the
definition of i-neighbor, we have |vv;| < 1;/v/2. There-
fore, d(v,v;) < c¢-1;/v/2. Since d(u,v) < i, d(u,v;) <
d(u,v) +d(v,v;) < 7i+c-1;/vV/2 =r;. So v, is one of u’s
i-mirrors. Therefore, the mirrors of u and the lookup
path of v meet at v;. O

It should be clear from the above proof why we chose
r; as i+ c-1;/+/2 in equation (3). It is one way to get
a necessary condition for Lemma 1 to hold.

We can see from Lemma 1 that for a producer-
consumer pair u and v, the mirrors of u and the lookup
path of v must both contain the I(d(u,v))-neighbor of
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U, Vi(d(u,v))- Lherefore, when v sends a query packet
along its lookup path up to the node vr(4(u,v)), it can
find not only the data of u, but also the data of any
other producer with distance d(u,v) from v.

Theorem 1. Let n be the number of nodes in the grid
network. In the information brokerage scheme, every
producer stores data in O(logn) mirrors. For every
consumer v and producer u, the lookup cost for v is at
most s - d(u,v).

Proof. We first consider the storage cost. Consider a
generic producer u. By the definition of r;, it is simple
to see to that 7; = O(2%), and thus r;/l; = O(1). So the
number of i-mirrors of u is less than 7r?/(1?), which is
upper bounded by a constant. The diameter of the grid
network is O(y/n). By equation (4), for the i-mirrors
of u, the maximum value of i grows as O(logn) when
n increases. Therefore, the producer u stores data in
O(log n) mirrors.

We now consider the lookup cost of a generic con-
sumer v. Let D denote the diameter of the grid net-
work. And consider the ranges [ry = 1,7], [r],75], -,
[T’I(D)il, ’I”/I(D)]. Let u be a producer, and we will show
that the lookup cost for v is at most s - d(u,v). Let
i be the integer such that d(u,v) € [r;_,,r]. For the
convenience of discussion, let vg denote the same node
as v. By Lemma 1, the mirrors of v and the lookup
path of v meet at v;, and the lookup cost for v is:

i i
> d(vj-1,v5)

j=1

> (d(v,vj-1) + d(v,v5))

j=1

ZQd(v,vj) < ZZC- vy,
j=1 j=1
By the definition of v;, |vv;| < 1;/V/2, therefore,

i % I i
;d(vj_l,vj) S ;26% = \/ic;l]

Let U; be the right hand side of the above equation,
that is,

<

IN

Ui:\/§C~le. (5)
j=1

The analysis above shows that if the distance d(u,v)

falls in the range [r;_,,7}], then the lookup cost for v

is at most U;. For the information brokerage scheme

discussed here, I; = 2771, By plugging it into equa-

tion (5), we get

SRS SIS SR TSN
Jj=1 j=1
(6)



Since r}_; < d(u,v), we have U; < s-d(u,v). Therefore,
the lookup cost for v is upper bounded by s-d(u,v). So

the information brokerage scheme is locality sensitive.
O

4.2 Information Brokerage Scheme for
General Lookup Cost

We now generalize the information brokerage
scheme for general lookup cost functions. Note that
in the basic information brokerage scheme for linear
lookup cost, the design is based on i-radius r; and i-
resolution [;. To achieve the linear lookup cost, both [;
and r; are set as exponential sequences. When given a
more general lookup cost function g(z), instead of us-
ing exponential sequences, we will use better sequences
for I; and r;. The basic idea is to formulate the infor-
mation brokerage problem as an optimization program,
and obtain the optimal values of the r; and [; sequences
by solving it. The optimization program enforces the
locality sensitivity constraint and minimizes the stor-
age cost. Specifically, the optimization program is as
follows:

min 370, wrd /17 (7)
s.t. ri:rg—l—c-li/\/i Vi<i<m (8)
Ui=+v2eY 41 V1<i< (9)

i >0,0;, >0 vi<i<m (10)

U, <g(ri_y) Vi<i<m  (11)

ro=1,r,>D (12)

In the above formulation, m is a variable that de-
notes the maximum index for the i-mirrors and i-
neighbors. The meaning of the above formulation
should be clear, because the equalities and inequalities
in the formulation all have counterparts in the analysis
of the basic scheme for linear lookup cost. The ob-
jective function in the formulation, > ;- 7r?/I?, is a
good estimation of a publisher’s storage cost. It is as-
ymptotically equivalent to the number of mirrors that
the producer has. The equations (8) and (9) corre-
spond to the definitions of U; and r; in the previous
equations (3) and (5). The inequality (10) is the non-
negativity constraint. The inequalities (11) and (12)
enforce the locality-sensitivity constraint, that is, the
g(d(u,v)) lookup cost.

To rigorously prove that the solution of the above
program gives a g-locality sensitive information bro-
kerage scheme, we can apply the same arguments as in
the proof of Theorem 1. For Theorem 1, it has been
shown that U; is an upper bound of the lookup cost
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for a producer-consumer pair whose distance falls in
the range [r;_,,7;]. For general lookup cost function,
in the above program, the constraint (11) ensures that
this upper bound does not exceed g(r;_;), thus en-
forcing the g-locality sensitivity for producer-consumer
pairs whose distance is in the range [r;_;,r]. Since
the above fact holds for every ¢ (1 < i < m), and
rl > D, the g-locality sensitivity is achieved for all
producers and consumers. In summary, the solution of
the above formulation yields an information brokerage
scheme that has a g-locality sensitive lookup cost and

optimized storage cost.

We now discuss how to solve the GIB program.
First, observe that it is a non-linear program, since the
objective function (7) and the locality sensitivity con-
straint (11) are both non-linear. Second, notice that
the number m is also an unknown variable. Both char-
acteristics make the solution to the program highly
non-trivial. We use the following intuitive approach
to solve the program: try a range of reasonable val-
ues of m; for each value of m, use standard non-linear
programming techniques to solve the more constrained
problem. In the end, we choose the value of m that
presents the best performance and the corresponding
non-linear programming solution.

Choosing the best value for m is very important.
Given m, the program can be generally solved very ef-
ficiently. We present our experience by using some ex-
ample experiments. All the experimental results were
obtained by the Matlab optimization toolbox on a lap-
top with a 1.3GHz Intel Pentium M processor and 1Gb
memory.

In the following, we show the results for information
brokerage with a quadratic lookup function g(x) = 2.
Table 1 lists the [; sequence and the corresponding stor-
age cost f (the objective function in the program) for
m = 1,2,3,...,8,and D = 100. For succinctness, the

sequences r;, r; and U; are not shown in the table.

m | f ] Li |
1 | 32046 1
2 | 286.9 1,219
3 [ 1183 1,5.5,71.4
4 | 100.1 1, 3.4, 15.0, 100
5 | 102.0 1, 3.1, 10.1, 34.0, 100
6 | 106.7 1, 3.0, 9.8,31.5, 86.0, 100
7 | 111.7 | 1, 3.0, 9.6, 29.8, 77.0, 100, 100
8 | 116.9 | 1, 3.0, 9.5, 28.6, 71.0, 100, 100, 100

Table 1. solution of the GIB program with
g(z) = 2% and D = 100



As shown in Table 1, when m increases from 1 to bounded networks includes the grid networks as a spe-

8, the storage cost f first decreases monotonically and cial case, our information brokerage achieves the as-
then increases. The optimal storage cost f = 100.1 is ymptotically optimal performance.
obtained when m = 4. Recall that the locality sensitiv- The notion of bounded growth is based on the con-
ity of the grid-based information brokerage scheme is cept of ball packing. A ball B,.(v) with center node
achieved by segmenting the distance between producers v and radius r is the set of nodes within distance r
and consumers (that is, the range [1, D]) into m sub- from v. Let B be a set of balls each with radius r, and
ranges. Table 1 shows that both over-segmentation and let U C V be a subset of nodes in the network. B is
under-segmentation will result in high storage costs, called a r-packing of U if UpcgB C U and VB, B’ € B,
and the optimal segmentation lies in between the two BNB = ®. A network is growth lower-bounded or
extremes. simply growth bounded with growth rate « if for any

The general information brokerage scheme presented v € V and any 7,7’ such that 7/ < r, there exists a
here not only works for non-linear lookup functions, r’-packing of at least (r/r") balls for B, (v).
but also outperforms the previous scheme when the Consider an arbitrary information brokerage scheme
lookup cost function is linear. Recall that a scheme with linear lookup cost. Without loss of generality,
with linear lookup cost is one whose lookup cost func- we assume that the minimum distance between two
tion is g(z) = s-x. The comparison is illustrated nodes is one. Let s be the stretch factor in the linear
in Table 2, where the storage cost f and the I; se- lookup cost function g(x). An important quantity in
quence are shown. The parameters are D = 100, and the following analysis is the zooming factor, which is
s =0.25,0.5,1,2. defined as:

z=z(s,a) = (1.5s)a"1.

| | baseline | generic |
7 [ & [ 7] & | .

0.25 | 6729 1,24 6517.6 1,244.8

0.5 | 2614.5 1,248 2387.3 1,3,7.8

T | 987.6 | 1,2,48,16 | 869.0 | 1,2.8,7.5,17.2
389.5 | 1,2,4,8,16,32 | 328.8 | 1,3.3,10.3,29.3

Table 2. The storage cost and i-resolution
sequence of the baseline and generic GIB
schemes.

The following are two observations on the data in
Table 2. First, the storage cost of the generic GIB
scheme is indeed consistently lower than that of the

baseline GIB scheme. Second, the baseline GIB scheme Figure 2. For any ball and any (lookup) path
tends to over-segment the distance range [1, D] between starting from its center, there is a big enough
producers and consumers. In particular, for s = 1 ball contained in it and the lookup path does
and s = 2, the baseline GIB scheme divides the range not intersect it.

into 4 and 5 sub-ranges, while the generic GIB scheme

achieves better performance by dividing it into only 3
and 4 sub-ranges. Before presenting the following lemma (Lemma 2),

we introduce a few more terms. The distance d(v, P)

5 Optimality of the Information Bro-

kerage Scheme path crosses a ball” if the intersection of the path and

the ball is non-empty.
In this section, we analyze the optimal performance

of information brokerage for linear lookup cost. We Lemma 2. Let v be an arbitrary node in a growth-
show that for a wide family of networks called growth bounded network. Let P = (v,wyi,wa,...) be a path
lower-bounded networks, the logarithmic storage cost whose length d(P) is at most s-r. Then, there must ex-
is a lower bound for any information brokerage scheme ist a node v’ such that B,/ (v') € B, (v) and d(v', P) >
that achieves linear lookup cost. Since growth lower- s-r’, where r' =r/z.
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between a node v and a path P is the minimum dis-
tance between v and any node in P. We say that “a



Proof. By the basic property of the bounded growth of
the network, there is a 1.5sr’-ball packing of cardinality

T z _ 1.55%/(a=1) o o

_r — (1.5s)a%T =
(T 1.5s (Lbs)==T =2

for any ball of radius r. Therefore, there is such a
packing for B = B, (v). Shrink the radius of each ball
in this packing from 1.5sr" to sr’, and we obtain an
sr’-ball packing B for B of cardinality z. Clearly, the
distance between any two balls in this packing is at
least sr’, as shown in Figure 3.

sr’ 1.5sr!

dasennanit,”

1.5sr' sr'

Figure 3. Two balls B; and B, in an sr’-ball
packing obtained from a 1.5sr'-ball packing,
where the distance between B; and B; is at
least sr’.

Counsider the number balls in B that P can cross.
Since d(P) < s-r and the minimum inter-ball distance
of B is at least s-1/, P may cross at most s-r/(s-r') =
r/r’ = z balls in B. Since there are at least z balls in
B, there is at least one ball that P cannot cross. Let
v’ be the center of this ball. Obviously Bs.,m(v') C B
because B.,/(v') is a member of the ball packing B.
Also, B’ = B,/(v") C B too because B,/ (v') C By (V).
By our choice of v/, P does not cross B, (v'), which
implies that d(u’, P) > sr’. Therefore, v is the node
we have been searching for. |

Theorem 2. Let B be an arbitrary ball of radius R
in a growth bounded network. For any information
brokerage scheme with the linear lookup cost function
g(x) = s - x, there must exist a node w € B such that
its storage cost is Q(log R).

Proof. The proof is based on the following construction
of a sequence of balls By, By, ... with exponentially de-
creasing radius. See Figure 4 for an illustration. First,
let v1 be the center of B. Let By = B, (v1). Let P; be
the maximum segment of v;’s lookup path such that
d(P1) < s-r;. By Lemma 2, there is a node vy such
that ball By = B,,(v2) C By and d(va, P1) > s - 1o,
where ro = 11/2. Let P, be the maximum segment
of vy’s lookup path such that d(P2) < s-re. Notice
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that P N P, = @, that is, P; and P, are mutually
disjoint, because d(ve, P1) > s - 1o and d(P) < s - ra.
Again by Lemma 2, there is a node v such that ball
Bs = B,,(vs) C By and d(vs, P») > s - rs, where
r3 = ro/z. By repeating this process in I = log R/ log z
steps, we will have a sequence of nodes vy, vs, ...,vs, a
sequence of balls By, Bs, ..., By and a sequence of paths
P, Ps, ..., P;. By the above construction, By C By_1 C
... € By C By, and Py, Ps, ..., Py are mutually disjoint.

Figure 4. Non-intersecting paths P, P, Ps...,
and balls B; O Bs; O Bs... with exponentially
decreasing radii.

We can now show that v; is the node we are search-
ing for. To verify this, let u = vy be a producer. Tt is
straightforward to see that V1 < i < I, u € B; because
u € By and By C B;. The fact that u € B; implies that
d(u,v;) < r;. Since the lookup stretch factor is s, and
P; is the maximum segment of the v;’s lookup path sat-
isfying d(P;) < s-r;, u must have at least one mirror on
P; (V1 <i < I) in order for v; to locate it with a cost
no more than s - d(u,v;). Since Py, P, ...Pr_1 are mu-
tually non-intersecting, the total number of u’s mirrors
in Bisatleast I—1=1ogR/logz—1=0O(logR). O

Theorem 2 shows that for a growth-bounded net-
work of diameter D, for any information brokerage
scheme with linear lookup cost, the maximum number
of storage cost for a node is Q(log D), which is Q(logn)
for a (square) grid network, since the number of nodes
nin it is O(D?). So we have the following theorem.

Theorem 3. The information brokerage scheme GIB
achieves asymptotically optimal storage cost for grid
networks with linear lookup cost functions.

We would like to note that this result also proves
the optimality of a few other information dispersion
methods in literature such as [1].



6 Concluding Remarks

This paper presents an information brokerage
scheme GIB, whose lookup cost can be bounded by
both linear and more general cost functions. To our
best knowledge, this is the first that such general
lookup cost functions are studied for locality-sensitive
information brokerage. It proves that an logarithmic
storage cost is asymptotically optimal for schemes with
linear lookup cost, which meets the performance of our
proposed scheme for grid networks. We are interested
in studying the information brokerage schemes for more
general network models, and for more flexible query
functions. Those remain as our future research.
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