CPSC 410/611 : Operating Systems

Threads

Threads

Recap:
- Why Threads?

- User-Level Threads vs. Kernel-Level Threads

Thread-Based vs. Event-Based System Design?

- Event-Based: John Ousterhout, “Why Threads are a Bad Idea (for

most Purposes)”

- Thread-Based: von Beren, Condit, Brewer, "Why Threads are a Bad

Idea (for high-concurrency Servers)”
Example: Windows Completion Ports.

Reading: Silberschatz, Ch 3 & 4.

Why Threads?

Many interactive applications run while
in loops. /*
For example, an interactive game. /*

/*

Reference [B.O. Gallmeister,
“POSIX.4, Programming for the
Real World,” O'Reilly&Assoc.,
Inc.]

(1) {

Read Keyboard */

Recompute Player Position */
Update Display */

CPSC 410/611 : Operating Systems

Threads

Why Threads?

® Many interactive applications run while (1) {
in loops. /* Synchronize to Highest
Frequency */

/* Read Keyboard */

/* AND Read Mouse */

/* Recompute Player Position */

/* Update Display */

/* AND emit sounds */

e For example, an interactive game.

e Reference [B.O. Gallmeister,
“POSIX.4, Programming for the
Real World,” O'Reilly&Assoc.,

Inc.]
Why Threads?
e Many interactive applications run while (1) |
in loops. /* Synchronize to Highest

Frequency */
/* Read Keyboard */
/* AND Read Mouse */
/* Recompute Player Position */
/* Update Display */

e For example, an interactive game.

e It aint over yet!
e What about compute-intensive

i i i * AND all oth lights *
operations, like Al, video / all other lights */
compresgon? /* AND emit sounds */

/* AND more sounds */
/* AND move game physically */

e How about Signal Handlers?)

Suddenly, application is getting complex!

e Reference [B.O. Gallmeister,
“POSIX.4, Programming for the
Real World,” O'Reilly&Assoc.,
Inc.]

CPSC 410/611 : Operating Systems

Example: Reading the Mouse

while

/*

/*
/*
/*
/*

/*
/*

/*

/*

(1) |

Separate Thread

Synchronize to Highest
Frequency */ P
Read Keyboard */ e
AND Read Mouse */
Recompute Player Position */
Update Display */
AND all other lights */
AND emit sounds */
AND more sounds */
AND move game physically */

read mouse ()

Reading the Mouse: Thread Creation

/* The Mouse Input Function */

void * read mouse() {
char buf[EUFSIZE]; Ssize_t nbytes;
for (;;) |
if ((nbytes =
break;
dosomething with (buf, nbytes);
}
return NULL;
}

read_from mouse (buf, BUFSIZE))

Threads

CPSC 410/611 : Operating Systems

Reading the Mouse: Thread Creation (II)

#include <pthread.h>

int error;
pthread_t tid;

if (error = pthread create(&tid, NULL, read mouse, NULL))
perror (“Failed to create read mouse thread”);

while (1) {
/* Synchronize to Highest
Frequency */
/* Read Keyboard */
/* AND Read Mouse */ <- Handled by separate thread!
/* Recompute Player Position */
/* Update Display */

/* AND all other lights */

/* AND emit sounds */

/* AND more sounds */

/* AND move game physically */

User-Level vs. Kernel-Level Threads

e User-level: kernel not aware of threads
e Kernel-level: all thread-management done in kernel

) 1]

threads

Q w

Threads

CPSC 410/611 : Operating Systems

Threads

Potential Problems with Threads

® General: Several threads run in the same address space:

- Protection must be explicitly programmed (by appropriate thread
synchronization)

- Effects of misbehaving threads limited to task

e User-level threads: Some problems at the interface to the kernel: With
a single-threaded kernel, as system call blocks the entire process.

thread is blocked in kernel
(e.g. waiting for 1/0)

system call

T Rauuy

fask kernel

Singlethreaded vs. Multithreaded Kernel

. | | . | |
- = | ; g
v A v A
= ==
Protection of kernel data e Special protection mechanism is
structures is trivial, since only needed for shared data
one process is allowed to be in structures in kernel.

the kernel at any time.

CPSC 410/611 : Operating Systems

Hybrid Multithreading

processes
E ; E é ; E E é__ user-level threads
_/

N\N_A /4 N A4 |

AN TV - light-weight

processes

= e g

=\

CPUs

Threaded vs. Event-Driven Design

Figures from: M. Welsh, D. Culler, and E. Brewer, SEDA: An Architecture for Well Conditioned,
Scalable Internet Services 30000

25000

20000

15000

Latency, msec

10000

Thioughput, tasksisec

5000

4 16 64
Number of threads

Figure 2: Threaded server ion: This rk mea-
sures a simple threaded server which creates a single thread for each task in the
pipeline. After receiving a task, each thread performs an 8 KB read from a disk
Jile; all threads read from the same file, so the data is always in the buffer cache.

Figure 3: Event-driven server design: This figure shows the flow of events

Figure 1: Threaded server design: Each incoming request is dispatched to a
separate thread, which processes the request and returns a result to the client.
Edges represent control flow between components. Note that other I/O opera-
tions, such as disk access, are not shown here, but would be incorporated into
each threads’ request processing.

through an event-driven server. The main thread processes incoming events from
the network, disk, and other sources, and uses these to drive the execution of
many finite state machines. Each FSM represents a single request or flow of
execution through the system. The key source of complexity in this design is the
event scheduler, which must control the execution of each FSM.

Threads

CPSC 410/611 : Operating Systems

Threads

Why Threads Are A Bad Idea
(for most purposes)

John OQusterhout
Sun Microsystems Laboratories

john.ousterhout@eng.sun.com
http://www.sunlabs.com/~ouster

Introduction

¢ Threads:

— Grew up in OS world (processes).

— Evolved into user-level tool.

— Proposed as solution for a variety of problems.

— Every programmer should be a threads programmer?
& Problem: threads are very hard to program.
¢ Alternative: events.

¢ Claims:

— For most purposes proposed for threads, events are
better.
— Threads should be used only when true CPU
concurrency is needed.
Why Threads Are A Bad Idea September 28, 1995, slide 2

CPSC 410/611 : Operating Systems

Threads

What Are Threads?

Shared state
(memory, files, etc.)

<5 0 0 O O e

¢ General-purpose solution for managing concurrency.

¢ Multiple independent execution streams.
¢ Shared state.
¢ Pre-emptive scheduling.

¢ Synchronization (e.g. locks, conditions).

Why Threads Are A Bad Idea September 28, 1995, slide 3

What Are Threads Used For?

¢ Operating systems: one kernel thread for each user
process.

¢ Scientific applications: one thread per CPU (solve
problems more quickly).

¢ Distributed systems: process requests concurrently
(overlap I/Os).

¢ GUIs:
— Threads correspond to user actions; can service
display during long-running computations.
— Multimedia, animations.

Why Threads Are A Bad Idea September 28, 1995, slide 4

CPSC 410/611 : Operating Systems

What's Wrong With Threads?

casual all programmers wizards

Visual Basic programmers
C programmers —
+«— C++ programmers —

“« >

Threads programmers

¢ Too hard for most programmers to use.

¢ Even for experts, development is painful.

Why Threads Are A Bad Idea September 28, 1995, slide 5

Why Threads Are Hard

¢ Synchronization:
— Must coordinate access to shared data with locks.

— Forget a lock? Corrupted data.

¢ Deadlock:
— Circular dependencies among locks.
— Each process waits for some other process: system

hangs.

thread 1—~ thread 2
N

Why Threads Are A Bad Idea September 28, 1995, slide 6

Threads

CPSC 410/611 : Operating Systems

Threads

Why Threads Are Hard. cont'd

¢ Hard to debug: data dependencies, timing dependencies.

¢ Threads break abstraction: can't design modules
independently.

¢ Callbacks don't work with locks.

T1 T2 1

T
| deadlock! | catts

Module A

deadlock!

Module B Module B
callbacks
sleep wakeup T2

Why Threads Are A Bad Idea September 28, 1995, slide 7

Why Threads Are Hard, cont'd

¢ Achieving good performance is hard:
— Simple locking (e.g. monitors) yields low concurrency.
— Fine-grain locking increases complexity, reduces
performance in normal case.

— OSes limit performance (scheduling, context switches).
A MThaunnds send wornll coeenen bl
¥ 11ITaud 1nuL ywceu auppux wwu.

— Hard to port threaded code (PCs? Macs?).
— Standard libraries not thread-safe.

— Kernel calls, window systems not multi-threaded.
— Few debugging tools (LockLint, debuggers?).

¢ Often don't want concurrency anyway (e.g. window
events).

Why Threads Are A Bad Idea September 28, 1995, slide 8

10

CPSC 410/611 : Operating Systems

Threads

Event-Driven Programming

4 One execution stream: no CPU
concurrency.

¢ Register interest in events
(callbacks).

¢ Event loop waits for events,
invokes handlers.

No preemption of event Event Handlers
handlers.

¢ Handlers generally short-lived.

Why Threads Are A Bad Idea September 28, 1995, slide 9

What Are Events Used For?

¢ Mostly GUIs:
— One handler for each event (press button, invoke menu

entry, etc.).

— Handler implements behavior (undo, delete file, etc.).

¢ Distributed systems:
— One handler for each source of input (socket, etc.).
— Handler processes incoming request, sends response.
— Event-driven I/O for I/O overlap.

Why Threads Are A Bad Idea September 28, 1995, slide 10

11

CPSC 410/611 : Operating Systems

Threads

Problems With Events

¢ Long-running handlers make application non-
responsive.
— Fork off subprocesses for long-running things (e.g.
multimedia), use events to find out when done.
— Break up handlers (e.g. event-driven I/O).

— Periodically call event loop in handler (reentrancy adds

LAl DVSL

complexity).

¢ Can't maintain local state across events (handler must
return).

¢ No CPU concurrency (not suitable for scientific apps).

¢ Event-driven I/O not always well supported (e.g. poor
write buffering).
Why Threads Are A Bad Idea September 28, 1995, slide 11

Events vs. Threads

¢ Events avoid concurrency as much as possible, threads
embrace:
— Easy to get started with events: no concurrency, no
preemption, no synchronization, no deadlock.
— Use complicated techniques only for unusual cases.
— With threads, even the simplest application faces the
full complexity.

¢ Debugging easier with events:
— Timing dependencies only related to events, not to
internal scheduling.
— Problems easier to track down: slow response to button

vs. corrupted memory.
Why Threads Are A Bad Idea September 28, 1993, slide 12

12

CPSC 410/611 : Operating Systems

Threads

Events vs. Threads, cont'd

¢ Events faster than threads on single CPU:
— No locking overheads.
— No context switching.

¢ Events more portable than threads.
¢ Threads provide true concurrency:
— Can have long-running stateful handlers without

freezes.
— Scalable performance on multiple CPUs.

Why Threads Are A Bad Idea September 28, 1995, slide 13

Should You Abandon Threads?

¢ No: important for high-end servers (e.g. databases).

¢ But, avoid threads wherever possible:

— Use events, not threads, for GUISs,
distributed systems, low-end servers.

— Only use threads where true CPU Event-Driven Handlers
concurrency is needed.

— Where threads needed, isolate usage H H H H H
in threaded application kernel: keep
most of code single-threaded. Threaded Kemel

Why Threads Are A Bad Idea September 28, 1993, slide 14

13

CPSC 410/611 : Operating Systems

Threads

Conclusions

¢ Concurrency is fundamentally hard; avoid whenever
possible.

¢ Threads more powerful than events, but power is
rarely needed.

¢ Threads much harder to program than events; for
experts only.

¢ Use events as primary development tool (both GUIs
and distributed systems).

¢ Use threads only for performance-critical kernels.

Why Threads Are A Bad Idea September 28, 1995, slide 15

A Dissenting Opinion (selected slides)

Why Events Are A Bad Idea

(for high-concurrency servers)

Rob von Behren, Jeremy Condit and Eric Brewer
University of California at Berkeley
{jrvb,jcondit,brewer}@cs.berkeley.edu
http://capriccio.cs.berkeley.edu

A Talk HotOS 2003

14

CPSC 410/611 : Operating Systems

Threads

The Stage

= Highly concurrent applications
= Internet servers (Flash, Ninja, SEDA)
= Transaction processing databases
= Workload
= Operate “near the knee”
= Avoid thrashing!

= What makes concurrency hard?
= Race conditions
= Scalability (no O(n) operations)
= Scheduling & resource sensitivity
= Inevitable overload
= Code complexity

Performance

Ideal

Peak: some
resource at max

Overload: some
resource thrashing

Load (concurrent tasks)

iThe Debate

= Performance vs. Programmability
= Current threads pick one
= Events somewhat better

= Questions
= Threads vs. Events?

= How do we get performance and
programmability?

Ease of Programming

Performance

15

CPSC 410/611 : Operating Systems

= Observations

= Major concepts are analogous
= Program structure is similar

= Performance should be similar
= Given good implementations!

Web server iThe Duality Argument

= General assumption: follow “good practices”

Threads Events
= Monitors = Event handler & queue
= Exported functions = Events accepted

= Call/return and fork/join = Send message / await reply

O u r POSltIOn = Wait on condition variable | = Wait for new messages

= Thread-event duality still holds

= But threads are better anyway
= More natural to program
= Better fit with tools and hardware

= Compiler-runtime integration is key

= Recent arguments for events
= Lower runtime overhead
= Better live state management
= Inexpensive synchronization
= More flexible control flow
= Better scheduling and locality

= All true but...
= No /inherent problem with threads!
= Thread implementations can be improved

“But Events Are Better

III

Threads

16

CPSC 410/611 : Operating Systems

Threads

iRuntime Overhead

» Criticism. Threads don't perform
well for high concurrency

. Response 100000 =
= Avoid O(n) operations s
= Minimize context switch overhead

= Simple scalability test
= Slightly modified GNU Pth

= Thread-per-task vs. 2 a . . " a
. 1 10 100 1000 10000 100000 le=06
Slng[e th read Concurrent Tasks

= Same performance!

1

70000 o

Threaded Server em—
60000 = 1

50000 Event-Based Server e

Requests / Second

40000 =

30000

Synchronization

w Criticism: Thread synchronization is heavyweight

= Response
= Cooperative multitasking works for threads, too!

= Also presents same problems
= Starvation & fairness
= Multiprocessors
= Unexpected blocking (page faults, etc.)

= Compiler support helps

17

CPSC 410/611 : Operating Systems

B i Control Flow

w Criticism. Threads have restricted
control flow

= Response

= Programmers use simple patterns
= Call / return
= Parallel calls
= Pipelines
= Complicated patterns are unnatural
= Hard to understand
= Likely to cause bugs

e

©-0-0

i Scheduling

= Can't use application-specific information

= Response

= 2D scheduling: task & program location
= Threads schedule based on task only
= Events schedule by location (e.g. SEDA)
Allows batching
Allows prediction for SRCT
= Threads can use 2D, too!
= Runtime system tracks current location
= Call graph allows prediction

» Criticism. Thread schedulers are too generic
Task

Threads

Threads

18

CPSC 410/611 : Operating Systems

$0ur Big But...

= More natural programming model
= Control flow is more apparent
= Exception handling is easier
= State management is automatic

= Better fit with current tools & hardware
= Better existing infrastructure
= Allows better performance?

: i Control Flow

= Events obscure control flow
= For programmers and tools

Web Server

o I R |
thr Threads Events
thread_main(int sock) { CacheHandler(struct session *s) {
struct session s; pin(s);
accept_conn(sock, &s); if(lin_cache(s)) ReadFileHandler.enqueue(s);
read_request(&s); else ResponseHandler.enqueue(s);
pin_cache(&s); }
write_response(&s); RequestHandler(struct session *s) {
b unpin(&s); ...; CacheHandler.enqueue(s);
7 ¥
pir
pin_cache(struct session *s) { ExitHandlerr(struct session *s) {
pin(&s); ...; unpin(&s); free_session(s);
if(lin_cache(&s)) }
¥ read_file(&s); AcceptHandler(event e) {
I struct session *s = new_session(e);
RequestHandler.enqueue(s); }

Threads

CPSC 410/611 : Operating Systems

: i Exceptions

Exceptions complicate control flow
= Harder to understand program flow
= Cause bugs in cleanup code

Threads

thread_main(int sock) {
struct session s;
accept_conn(sock, &s);
if('read_request(&s))

return;

pin_cache(&s);
write_response(&s);
unpin(&s);

b

pin_cache(struct session *s) {
pin(&s);
if(lin_cache(&s))
read_file(&s);

Events

CacheHandler(struct session *s) {
pin(s);
if(lin_cache(s)) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);
}
RequestHandler(struct session *s) {
...; ifC error) return; CacheHandler.enqueue(s);

¥

ExitHandlerr(struct session *s) {
...; unpin(&s); free_session(s);

}

AcceptHandler(event e) {
struct session *s = new_session(e);
RequestHandler.enqueue(s); }

Web Server

Management

B * State

Events require manual state management
Hard to know when to free
= Use GC or risk bugs

Threads

thread_main(int sock) {
struct session s;
accept_conn(sock, &s);
if(!read_request(&s))

return;

pin_cache(&s);
write_response(&s);
unpin(&s);

}

pin_cache(struct session *s) {
pin(&s);
if(lin_cache(&s))
read_file(&s);

Events
CacheHandler(struct session *s) {
pin(s);
if(lin_cache(s)) ReadFileHandler.enqueue(s);
else ResponseHandler.enqueue(s);

}

RequestHandler(struct session *s) {
...; if(error) return; CacheHandler.enqueue(s);

}

ExitHandlerr(struct session *s) {
...; unpin(&s); free_session(s);

AcceptHandler(event e) {
struct session *s = new_session(e);
RequestHandler.enqueue(s); }

Web Server

Threads

20

CPSC 410/611 : Operating Systems

Threads

— i Existing Infrastructure

= Lots of infrastructure for threads
= Debuggers
= Languages & compilers
= Consequences
= More amenable to analysis
= Less effort to get working systems

Better Performance?

= Function pointers & dynamic dispatch
= Limit compiler optimizations
= Hurt branch prediction & I-cache locality
= More context switches with events?
= Example: Haboob does 6x more than Knot
= Natural result of queues
= More investigation needed!

The Future:

— iCompiler-Runtime Integration—

= Insight
= Automate things event programmers do by hand
= Additional analysis for other things
= Specific targets
= Dynamic stack growth*
= Live state management
= Synchronization
= Scheduling*
= Improve performance and decrease comblexitv

Ease of Programming

Performance

21

CPSC 410/611 : Operating Systems

Event-Driven Programming: Completion Ports

o Rationale:

blocking.

processor.

e Resources:

- Minimize context switches by having threads avoid unnecessary

- Maximize parallelism by using multiple threads.
- Ideally, have one thread actively servicing a request on every

- Do not block thread if there are additional requests waiting when
thread completes a request.

- The application must be able to activate another thread when current
thread blocks on I/0 (e.g. when it reads from a file)

- Inside I0 Completion Ports:
http://technet.microsoft.com/en-us/sysinternals/bb963891.aspx

- Multithreaded Asynchronous I/0 & I/0O Completion Ports:
http://www.ddj.com/cpp/20120292

- Parallel Programming with C++ - I/O Completion Ports:
http://weblogs.asp.net/kennykerr/archive/2008/01/03/parallel-
programming-with-c-part-4-i-o-completion-ports.aspx

Completion Ports (CPs): Operation

Incoming client request

N

Completion Port

Perform CPU processing
active]

Perform CPU processing
(active]

Threads blocked on the

Completion Port
Whenever operations on files associated with CP’s
completes, a completion packet is queued on the
CP.

Threads wait for outstanding I/0s to complete by

waiting for completion packets to be queued on CP.

Application specifies concurrently value associated
with CP.

Whenever active thread finishes processing current
request, it checks for next packet at the port. (If
there is, grabs it without context switch.)
Whenever thread gets blocked, number of active

threads drops below concurrency value, and next
thread can start.

Threads

22

CPSC 410/611 : Operating Systems

Threads

Completion Ports: APIs

CP creation:

HANDLE CreateIoCompletionPort (
HANDLE FileHandle,
HANDLE ExistingCompletionPort, /* NULL -> create new CP */
DWORD CompletionKey,
DWORD NumberOfConcurrentThreads /* Concurrency value */

)

Retrieve next completion packet:
BOOL GetQueuedCompletionStatus (

HANDLE CompletionPort,

LPDWORD lpNumberOfBytesTransferred,
LPDWORD CompletionKey,

LPOVERLAPPED *1lpOverlapped,

DWORD dwMiillisecondTimeout

)

Generate completion packets:

PostQueuedCompletionStatus(..); /* e.g. server informs threads about
external events. */

CP Example: Web Server: Startup

Tom R. Dial, "Multithreaded Asynchronous I/0 & I/O Completion Ports,” Dr. Dobbs, Aug.2007)

/* Fire.cpp - The Fire Web Server

* Copyright (C) 2007 Tom R. Dial */

int main(int /*argc*/, char* /*argv*/[l) {
// Tnitialize the Microsoft Windows Sockets Library
WSADATA Wsa={0};
WSAStartup(MAKEWORD(2,2), &Wsa);
// Get the working directory; this is used when transmitting files back.
GetCurrentDirectory(_MAX_PATH, RootDirectory);
// Create an event to use to synchronize the shutdown process.
StopEvent = CreateEvent(O, FALSE, FALSE, 0);
// Setup a console control handler: We stop the server on CTRL-C
SetConsoleCtriHandler(ConsoleCtriHandler, TRUE);

// Create a new 1/0 Completion port.
HANDLE IoPort = CreateloCompletionPort(INVALID_HANDLE_VALUE, O, 0, WORKER_THREAD_COUNT);

// Set up a socket on which to listen for new connections.

SOCKET Listener = WSASocket(PF_INET, SOCK_STREAM, IPPROTO_TCP, 0, 0, WSA_FLAG_OVERLAPPED);
struct sockaddr_in Addr={0};

Addr.sin_family = AF_INET;

Addr.sin_addr.S_un.S_addr = INADDR_ANY;

Addr.sin_port = htons(DEFAULT_PORT);

// Bind the listener to the local interface and set to listening state.

bind(Listener, (struct sockaddr*)&Addr, sizeof(struct sockaddr_in));

listen(Listener, DEFAULT_LISTEN_QUEUE_SIZE);

23

CPSC 410/611 : Operating Systems

Threads

CP Example: Web Server: Start Threads

// Create worker threads
HANDLE Workers[WORKER_THREAD_COUNT]={0};
unsigned int WorkerIds[WORKER_THREAD_COUNTI]={0};

for (size_t i=0; ik\WORKER_THREAD_COUNT; i++)
Workers[i] = (HANDLE)_beginthreadex(0, 0, WorkerProc, IoPort, O, WorkerIds+i);

// Associate the Listener socket with the I/O Completion Port.
CreateloCompletionPort((HANDLE)Listener, IoPort, COMPLETION_KEY_IO, O);

// Allocate an array of connections; constructor binds them to the port.

Connection* Connections[MAX_CONCURRENT_CONNECTIONS]={0};

for (size_t i=0; i<MAX_CONCURRENT_CONNECTIONS; i++)
Connections[i] = new Connection(Listener, IoPort);

// Print instructions for stopping the server.

printf("Fire Web Server: Press CTRL-C To shut down.\n");

// Wait for the user fo press CTRL-C...

WaitForSingleObject(StopEvent, INFINITE);

/-

CP Example: Web Server: Shutdown

// Deregister console control handler: We stop the server on CTRL-C
SetConsoleCtriHandler(NULL, FALSE);
// Post a quit completion message, one per worker thread.
for (size_t i=0; i<kWORKER_THREAD_COUNT; i++)
PostQueuedCompletionStatus(IoPort, 0, COMPLETION_KEY_SHUTDOWN, O);
// Wait for all of the worker threads to terminate...
WoaitForMultipleObjects(WORKER_THREAD_COUNT, Workers, TRUE, INFINITE);
// Close worker thread handles.
for (size_t i=0; i<kWORKER_THREAD_COUNT; i++)
CloseHandle(Workers[i]);
// Close stop event.
CloseHandle(StopEvent);
// Shut down the listener socket and close the 1/0 port.
shutdown(Listener, SD_BOTH);
closesocket(Listener);
CloseHandle(IoPort);
// Delete connections.
for (size_t i=0; i<MAX_CONCURRENT_CONNECTIONS; i++)
delete(Connectionsl[i]);
WSACleanup();
return O;

24

CPSC 410/611 : Operating Systems

Threads

CP Example: Web Server: Worker Threads

// Worker thread procedure.
unsigned int __stdcall WorkerProc(void* IoPort) {

for (::) {
BOOL Status =0;
DWORD NumTransferred = 0;
ULONG_PTR CompKey = COMPLETION_KEY_NONE;
LPOVERLAPPED pOver =0;

Status = GetQueuedCompletionStatus(reinterpret_cast<HANDLE>(IoPort),
&NumTransferred, &CompKey, &pOver INFINITE);
Connection* pConn = reinterpret_cast<Connection*s(pOver);
if (FALSE == Status) {
// An error occurred; reset to a known state.
if (pConn) pConn->IssueReset();
} else if (COMPLETION_KEY_IO == CompKey) {
pConn->OnloComplete(NumTransferred);
} else if (COMPLETION_KEY_SHUTDOWN == CompKey) {
break;
}
}

return 0;

CP Example: Web Server: Connections

// Class representing a single connection.
class Connection : public OVERLAPPED {

enum STATE { WAIT_ACCEPT = 0, WAIT_REQUEST = |,
WAIT_TRANSMIT = 2, WAIT_RESET = 3}

public:

Connection(SOCKET Listener, HANDLE IoPort) : myListener(Listener) {
myState = WAIT_ACCEPT;
//[.]
mySock = WSASocket(PF_INET, SOCK_STREAM, IPPROTO_TCP,
0, 0, WSA_FLAG_OVERLAPPED);
// Associate the client socket with the 1/0 Completion Port.
CreateloCompletionPort(reinterpret_cast<HANDLE>(mySock),
IoPort, COMPLETION_KEY_IO, 0);
IssueAccept();
}
~Connection() {
shutdown(mySock, SD_BOTH);
closesocket(mySock);

25

CPSC 410/611 : Operating Systems

Threads

CP Example: Web Server: State Machines (I)

// ACCEPT OPERATION

// Issue an asynchronous accept.
void Connection::IssueAccept()
myState = WAIT_ACCEPT;
DWORD Receivelen = 0; // This gets thrown away, but must be passed.
AcceptEx(myListener, mySock, myAddrBlock, 0, ACCEPT_ADDRESS_LENGTH,
ACCEPT_ADDRESS_LENGTH, &ReceivelLen, this);

// Complete the accept and update the client socket's context.
void Connection::CompleteAccept() §
setsockopt(mySock, SOL_SOCKET, SO_UPDATE_ACCEPT_CONTEXT,
(char*)&myListener, sizeof(SOCKET));
// Transition to "reading request" state.
IssueRead();

CP Example: Web Server: State Machines (II)

// READ OPERATION

// Issue an asynchronous read operation.
void Connection::IssueRead(void) §

myState = WAIT_REQUEST;

ReadFile((HANDLE)mySock, myReadBuf, DEFAULT_READ_BUFFER_SIZE,
) 0, (OVERLAPPED*)this);

// Complete the read operation, appending the request with the latest data.
void Connection::CompleteRead(size_t NumBytesRead) {
/1]
// Has the client finished sending the request?
if (IsRequestComplete(NumBytesRead)) {
// Yes. Transmit the response.
IssueTransmit();
} else §
// The client is not finished. If data was read this pass, we assume the connection
// is still good and read more. If not, we assume that the client closed the socket
// prematurely.
if (NumBytesRead) IssueRead();
else IssueReset();

26

CPSC 410/611 : Operating Systems

Threads

CP Example: Web Server: State Machines (III)

// Parse the request, and transmit the response.
void Connection::IssueTransmit() {
myState = WAIT_TRANSMIT;

if (\Method) {
IssueReset();
return;

}

// [.]
myFile = CreateFile(/* ... */);
TransmitFile(mySock, myFile,
Info.nFileSizeLow, O, this,
&myTransmitBuffers, 0);
}
void Connection::CompleteTransmit() {
// Issue the reset; this prepares the
// socket for reuse.
IssueReset();

// simplified parsing of the request: just ignore first token.
char* Method = strtok((&myRequest[0]), ");

// Parse second token, create file, transmit file ..

void Connection::IssueReset()
{
myState = WAIT_RESET;
TransmitFile(mySock, O, O, O, this, O,
TF_DISCONNECT | TF_REUSE_SOCKET);
}

void Connection::CompleteReset(void)

ClearBuffers();
IssueAccept(); // Continue to next request!

CP Example: Web Server: Dispatching

switch (myState) {

case WAIT_ACCEPT:
CompleteAccept();
break;

case WAIT_REQUEST:

break;

case WAIT_TRANSMIT:
CompleteTransmit();
break;

case WAIT_RESET:
CompleteReset();
break;

// The main handler for the connection, responsible for state transitions.
void Connection::OnIoComplete(DWORD NumTransferred) {

CompleteRead(NumTransferred);

27

