
CPSC 410 / 611 : Operating Systems File Management

1

File Management

•  What is a file?

•  Elements of file management

•  File organization

•  Directories

•  File allocation

What is a File?

A file is a collection of data elements, grouped together for
purpose of access control, retrieval, and modification

Persistence: Often, files are mapped onto physical storage devices,
usually nonvolatile.

Some modern systems define a file simply as a sequence, or stream
of data units.

A file system is the software responsible for
–  creating, destroying, reading, writing, modifying, moving files
–  controlling access to files
–  management of resources used by files.

CPSC 410 / 611 : Operating Systems File Management

2

The Logical View of File Management

user
•  directory management
•  access control

•  access method
records

file structure

physical blocks in memory

physical blocks on disk

•  blocking

•  disk scheduling
•  file allocation

File Management

•  What is a file?
•  Elements of file management
•  File organization
•  Directories
•  File allocation
•  UNIX file system

user

•  directory management
•  access control

•  access method records

file structure

physical blocks in memory

physical blocks on disk

•  blocking

•  disk scheduling
•  file allocation

CPSC 410 / 611 : Operating Systems File Management

3

Logical Organization of a File

•  A file is perceived as an ordered collection of records,
R0, R1, ..., Rn.

•  A record is a contiguous block of information transferred during
a logical read/write operation.

•  Records can be of fixed or variable length.

•  Organizations:
–  Pile
–  Sequential File
–  Indexed Sequential File
–  Indexed File
–  Direct/Hashed File

Pile

•  Variable-length records
•  Chronological order
•  Random access to record by

search of whole file.
•  What about modifying

records?

Pile File

CPSC 410 / 611 : Operating Systems File Management

4

Sequential File

•  Fixed-format records

•  Records often stored in
order of key field.

•  Good for applications that
process all records.

•  No adequate support for
random access.

•  Q: What about adding new
record?

•  A: Separate pile file keeps
log file or transaction file.

key field

Sequential File

Indexed Sequential File
•  Similar to sequential file,

with two additions.
–  Index to file supports

random access.
–  Overflow file indexed

from main file.

•  Record is added by
appending it to overflow file
and providing link from
predecessor.

main file

overflow file

index

Indexed Sequential File

CPSC 410 / 611 : Operating Systems File Management

5

Indexed File

•  Variable-length
records

•  Multiple Indices

•  Exhaustive index vs.
partial index

index

index

partial
index

File Representation to User (Unix)

3

file descriptor
table

UNIX File Descriptors:

int myfd;

myfd = open(“myfile.txt”, O_RDONLY);

myfd

system file
 table

in-memory
inode table

[0]

[1]

[2]

[3]

[4]

user space kernel space

file descriptor
table

myfp

[0]

[1]

[2]

[3]

[4]

user space kernel space

ISO C File Pointers:

FILE *myfp;

myfp = fopen(“myfile.txt”, “w”);

file structure

3

CPSC 410 / 611 : Operating Systems File Management

6

File Descriptors and fork()
•  With fork(), child inherits

content of parent’s address
space, including most of parent’s
state:

–  scheduling parameters
–  file descriptor table
–  signal state
–  environment
–  etc.

parent’s file desc table

child’s file desc table

[0]

[1]

[2]

[3]

[4]

[5]

[0]

[1]

[2]

[3]

[4]

[5]

A(SFT)
B(SFT)
C(SFT)
D(SFT)

A(SFT)
B(SFT)
C(SFT)
D(SFT)

A
B

C
D (“myf.txt”)

system file table (SFT)

File Descriptors and fork() (II)

parent’s file desc table

child’s file desc table

[0]

[1]

[2]

[3]

[4]

[5]

[0]

[1]

[2]

[3]

[4]

[5]

A(SFT)
B(SFT)
C(SFT)
D(SFT)

A(SFT)
B(SFT)
C(SFT)
D(SFT)

A
B

C
D (“myf.txt”)

system file table (SFT)

int main(void) {
 char c = ‘!’;
 int myfd;

 myfd = open(‘myf.txt’, O_RDONLY);

 fork();

 read(myfd, &c, 1);

 printf(‘Process %ld got %c\n’,
 (long)getpid(), c);

 return 0;
}

CPSC 410 / 611 : Operating Systems File Management

7

File Descriptors and fork() (III)

parent’s file desc table

child’s file desc table

[0]

[1]

[2]

[3]

[4]

[5]

[0]

[1]

[2]

[3]

[4]

[5]

A(SFT)
B(SFT)
C(SFT)
D(SFT)

A(SFT)
B(SFT)
C(SFT)
E(SFT)

A
B

C
D (“myf.txt”)

system file table (SFT) int main(void) {
 char c = ‘!’;
 int myfd;

 fork();

 myfd = open(‘myf.txt’, O_RDONLY);

 read(myfd, &c, 1);

 printf(‘Process %ld got %c\n’,
 (long)getpid(), c);

 return 0;
}

E (“myf.txt”)

Duplicating File Descriptors: dup2()
•  Want to redirect I/O from well-known file descriptor to

descriptor associated with some other file?
–  e.g. stdout to file?

#include <unistd.h>

int dup2(int fildes, int fildes2);

Example: redirect standard output to file.

int main(void) {
 int fd = open(‘my.file’, <some_flags>, <some_mode>);

 dup2(fd, STDOUT_FILENO);

 close(fd);

 write(STDOUT_FILENO, ‘OK’, 2);
}

Errors:
EBADF: fildes or fildes2 is not valid
EINTR: dup2 interrupted by signal

CPSC 410 / 611 : Operating Systems File Management

8

Duplicating File Descriptors: dup2() (II)
•  Want to redirect I/O from well-known file descriptor to

descriptor associated with some other file?
–  e.g. stdout to file?

#include <unistd.h>

int dup2(int fildes, int fildes2);

Errors:
EBADF: fildes or fildes2 is not valid
EINTR: dup2 interrupted by signal

after open

file descriptor table

[0] standard input

[1] standard output

[2] standard error

[3] write to file.txt

after dup2

file descriptor table

[0] standard input

[1] write to file.txt

[2] standard error

[3] write to file.txt

after close

file descriptor table

[0] standard input

[1] write to file.txt

[2] standard error

File Management

•  What is a file?
•  Elements of file management
•  File organization
•  Directories
•  File allocation
•  UNIX file system

user

•  directory management
•  access control

•  access method records

file structure

physical blocks in memory

physical blocks on disk

•  blocking

•  disk scheduling
•  file allocation

CPSC 410 / 611 : Operating Systems File Management

9

Allocation Methods

•  File systems manage disk resources

•  Must allocate space so that

–  space on disk utilized effectively

–  file can be accessed quickly

•  Typical allocation methods:

–  contiguous

–  linked

–  indexed

•  Suitability of particular method depends on

–  storage device technology

–  access/usage patterns

file start length

Contiguous Allocation
Logical file mapped onto a sequence of adjacent
physical blocks. 0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

file1 0 5

file2 10 2

file3 16 10

Cons:
•  Inserting/Deleting records, or changing length

of records difficult.
•  Size of file must be known a priori. (Solution:

copy file to larger hole if exceeds allocated
size.)

•  External fragmentation
•  Pre-allocation causes internal fragmentation

Pros:
•  minimizes head movements
•  simplicity of both sequential and direct access.
•  Particularly applicable to applications where

entire files are scanned.

CPSC 410 / 611 : Operating Systems File Management

10

file start end

Linked Allocation
•  Scatter logical blocks throughout secondary

storage.
•  Link each block to next one by forward

pointer.
•  May need a backward pointer for backspacing.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

file 1 9 23
… … …
… … …

Pros:
•  blocks can be easily inserted or deleted
•  no upper limit on file size necessary a priori
•  size of individual records can easily change

over time.

Cons:
•  direct access difficult and expensive
•  overhead required for pointers in blocks
•  reliability

Variations of Linked Allocation
Maintain all pointers as a separate linked list, preferably in main
memory.

file start end

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

file1 9 23

...

...

0

24

23

-1

10

26

16

9

16

10

23

26

24

0

Example: File-Allocation Tables (FAT)

CPSC 410 / 611 : Operating Systems File Management

11

... ...
file index block

Indexed Allocation
Keep all pointers to blocks in one location: index
block (one index block per file) 0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

file1 7
... ...
... ...

•  Pros:
–  supports direct access
–  no external fragmentation
–  therefore: combines best of continuous

and linked allocation.

9 0 16 24 26 10 23 -1 -1 -1

•  Cons:
–  internal fragmentation in index blocks

•  Trade-off:
–  what is a good size for index block?
–  fragmentation vs. file length

Solutions for the Index-Block-Size Dilemma

Linked index blocks:

Multilevel index scheme:

CPSC 410 / 611 : Operating Systems File Management

12

Index Block Scheme in UNIX

single
indirect
double

indirect
triple

indirect

0

9

10

11

12

di
re

ct

UNIX (System V) Allocation Scheme

367

9156

8

11

Example:
block size: 1kB
access byte offset 9000
access byte offset 350000

367

808

331

3333

816 3333

331

75 0

9156

CPSC 410 / 611 : Operating Systems File Management

13

Free Space Management (conceptual)
•  Must keep track where unused blocks are.
•  Can keep information for free space management in

unused blocks.
•  Bit vector:

•  Linked list: Each free block contains pointer to next
free block.

•  Variations:
•  Grouping: Each block has more than on pointer to

empty blocks.
•  Counting: Keep pointer of first free block and

number of contiguous free blocks following it.

free used
#1 #2

used
#3

used
#4

free
#5

used
#6

free
#7

free
#8

... used
#
0

data blocks

inodes

superblock
boot block

file system layout

Free-Space Management in System-V FS
Management of free disk blocks: linked index to
free blocks.

0

98
99

superblock

Management of free i-nodes:

0
1
0
0
1

cache in
superblock

marked i-nodes in i-list

CPSC 410 / 611 : Operating Systems File Management

14

File Management

•  What is a file?
•  Elements of file management
•  File organization
•  Directories
•  File allocation
•  UNIX file system

user

•  directory management
•  access control

•  access method records

file structure

physical blocks in memory

physical blocks on disk

•  blocking

•  disk scheduling
•  file allocation

Directories

•  Large amounts of data: Partition and structure for easier access.

•  High-level structure:

–  partitions in MS-DOS

–  minidisks in MVS/VM

–  file systems in UNIX.

•  Directories: Map file name to directory entry (basically a symbol
table).

•  Operations on directories:

–  search for file

–  create/delete file

–  rename file

CPSC 410 / 611 : Operating Systems File Management

15

Directory Structures
•  Single-level directory:

•  Problems:
•  limited-length file names
•  multiple users

directory

file

user3 user4 user2 user1

•  Path names
•  Location of system files

•  special directory
•  search path

master directory

user
directories

file

Two-Level Directories

CPSC 410 / 611 : Operating Systems File Management

16

•  create subdirectories
•  current directory
•  path names: complete vs. relative

xterm xmh xman xinit

... include demo bin

openw netsc mail bin

pub bin user

cp ls count find

xmt gdb gcc

... user3 user2 user1

Tree-Structured Directories

Generalized Tree Structures

•  Links: File name that, when referred, affects file to which it was
linked. (hard links, symbolic links)

•  Problems:
•  consistency, deletion
•  Why links to directories only allowed for system managers?

–  share directories and files
–  keep them easily accessible

xterm xmh xman xinit

... incl demo bin

netsc opwin mail bin

pub bin user

cp ls count find

xmt gdb gcc

... user3 user2 user1 xman

xinit

CPSC 410 / 611 : Operating Systems File Management

17

UNIX Directory Navigation: current directory

#include <unistd.h>

char * getcwd(char * buf, size_t size);
/* get current working directory */

Example:

void main(void) {
 char mycwd[PATH_MAX];

 if (getcwd(mycwd, PATH_MAX) == NULL) {
 perror (“Failed to get current working directory”);
 return 1;
 }
 printf(“Current working directory: %s\n”, mycwd);
 return 0;
}

UNIX Directory Navigation: directory traversal

#include <dirent.h>

DIR * opendir(const char * dirname);
 /* returns pointer to directory object */
struct dirent * readdir(DIR * dirp);
 /* read successive entries in directory ‘dirp’ */
int closedir(DIR *dirp);
 /* close directory stream */
void rewinddir(DIR * dirp);
 /* reposition pointer to beginning of directory */

CPSC 410 / 611 : Operating Systems File Management

18

Directory Traversal: Example
#include <dirent.h>

int main(int argc, char * argv[]) {
 struct dirent * direntp;
 DIR * dirp;

 if (argc != 2) {
 fprintf(stderr, “Usage: %s directory_name\n”, argv[0]);
 return 1;
 }

 if ((dirp = opendir(argv[1])) == NULL) {
 perror(“Failed to open directory”);
 return 1;
 }

 while ((dirent = readdir(dirp)) != NULL)
 printf(%s\n”, direntp->d_name);
 while((closedir(dirp) == -1) && (errno == EINTR));
 return 0;
}

Recall:
Unix File System Implementation: inodes

single
indirect
double

indirect
triple

indirect

0

9

10

11

12

di
re

ct

multilevel indexed allocation table

file information:
- size (in bytes)
- owner UID and GID
- relevant times (3)
- link and block counts
- permissions

inode

multilevel
allocation

table

CPSC 410 / 611 : Operating Systems File Management

19

Unix Directory Implementation

file information:
- size (in bytes)
- owner UID and GID
- relevant times (3)
- link and block counts
- permissions

inode

Where is the
filename?!

Name information is contained in separate
Directory File, which contains entries of type:

(name of file , inode1 number of file)

1 More precisely: Number of block that contains inode.

myfile.txt 12345

name inode

…

23567

…

1

…

inode
12345

block 23567

“some text in the
file…”

Hard Links

shell command
ln /dirA/name1 /dirB/name2

is typically implemented using the link system call:

#include <stdio.h>
#include<unistd.h>

if (link(“/dirA/name1”, “/dirB/name2”) == -1)
 perror(“failed to make new link in /dirB”);

name1 12345

name inode

…

23567

…

1

…

inode
12345

block 23567

“some text in the
file…”

directory entry in /dirA

name2 12345

name inode

directory entry in /dirB

2

CPSC 410 / 611 : Operating Systems File Management

20

Hard Links: unlink

#include <stdio.h>
#include<unistd.h>

if (unlink(“/dirA/name1”) == -1)
 perror(“failed to delete link in /dirA”);

…

23567

…

2

…

inode
12345

block 23567

“some text in the
file…”

name1 12345

name inode

directory entry in /dirA

name2 12345

name inode

directory entry in /dirB

1

if (unlink(“/dirB/name2”) == -1)
 perror(“failed to delete link in /dirB”);

0

Symbolic (Soft) Links

shell command
ln -s /dirA/name1 /dirB/name2

is typically implemented using the symlink system call:

#include <stdio.h>
#include<unistd.h>

if (symlink(“/dirA/name1”, “/dirB/name2”) == -1)
 perror(“failed to create symbolic link in /dirB”);

name1 12345

name inode

…

23567

…

1

…

inode
12345

block 23567

“some
text in
the file…”

directory entry in /dirA

name2 13579

name inode

directory entry in /dirB

…

3546

…

1

…

inode
13579

block 3546

“/dirA/
name1”

CPSC 410 / 611 : Operating Systems File Management

21

•  Open file system call: cache information about file in kernel
memory:
–  location of file on disk
–  file pointer for read/write
–  blocking information

•  Single-user system:

•  Multi-user system:

Bookkeeping

process open-file table

file1
file2 file pos

file pos

system open-file table

open cnt

open cnt file pos ...

... file pos

open-file table

file1
file2 file pos file location

file location file pos

Errors:
EACCESS: <various forms of access denied>
EEXIST O_CREAT and O_EXCL set, and file exists already.
EINTR: signal caught during open
EISDIR: file is a directory and O_WRONLY or O_RDWR in flags
ELOOP: there is a loop in the path
EMFILE: to many files open in calling process
ENAMETOOLONG: …
ENFILE: to many files open in system
…

Opening/Closing Files
#include <fcntl.h>
#include <sys/stat.h>

int open(const char * path, int oflag, …);
/* returns open file descriptor */

Flags:
O_RDONLY, O_WRONLY, O_RDWR
O_APPEND, O_CREAT, O_EXCL, O_NOCCTY
O_NONBLOCK, O_TRUNC

CPSC 410 / 611 : Operating Systems File Management

22

Opening/Closing Files

#include <unistd.h>

int close(int fildes);
 Errors:

EBADF: fildes is not valid file descriptor
EINTR: signal caught during close

Example:

int r_close(int fd) {
 int retval;

 while (retval = close(fd), ((retval == -1) && (errno == EINTR)));
 return retval;
}

Multiplexing: select()

#include <sys/select.h>

int select(int nfds,
 fd_set * readfds,
 fd_set * writefds,
 fd_set * errorfds,
 struct timeval timeout);
 /* timeout is relative */

void FD_CLR (int fd, fd_set * fdset);
int FD_ISSET(int fd, fd_set * fdset);
void FD_SET (int fd, fd_set * fdset);
void FD_ZERO (fd_set * fdset);

Errors:
EBADF: fildes is not valid for one

 or more file descriptors
EINVAL: <some error in parameters>
EINTR: signal caught during select

 before timeout or selected event

CPSC 410 / 611 : Operating Systems File Management

23

select() Example: Reading from multiple fd’s

while (!done) {
 numready = select(maxfd, &readset, NULL, NULL, NULL);
 if ((numready == -1) && (errno == EINTR))
 /* interrupted by signal; continue monitoring */
 continue;
 else if (numready == -1)
 /* a real error happened; abort monitoring */
 break;

 for (int i = 0; i < numfds; i++) {
 if (FD_ISSET(fd[i], &readset)) { /* this descriptor is ready*/
 bytesread = read(fd[i], buf, BUFSIZE);
 done = TRUE;
 }
}

FD_ZERO(&readset);
maxfd = 0;
for (int i = 0; i < numfds; i++) {
 /* we skip all the necessary error checking */
 FD_SET(fd[i], &readset);
 maxfd = MAX(fd[i], maxfd);
}

select() Example: Timed Waiting on I/O

int waitfdtimed(int fd, struct timeval end) {
 fd_set readset;
 int retval;
 struct timeval timeout;

 FD_ZERO(&readset);
 FDSET(fd, &readset);
 if (abs2reltime(end, &timeout) == -1) return -1;
 while (((retval = select(fd+1,&readset,NULL,NULL,&timeout)) == -1)
 && (errno == EINTR)) {
 if (abs2reltime(end, &timeout) == -1) return -1;
 FD_ZERO(&readset);
 FDSET(fd, &readset);
 }
 if (retval == 0) {errno = ETIME; return -1;}
 if (retval == -1) {return -1;}
 return 0;
}

CPSC 410 / 611 : Operating Systems File Management

24

Limitations of System-V File System
•  Block size fixed to 512 byte.

•  Inode blocks segregated from data blocks.
–  long seeks to access file data (first read inode,

then data block)

•  Inodes of files in single directory often not co-located
on disk.
–  many seeks when accessing multiple files of same

directory.

•  Data blocks of same file are often not co-located on
disk.
–  many seeks when traversing file.

“Fast FS” (FFS, ca. 1984):
Modifications to “Old” File System

Two-pronged approach:

1.  Increase block size

2.  Make file system disk-aware

CPSC 410 / 611 : Operating Systems File Management

25

FFS: Increase Block Size

Increase block size from 512 byte to 1024 byte.

File system performance improves by a factor of more
than two! (?)

FFS Organization: Some Points

1.  Cylinder Groups

2.  Optimizing Storage Utilization: Blocks vs. Fragments

3.  File System Parameterization

CPSC 410 / 611 : Operating Systems File Management

26

FFS Organization: Cylinder Groups

Cylinder Groups
–  groups of multiple adjacent disk cylinders.
–  each group maintains own copy of superblock, inode bitmap, data

bitmap, inodes, and data blocks:

LOCALITY AND THE FAST FILE SYSTEM 3

41.2 FFS: Disk Awareness Is The Solution

A group at Berkeley decided to build a better, faster file system, which
they cleverly called the Fast File System (FFS). The idea was to design
the file system structures and allocation policies to be “disk aware” and
thus improve performance, which is exactly what they did. FFS thus ush-
ered in a new era of file system research; by keeping the same interface
to the file system (the same APIs, including open(), read(), write(),
close(), and other file system calls) but changing the internal implemen-
tation, the authors paved the path for new file system construction, work
that continues today. Virtually all modern file systems adhere to the ex-
isting interface (and thus preserve compatibility with applications) while
changing their internals for performance, reliability, or other reasons.

41.3 Organizing Structure: The Cylinder Group

The first step was to change the on-disk structures. FFS divides the
disk into a number of cylinder groups. A single cylinder is a set of tracks
on different surfaces of a hard drive that are the same distance from the
center of the drive; it is called a cylinder because of its clear resemblance
to the so-called geometrical shape. FFS aggregates each N consecutive
cylinders into group, and thus the entire disk can thus be viewed as a
collection of cylinder groups. Here is a simple example, showing the four
outer most tracks of a drive with six platters, and a cylinder group that
consists of three cylinders:

Single track (e.g., dark gray)

C
yl

in
d
e
r:

T
ra

ck
s

a
t
sa

m
e
 d

is
ta

n
ce

 f
ro

m
 c

e
n
te

r
o
f
d
ri
ve

 a
cr

o
ss

 d
iff

e
re

n
t
su

rf
a
ce

s
(a

ll
tr

a
ck

s
w

ith
 s

a
m

e
 c

o
lo

r)

C
yl

in
d
e
r

G
ro

u
p
:

S
e
t
o
f
N

 c
o
n
se

cu
tiv

e
 c

yl
in

d
e
rs

(i
f
N

=
3
,
fir

st
 g

ro
u
p
 d

o
e
s

n
o
t
in

cl
u
d
e
 b

la
ck

 t
ra

ck
)

Note that modern drives do not export enough information for the
file system to truly understand whether a particular cylinder is in use;
as discussed previously [AD14a], disks export a logical address space of
blocks and hide details of their geometry from clients. Thus, modern file

c⃝ 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

4 LOCALITY AND THE FAST FILE SYSTEM

systems (such as Linux ext2, ext3, and ext4) instead organize the drive
into block groups, each of which is just a consecutive portion of the disk’s
address space. The picture below illustrates an example where every 8
blocks are organized into a different block group (note that real groups
would consist of many more blocks):

Group 0 Group 1 Group 2

Whether you call them cylinder groups or block groups, these groups
are the central mechanism that FFS uses to improve performance. Crit-
ically, by placing two files within the same group, FFS can ensure that
accessing one after the other will not result in long seeks across the disk.

To use these groups to store files and directories, FFS needs to have the
ability to place files and directories into a group, and track all necessary
information about them therein. To do so, FFS includes all the structures
you might expect a file system to have within each group, e.g., space for
inodes, data blocks, and some structures to track whether each of those
are allocated or free. Here is a depiction of what FFS keeps within a single
cylinder group:

S ib db Inodes Data

Let’s now examine the components of this single cylinder group in
more detail. FFS keeps a copy of the super block (S) in each group for
reliability reasons. The super block is needed to mount the file system;
by keeping multiple copies, if one copy becomes corrupt, you can still
mount and access the file system by using a working replica.

Within each group, FFS needs to track whether the inodes and data
blocks of the group are allocated. A per-group inode bitmap (ib) and
data bitmap (db) serve this role for inodes and data blocks in each group.
Bitmaps are an excellent way to manage free space in a file system be-
cause it is easy to find a large chunk of free space and allocate it to a file,
perhaps avoiding some of the fragmentation problems of the free list in
the old file system.

Finally, the inode and data block regions are just like those in the pre-
vious very-simple file system (VSFS). Most of each cylinder group, as
usual, is comprised of data blocks.

OPERATING

SYSTEMS

[VERSION 0.92] WWW.OSTEP.ORG

Allocation of directories and files:
–  “keep related stuff together”
–  blocks of same file
–  files and directories

FFS Organization: Some Points

Optimizing Storage Utilization: Blocks vs. Fragments

File System Parameterization
Goal: Parameterize processor capabilities and disk characteristics so
that blocks can be allocated in an optimum, configuration-dependent way.

1. Allocate new blocks on same cylinder as previous block in same file.
2. Allocate new block rotationally well-positioned.

Disk Parameters:
number of blocks per track
disk spin rate.

CPU Parameters:
expected time to service interrupt and schedule new disk transfer

LOCALITY AND THE FAST FILE SYSTEM 11

0

11

10
9

8

7

6

5

4
3

2

1

Spindle
0

11

5
10

4

9

3

8

2
7

1

6

Spindle

Figure 41.3: FFS: Standard Versus Parameterized Placement

You might observe that this process is inefficient, requiring a lot of ex-
tra work for the file system (in particular, a lot of extra I/O to perform the
copy). And you’d be right again! Thus, FFS generally avoided this pes-
simal behavior by modifying the libc library; the library would buffer
writes and then issue them in 4KB chunks to the file system, thus avoid-
ing the sub-block specialization entirely in most cases.

A second neat thing that FFS introduced was a disk layout that was
optimized for performance. In those times (before SCSI and other more
modern device interfaces), disks were much less sophisticated and re-
quired the host CPU to control their operation in a more hands-on way.
A problem arose in FFS when a file was placed on consecutive sectors of
the disk, as on the left in Figure 41.3.

In particular, the problem arose during sequential reads. FFS would
first issue a read to block 0; by the time the read was complete, and FFS
issued a read to block 1, it was too late: block 1 had rotated under the
head and now the read to block 1 would incur a full rotation.

FFS solved this problem with a different layout, as you can see on the
right in Figure 41.3. By skipping over every other block (in the example),
FFS has enough time to request the next block before it went past the
disk head. In fact, FFS was smart enough to figure out for a particular
disk how many blocks it should skip in doing layout in order to avoid the
extra rotations; this technique was called parameterization, as FFS would
figure out the specific performance parameters of the disk and use those
to decide on the exact staggered layout scheme.

You might be thinking: this scheme isn’t so great after all. In fact, you
will only get 50% of peak bandwidth with this type of layout, because
you have to go around each track twice just to read each block once. For-
tunately, modern disks are much smarter: they internally read the entire
track in and buffer it in an internal disk cache (often called a track buffer
for this very reason). Then, on subsequent reads to the track, the disk will
just return the desired data from its cache. File systems thus no longer
have to worry about these incredibly low-level details. Abstraction and
higher-level interfaces can be a good thing, when designed properly.

Some other usability improvements were added as well. FFS was one
of the first file systems to allow for long file names, thus enabling more
expressive names in the file system instead of the traditional fixed-size
approach (e.g., 8 characters). Further, a new concept was introduced

c⃝ 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

CPSC 410 / 611 : Operating Systems File Management

27

Log-Structured File Systems

Observations (Early 90’s):
 Technology progress is uneven.

Processors:
–  Speed increases exponentially.

Disk Technology:
–  Transfer bandwidth: can significantly increase

with RAID
–  Latency: no major improvement

RAM:
–  Size increases exponentially.

Increasing RAM Size leads to …

Large File Caches:
– Caches handle larger portions of read requests.
– Therefore, write requests will dominate disk traffic.

Large Write Buffers:
– Buffer large number of write requests before writing

to disk.
– This increases efficiency of individual write

operation (sequential transfer rather than random).

– Disadvantage: Data loss during system crash.

CPSC 410 / 611 : Operating Systems File Management

28

Problems with Berkeley Unix FFS …

PROBLEM 1:
FFS’s attempts to lay out file data sequentially, but

–  Files are physically separated.
–  inodes are separate from file content.
–  Directory entries are separate from file content.

As a result, file operations are expensive.
–  Example: several accesses create file: 1 for new

inode, 1 for inode map, 1 to new file data block, 1 to
data block map, 1 to directory file, and 1 to
directory inode. => 6 accesses to create single file.

–  Example: writes to small files: <= 5% of disk
bandwidth is used for user data.

Problems with Berkeley Unix FFS …

PROBLEM 2: Write operations are synchronized.

File data writes are written asynchronously.

Metadata (directories, inodes) are written synchronously.

CPSC 410 / 611 : Operating Systems File Management

29

Log-Structured File Systems

Fundamental idea: Focus on Write performance!

– Buffer file system changes in file cache.

•  File data, directories, inodes, …

– Write changes to disk sequentially.

•  Aggregate small random writes into large
asynchronous sequential writes.

How to Write Sequentially

Writing a single data block D, starting at location A0:

Writing the updated inode I as well...

D I

A0

Writing a multiple data blocks, starting at location A0:

Dk,0

blk[0]=A0
blk[1]=A1
blk[2]=A2
blk[3]=A3

A0

Dk,1

A1

Dk,2

A2

Dk,3

A3

Dj,0

blk[0]=A5

A5

blk[0]=A0

CPSC 410 / 611 : Operating Systems File Management

30

How to Write Sequentially: Issues

Writing a multiple data blocks, starting at location A0:

Dk,0

blk[0]=A0
blk[1]=A1
blk[2]=A2
blk[3]=A3

A0

Dk,1

A1

Dk,2

A2

Dk,3

A3

Dj,0

blk[0]=A5

A5

Issue 1: How to read data from the log
•  aka, “how to find inodes?”

... ...

?? ?? ?? ?? ??

How to Write Sequentially: Locating Inodes

Issue 1: How to read data from the log
•  aka, “how to find inodes?”

Solution: inode map

•  store location of inodes in a map
•  mostly cached in memory

?? ?? ?? ?? ??

... ...

CPSC 410 / 611 : Operating Systems File Management

31

IOW: File Location and Reading

•  Traditional “logs” require sequential scans to retrieve
data.

•  LFS adds index structures in log to allow for random
access.

•  inode identical to FFS:
–  Once inode is read, number of disk I/Os to read file

is same for LFS and FFS.
•  inode position is not fixed.

–  Therefore, store mapping of files to inodes in
inode-maps.

–  inode maps largely cached in memory.

Disk Layout: Example

CPSC 410 / 611 : Operating Systems File Management

32

How to Write Sequentially: Writing to Log

Writing a multiple data blocks, starting at location A0:

Dk,0

blk[0]=A0
blk[1]=A1
blk[2]=A2
blk[3]=A3

A0

Dk,1

A1

Dk,2

A2

Dk,3

A3

Dj,0

blk[0]=A5

A5

Issue 2: How to write data from the log
•  aka, “how to find space for the blocks?”

??

... ...

??

Free-Space Management

Issue: How to maintain sufficiently-long segments to
allow for sequential writes of logs?

Solution 1: Thread log through available “holes”.
–  Problem: Fragmentation

Solution 2: De-Fragment disk space (compact live data)
–  Problem: cost of copying live data.

LFS Solution: Eliminate fragmentation through fixed-
sized “holes” (segments)

–  Reclaim segments by copying segment cleaning.

CPSC 410 / 611 : Operating Systems File Management

33

Segment Cleaning: Mechanism

Compact live data in segments by
1.  Read number of segments into memory.
2.  Identify live data in these segments.
3.  Write live data back into smaller number of

segments.

Issue: How to identify live data blocks?
–  Maintain segment summary block in segment.

•  Note: There is no need to maintain free-block list.

Flash File Systems

e.g. JFFS : The Journaling Flash File System

RECALL: NAND Flash Memory:
–  Flash chips are arranged in 8kB blocks.
–  Each block is divided into 512B pages.
–  Flash memory does not support “overwrite”

operations.
–  Only supports a limited number of “erase”

operations.
–  This is handled in the Flash Translation Layer (FTL)

CPSC 410 / 611 : Operating Systems File Management

34

JFFS: Brief Overview

•  JFFS is purely log structured.

•  Data written to medium in form of “nodes”.

•  Deletion is performed by setting “deleted” flag in

metadata.

•  Metadata retrieved during initial scan of medium at

mount time.

•  During garbage collection, reclaim “dirty space” that

contains old nodes.

File System Architecture: Virtual File System

system call layer �
(file system interface)

virtual file system layer (v-nodes)

local UNIX file

system (i-nodes)

Example: Linux Virtual File System
(VFS)

•  Provides generic file-system interface (separates
from implementation)

•  Provides support for network-wide identifiers
for files (needed for network file systems).

Objects in VFS:

•  inode objects (individual files)

•  file objects (open files)

•  superblock objects (file systems)

•  dentry objects (individual directory entries)

CPSC 410 / 611 : Operating Systems File Management

35

File System Architecture: Virtual File System

system call layer �
(file system interface)

virtual file system layer (v-nodes)

local UNIX file

system (i-nodes)

Example: Linux Virtual File System
(VFS)

•  Provides generic file-system interface (separates
from implementation)

•  Provides support for network-wide identifiers
for files (needed for network file systems).

Objects in VFS:

•  inode objects (individual files)

•  file objects (open files)

•  superblock objects (file systems)

•  dentry objects (individual directory entries)

NFS client

(r-nodes)

RPC client stub

File System Architecture: Virtual File System

system call layer �
(file system interface)

virtual file system layer (v-nodes)

local UNIX file

system (i-nodes)

Example: Linux Virtual File System
(VFS)

•  Provides generic file-system interface (separates
from implementation)

•  Provides support for network-wide identifiers
for files (needed for network file systems).

Objects in VFS:

•  inode objects (individual files)

•  file objects (open files)

•  superblock objects (file systems)

•  dentry objects (individual directory entries)

Flash Memory

File system

CPSC 410 / 611 : Operating Systems File Management

36

Sun’s Network File System (NFS)
•  Architecture:

–  NFS as collection of protocols the provide clients with a distributed
file system.

–  Remote Access Model (as opposed to Upload/Download Model)
–  Every machine can be both a client and a server.
–  Servers export directories for access by remote clients (defined in

the /etc/exports file).
–  Clients access exported directories by mounting them remotely.

•  Protocols:

–  file and directory access
•  Servers are stateless (no OPEN/CLOSE calls)

NFS: Basic Architecture

system call layer

virtual file system layer (v-nodes) virtual file system layer

NFS client
(r-nodes)

local operating
system (i-nodes)

RPC client stub RPC server stub

NFS server local file
system interface

client server

system call layer

CPSC 410 / 611 : Operating Systems File Management

37

NFS Implementation: Issues
•  File handles:

–  specify filesystem and i-node number of file
–  sufficient?

•  Integration:
–  where to put NFS on client?
–  on server?

•  Server caching:
–  read-ahead
–  write-delayed with periodic sync vs. write-through

•  Client caching:
–  timestamps with validity checks

NFS: File System Model
•  File system model similar to UNIX file system model

–  Files as uninterpreted sequences of bytes
–  Hierarchically organized into naming graph
–  NSF supports hard links and symbolic links
–  Named files, but access happens through file handles.

•  File system operations
–  NFS Version 3 aims at statelessness of server
–  NFS Version 4 is more relaxed about this

•  Lots of details at http://nfs.sourceforge.net/

CPSC 410 / 611 : Operating Systems File Management

38

NFS: Client Caching
•  Potential for inconsistent versions at different clients.
•  Solution approach:

–  Whenever file cached, timestamp of last modification on server is
cached as well.

–  Validation: Client requests latest timestamp from server
(getattributes), and compares against local timestamp. If fails, all
blocks are invalidated.

•  Validation check:
–  at file open
–  whenever server contacted to get new block
–  after timeout (3s for file blocks, 30s for directories)

•  Writes:
–  block marked dirty and scheduled for flushing.
–  flushing: when file is closed, or a sync occurs at client.

•  Time lag for change to propagate from one client to other:
–  delay between write and flush
–  time to next cache validation

