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File Management 

•  What is a file? 

•  Elements of file management 

•  File organization  

•  Directories 

•  File allocation 

What is a File? 

A file is a collection of data elements, grouped together for 
purpose of access control, retrieval, and modification 

 
Persistence: Often, files are mapped onto physical storage devices, 
usually nonvolatile. 

Some modern systems define a file simply as a sequence, or stream 
of data units. 

A file system is the software responsible for 
–  creating, destroying, reading, writing, modifying, moving files 
–  controlling access to files 
–  management of resources used by files. 
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The Logical View of File Management 

user 
•  directory management 
•  access control 

•  access method 
records 

file structure 

physical blocks in memory 

physical blocks on disk 

•  blocking 

•  disk scheduling 
•  file allocation 

File Management 

•  What is a file? 
•  Elements of file management 
•  File organization  
•  Directories 
•  File allocation 
•  UNIX file system 

user 

•  directory management 
•  access control 

•  access method records 

file structure 

physical blocks in memory 

physical blocks on disk 

•  blocking 

•  disk scheduling 
•  file allocation 
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Logical Organization of a File 

•  A file is perceived as an ordered collection of records,  
R0, R1, ..., Rn. 

•  A record is a contiguous block of information transferred during 
a logical read/write operation. 

•  Records can be of fixed or variable length. 

•  Organizations: 
–  Pile 
–  Sequential File 
–  Indexed Sequential File 
–  Indexed File 
–  Direct/Hashed File 

Pile 

•  Variable-length records 
•  Chronological order 
•  Random access to record by 

search of whole file. 
•  What about modifying 

records? 

Pile File 
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Sequential File 

•  Fixed-format records 

•  Records often stored in 
order of key field. 

•  Good for applications that 
process all records. 

•  No adequate support for 
random access. 

•  Q: What about adding new 
record? 

•  A: Separate pile file keeps 
log file or transaction file. 

key field 

Sequential File 

Indexed Sequential File 
•  Similar to sequential file, 

with two additions. 
–  Index to file supports 

random access. 
–  Overflow file indexed 

from main file. 
 

•  Record is added by 
appending it to overflow file 
and providing link from 
predecessor. 

main file 

overflow file 

index 

Indexed Sequential File 
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Indexed File 

•  Variable-length 
records 

•  Multiple Indices 

•  Exhaustive index vs. 
partial index 

index 

index 

partial 
index 

File Representation to User (Unix) 

3 

file descriptor 
table 

UNIX File Descriptors: 
 
int myfd; 
 
myfd = open(“myfile.txt”, O_RDONLY); 
 

myfd 

system file 
 table 

in-memory 
inode table 

[0] 

[1] 

[2] 

[3] 

[4] 

user space kernel space 

  

file descriptor 
table 

myfp 

[0] 

[1] 

[2] 

[3] 

[4] 

user space kernel space 

ISO C File Pointers: 
 
FILE *myfp; 
 
myfp = fopen(“myfile.txt”, “w”); 
 

file structure 

3 
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File Descriptors and fork() 
•  With fork(), child inherits 

content of parent’s address 
space, including most of parent’s 
state: 

–  scheduling parameters 
–  file descriptor table 
–  signal state 
–  environment 
–  etc. 

parent’s file desc table 

child’s file desc table 

[0] 

[1] 

[2] 

[3] 

[4] 

[5] 

[0] 

[1] 

[2] 

[3] 

[4] 

[5] 

A(SFT) 
B(SFT) 
C(SFT) 
D(SFT) 

A(SFT) 
B(SFT) 
C(SFT) 
D(SFT) 

A 
B 

C 
D (“myf.txt”) 

system file table (SFT) 

File Descriptors and fork() (II) 

parent’s file desc table 

child’s file desc table 

[0] 

[1] 

[2] 

[3] 

[4] 

[5] 

[0] 

[1] 

[2] 

[3] 

[4] 

[5] 

A(SFT) 
B(SFT) 
C(SFT) 
D(SFT) 

A(SFT) 
B(SFT) 
C(SFT) 
D(SFT) 

A 
B 

C 
D (“myf.txt”) 

system file table (SFT) 

int main(void) { 
  char c = ‘!’; 
  int myfd; 
 
  myfd = open(‘myf.txt’, O_RDONLY); 
 
  fork(); 
 
  read(myfd, &c, 1); 
 
  printf(‘Process %ld got %c\n’,  
            (long)getpid(), c); 
   
  return 0; 
} 
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File Descriptors and fork() (III) 

parent’s file desc table 

child’s file desc table 

[0] 

[1] 

[2] 

[3] 

[4] 

[5] 

[0] 

[1] 

[2] 

[3] 

[4] 

[5] 

A(SFT) 
B(SFT) 
C(SFT) 
D(SFT) 

A(SFT) 
B(SFT) 
C(SFT) 
E(SFT) 

A 
B 

C 
D (“myf.txt”) 

system file table (SFT) int main(void) { 
  char c = ‘!’; 
  int myfd; 
 
  fork(); 
 
  myfd = open(‘myf.txt’, O_RDONLY); 
 
  read(myfd, &c, 1); 
 
  printf(‘Process %ld got %c\n’,  
            (long)getpid(), c); 
   
  return 0; 
} 

E (“myf.txt”) 

Duplicating File Descriptors: dup2() 
•  Want to redirect I/O from well-known file descriptor to 

descriptor associated with some other file? 
–  e.g. stdout to file? 

#include <unistd.h> 
 
int dup2(int fildes, int fildes2); 

Example: redirect standard output to file. 
 
int main(void) { 
  int fd = open(‘my.file’, <some_flags>, <some_mode>); 
 
  dup2(fd, STDOUT_FILENO); 
 
  close(fd); 
 
  write(STDOUT_FILENO, ‘OK’, 2); 
}  

Errors: 
EBADF: fildes or fildes2 is not valid  
EINTR:  dup2 interrupted by signal 



CPSC 410 / 611 : Operating Systems File Management 

8 

Duplicating File Descriptors: dup2() (II) 
•  Want to redirect I/O from well-known file descriptor to 

descriptor associated with some other file? 
–  e.g. stdout to file? 

#include <unistd.h> 
 
int dup2(int fildes, int fildes2); 

Errors: 
EBADF:  fildes or fildes2 is not valid  
EINTR:  dup2 interrupted by signal 

after open 

file descriptor table 

[0] standard input 

[1] standard output 

[2] standard error 

[3] write to file.txt 

after dup2 

file descriptor table 

[0] standard input 

[1] write to file.txt 

[2] standard error 

[3] write to file.txt 

after close 

file descriptor table 

[0] standard input 

[1] write to file.txt 

[2] standard error 

File Management 

•  What is a file? 
•  Elements of file management 
•  File organization  
•  Directories 
•  File allocation 
•  UNIX file system 

user 

•  directory management 
•  access control 

•  access method records 

file structure 

physical blocks in memory 

physical blocks on disk 

•  blocking 

•  disk scheduling 
•  file allocation 
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Allocation Methods 

•  File systems manage disk resources 

•  Must allocate space so that  

–  space on disk utilized effectively 

–  file can be accessed quickly 

•  Typical allocation methods: 

–  contiguous 

–  linked 

–  indexed 

•  Suitability of particular method depends on  

–  storage device technology 

–  access/usage patterns 

file start length 

Contiguous Allocation 
Logical file mapped onto a sequence of adjacent 
physical blocks. 0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

16 17 18 19 

20 21 22 23 

24 25 26 27 

file1 0 5 

file2 10 2 

file3 16 10 

Cons: 
•  Inserting/Deleting records, or changing length 

of records difficult. 
•  Size of file must be known a priori. (Solution: 

copy file to larger hole if exceeds allocated 
size.) 

•  External fragmentation 
•  Pre-allocation causes internal fragmentation 

Pros: 
•  minimizes head movements 
•  simplicity of both sequential and direct access. 
•  Particularly applicable to applications where 

entire files are scanned. 
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file start end 

Linked Allocation 
•  Scatter logical blocks throughout secondary 

storage. 
•  Link each block to next one by forward 

pointer. 
•  May need a backward pointer for backspacing. 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

16 17 18 19 

20 21 22 23 

24 25 26 27 

file 1 9 23 
… … … 
… … … 

Pros: 
•  blocks can be easily inserted or deleted 
•  no upper limit on file size necessary a priori 
•  size of individual records can easily change 

over time. 

Cons: 
•  direct access difficult and expensive 
•  overhead required for pointers in blocks 
•  reliability 

Variations of Linked Allocation 
Maintain all pointers as a separate linked list, preferably in main 
memory. 

file start end 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

16 17 18 19 

20 21 22 23 

24 25 26 27 

file1 9 23 

... ... ... 

... ... ... 

0 

24 

23 

-1 

10 

26 

16 

9 

16 

10 

23 

26 

24 

0 

Example: File-Allocation Tables (FAT) 
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... ... 
file index block 

Indexed Allocation 
Keep all pointers to blocks in one location: index 
block (one index block per file) 0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

16 17 18 19 

20 21 22 23 

24 25 26 27 

file1 7 
... ... 
... ... 

•  Pros: 
–  supports direct access 
–  no external fragmentation 
–  therefore: combines best of continuous 

and linked allocation. 

9 0 16 24 26 10 23 -1 -1 -1 

•  Cons: 
–  internal fragmentation in index blocks 

•  Trade-off: 
–  what is a good size for index block? 
–  fragmentation vs. file length 

Solutions for the  Index-Block-Size Dilemma 

Linked index blocks: 

Multilevel index scheme: 
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Index Block Scheme in UNIX 

single 
indirect 
double 

indirect 
triple 

indirect 

0 

9 

10 

11 

12 

di
re

ct
 

UNIX (System V) Allocation Scheme 

367 

9156 

8 

11 

Example:  
block size: 1kB 
access byte offset 9000 
access byte offset 350000 

367 

808 

331 

3333 

816 3333 

331 

75 0 

9156 
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Free Space Management (conceptual) 
•  Must keep track where unused blocks are. 
•  Can keep information for free space management in 

unused blocks. 
•  Bit vector: 

•  Linked list: Each free block contains pointer to next 
free block. 

•  Variations: 
•  Grouping:  Each block has more than on pointer to 

empty blocks. 
•  Counting: Keep pointer of first free block and 

number of contiguous free blocks following it. 

free used 
#1 #2 

used 
#3 

used 
#4 

free 
#5 

used 
#6 

free 
#7 

free 
#8 

... used 
#
0 

data blocks 

inodes 

superblock 
boot block 

file system layout 

Free-Space Management in System-V FS 
Management of free disk blocks: linked index to 
free blocks. 
 
 
 

0 

98 
99 

superblock 

Management of free i-nodes:  

0 
1 
0 
0 
1 

cache in 
superblock 

marked i-nodes in i-list 
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File Management 

•  What is a file? 
•  Elements of file management 
•  File organization  
•  Directories 
•  File allocation 
•  UNIX file system 

user 

•  directory management 
•  access control 

•  access method records 

file structure 

physical blocks in memory 

physical blocks on disk 

•  blocking 

•  disk scheduling 
•  file allocation 

Directories 

•  Large amounts of data:  Partition and structure for easier access. 

•  High-level structure: 

–  partitions in MS-DOS 

–  minidisks in MVS/VM 

–  file systems in UNIX. 

•  Directories:  Map file name to directory entry (basically a symbol 
table). 

•  Operations on directories: 

–  search for file 

–  create/delete file 

–  rename file 
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Directory Structures 
•  Single-level directory: 

•  Problems: 
•  limited-length file names 
•  multiple users 

directory 

file 

user3 user4 user2 user1 

•  Path names 
•  Location of system files 

•  special directory 
•  search path 

master directory 

user 
directories 

file 

Two-Level Directories 
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•  create subdirectories 
•  current directory 
•  path names: complete vs. relative 

xterm xmh xman xinit 

... include demo bin 

openw netsc mail bin 

pub bin user 

cp ls count find 

xmt gdb gcc 

... user3 user2 user1 

Tree-Structured Directories 

Generalized Tree Structures 

•  Links: File name that, when referred, affects file to which it was 
linked. (hard links, symbolic links) 

•  Problems: 
•  consistency, deletion 
•  Why links to directories only allowed for system managers? 

–  share directories and files 
–  keep them easily accessible 

xterm xmh xman xinit 

... incl demo bin 

netsc opwin mail bin 

pub bin user 

cp ls count find 

xmt gdb gcc 

... user3 user2 user1 xman 

xinit 
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UNIX Directory Navigation: current directory 

 
#include <unistd.h> 
 
char * getcwd(char * buf, size_t size); 
/* get current working directory */ 
 

Example: 
 
void main(void) { 
    char mycwd[PATH_MAX]; 
     
    if (getcwd(mycwd, PATH_MAX) == NULL) { 
        perror (“Failed to get current working directory”); 
        return 1; 
    } 
    printf(“Current working directory: %s\n”, mycwd); 
    return 0; 
} 

UNIX Directory Navigation: directory traversal 

#include <dirent.h> 
 
DIR           * opendir(const char * dirname); 
        /* returns pointer to directory object          */ 
struct dirent * readdir(DIR * dirp); 
        /* read successive entries in directory ‘dirp’  */ 
int             closedir(DIR *dirp); 
        /* close directory stream                       */ 
void            rewinddir(DIR * dirp); 
        /* reposition pointer to beginning of directory */ 
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Directory Traversal: Example 
#include <dirent.h> 
 
int main(int argc, char * argv[]) { 
    struct dirent * direntp; 
    DIR           * dirp; 
 
    if (argc != 2) { 
        fprintf(stderr, “Usage: %s directory_name\n”, argv[0]); 
        return 1; 
    } 
 
    if ((dirp = opendir(argv[1])) == NULL) { 
        perror(“Failed to open directory”); 
        return 1; 
    } 
 
    while ((dirent = readdir(dirp)) != NULL) 
        printf(%s\n”, direntp->d_name); 
    while((closedir(dirp) == -1) && (errno == EINTR)); 
    return 0; 
} 

Recall:  
Unix File System Implementation: inodes 

single 
indirect 
double 

indirect 
triple 

indirect 

0 

9 

10 

11 

12 

di
re

ct
 

multilevel indexed allocation table 

file information: 
- size (in bytes) 
- owner UID and GID 
- relevant times (3) 
- link and block counts 
- permissions 

inode 

multilevel 
allocation 

table 
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Unix Directory Implementation 

file information: 
- size (in bytes) 
- owner UID and GID 
- relevant times (3) 
- link and block counts 
- permissions 

inode 

Where is the  
filename?! 

Name information is contained in separate 
Directory File, which contains entries of type: 

 
(name of file ,  inode1 number of file) 

1 More precisely: Number of block that contains inode. 

myfile.txt 12345 

name inode 

… 

23567 

… 

1 

… 

inode 
12345 

block 23567 

“some text in the 
file…” 

Hard Links 

shell command 
ln /dirA/name1 /dirB/name2 
 
is typically implemented using the link system call: 
 
#include <stdio.h> 
#include<unistd.h> 
 
if (link(“/dirA/name1”, “/dirB/name2”) == -1) 
  perror(“failed to make new link in /dirB”); 
 

name1 12345 

name inode 

… 

23567 

… 

1 

… 

inode 
12345 

block 23567 

“some text in the 
file…” 

directory entry in /dirA 

name2 12345 

name inode 

directory entry in /dirB 

2 
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Hard Links: unlink 

 
#include <stdio.h> 
#include<unistd.h> 
 
if (unlink(“/dirA/name1”) == -1) 
  perror(“failed to delete link in /dirA”); 
 

… 

23567 

… 

2 

… 

inode 
12345 

block 23567 

“some text in the 
file…” 

name1 12345 

name inode 

directory entry in /dirA 

name2 12345 

name inode 

directory entry in /dirB 

1 

if (unlink(“/dirB/name2”) == -1) 
  perror(“failed to delete link in /dirB”); 

0 

Symbolic (Soft) Links 

shell command 
ln -s /dirA/name1 /dirB/name2 
 
is typically implemented using the symlink system call: 
 
#include <stdio.h> 
#include<unistd.h> 
 
if (symlink(“/dirA/name1”, “/dirB/name2”) == -1) 
  perror(“failed to create symbolic link in /dirB”); 
 

name1 12345 

name inode 

… 

23567 

… 

1 

… 

inode 
12345 

block 23567 

“some 
text in 
the file…” 

directory entry in /dirA 

name2 13579 

name inode 

directory entry in /dirB 

… 

3546 

… 

1 

… 

inode 
13579 

block 3546 

“/dirA/
name1” 
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•  Open file system call: cache information about file in kernel 
memory: 
–  location of file on disk 
–  file pointer for read/write 
–  blocking information 

•  Single-user system: 
 
 

•  Multi-user system: 

Bookkeeping 

process open-file table 

file1 
file2 file pos 

file pos 

system open-file table 

open cnt 

open cnt file pos ... 

... file pos 

open-file table 

file1 
file2 file pos file location 

file location file pos 

Errors: 
EACCESS: <various forms of access denied> 
EEXIST  O_CREAT and O_EXCL set, and file exists already. 
EINTR:  signal caught during open 
EISDIR:  file is a directory and O_WRONLY or O_RDWR in flags 
ELOOP:  there is a loop in the path 
EMFILE:  to many files open in calling process 
ENAMETOOLONG: … 
ENFILE:  to many files open in system 
… 

Opening/Closing Files 
#include <fcntl.h> 
#include <sys/stat.h> 
 
int open(const char * path, int oflag, …);  
/* returns open file descriptor */ 

Flags: 
O_RDONLY, O_WRONLY, O_RDWR 
O_APPEND, O_CREAT, O_EXCL, O_NOCCTY 
O_NONBLOCK, O_TRUNC 
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Opening/Closing Files 

#include <unistd.h> 
 
int close(int fildes);  
 Errors: 

EBADF: fildes is not valid file descriptor 
EINTR:  signal caught during close 

Example:  
 
int r_close(int fd) { 
    int retval; 
     
    while (retval = close(fd), ((retval == -1) && (errno == EINTR))); 
    return retval; 
} 

Multiplexing: select() 

#include <sys/select.h> 
 
int select(int              nfds,  
           fd_set         * readfds, 
           fd_set         * writefds,  
           fd_set         * errorfds, 
           struct timeval   timeout); 
           /* timeout is relative */ 
 
void FD_CLR  (int fd, fd_set * fdset); 
int  FD_ISSET(int fd, fd_set * fdset); 
void FD_SET  (int fd, fd_set * fdset); 
void FD_ZERO (fd_set * fdset); 

Errors: 
EBADF: fildes is not valid for one  

 or more file descriptors 
EINVAL: <some error in parameters> 
EINTR:  signal caught during select  

 before timeout or selected event 
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select() Example: Reading from multiple fd’s 

while (!done) { 
  numready = select(maxfd, &readset, NULL, NULL, NULL); 
  if ((numready == -1) && (errno == EINTR))  
    /* interrupted by signal; continue monitoring */ 
    continue;  
  else if (numready == -1) 
    /* a real error happened; abort monitoring */ 
    break; 
     
  for (int i = 0; i < numfds; i++) { 
    if (FD_ISSET(fd[i], &readset)) { /* this descriptor is ready*/  
      bytesread = read(fd[i], buf, BUFSIZE); 
      done = TRUE; 
    } 
} 

FD_ZERO(&readset); 
maxfd = 0; 
for (int i = 0; i < numfds; i++) { 
  /* we skip all the necessary error checking */ 
  FD_SET(fd[i], &readset); 
  maxfd = MAX(fd[i], maxfd); 
}  

select() Example: Timed Waiting on I/O 

int waitfdtimed(int fd, struct timeval end) { 
  fd_set         readset; 
  int            retval; 
  struct timeval timeout; 
 
  FD_ZERO(&readset); 
  FDSET(fd, &readset); 
  if (abs2reltime(end, &timeout) == -1) return -1; 
  while (((retval = select(fd+1,&readset,NULL,NULL,&timeout)) == -1) 
           && (errno == EINTR)) { 
      if (abs2reltime(end, &timeout) == -1) return -1; 
      FD_ZERO(&readset); 
      FDSET(fd, &readset); 
  } 
  if (retval == 0) {errno = ETIME; return -1;} 
  if (retval == -1) {return -1;} 
  return 0; 
} 
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Limitations of System-V File System 
•  Block size fixed to 512 byte. 

•  Inode blocks segregated from data blocks. 
–  long seeks to access file data (first read inode, 

then data block) 

•  Inodes of files in single directory often not co-located 
on disk. 
–  many seeks when accessing multiple files of same 

directory. 

•  Data blocks of same file are often not co-located on 
disk. 
–  many seeks when traversing file. 

“Fast FS” (FFS, ca. 1984):  
Modifications to “Old” File System 

Two-pronged approach: 

1.  Increase block size  

2.  Make file system disk-aware 
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FFS: Increase Block Size 

Increase block size from 512 byte to 1024 byte. 
 
 
File system performance improves by a factor of more 
than two! (?) 

FFS Organization: Some Points 

1.  Cylinder Groups 

2.  Optimizing Storage Utilization: Blocks vs. Fragments 

3.  File System Parameterization 
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FFS Organization: Cylinder Groups 

Cylinder Groups 
–  groups of multiple adjacent disk cylinders. 
–  each group maintains own copy of superblock, inode bitmap, data 

bitmap, inodes, and data blocks: 

LOCALITY AND THE FAST FILE SYSTEM 3

41.2 FFS: Disk Awareness Is The Solution

A group at Berkeley decided to build a better, faster file system, which
they cleverly called the Fast File System (FFS). The idea was to design
the file system structures and allocation policies to be “disk aware” and
thus improve performance, which is exactly what they did. FFS thus ush-
ered in a new era of file system research; by keeping the same interface
to the file system (the same APIs, including open(), read(), write(),
close(), and other file system calls) but changing the internal implemen-
tation, the authors paved the path for new file system construction, work
that continues today. Virtually all modern file systems adhere to the ex-
isting interface (and thus preserve compatibility with applications) while
changing their internals for performance, reliability, or other reasons.

41.3 Organizing Structure: The Cylinder Group

The first step was to change the on-disk structures. FFS divides the
disk into a number of cylinder groups. A single cylinder is a set of tracks
on different surfaces of a hard drive that are the same distance from the
center of the drive; it is called a cylinder because of its clear resemblance
to the so-called geometrical shape. FFS aggregates each N consecutive
cylinders into group, and thus the entire disk can thus be viewed as a
collection of cylinder groups. Here is a simple example, showing the four
outer most tracks of a drive with six platters, and a cylinder group that
consists of three cylinders:

Single track (e.g., dark gray)
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Note that modern drives do not export enough information for the
file system to truly understand whether a particular cylinder is in use;
as discussed previously [AD14a], disks export a logical address space of
blocks and hide details of their geometry from clients. Thus, modern file

c⃝ 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

4 LOCALITY AND THE FAST FILE SYSTEM

systems (such as Linux ext2, ext3, and ext4) instead organize the drive
into block groups, each of which is just a consecutive portion of the disk’s
address space. The picture below illustrates an example where every 8
blocks are organized into a different block group (note that real groups
would consist of many more blocks):

Group 0 Group 1 Group 2

Whether you call them cylinder groups or block groups, these groups
are the central mechanism that FFS uses to improve performance. Crit-
ically, by placing two files within the same group, FFS can ensure that
accessing one after the other will not result in long seeks across the disk.

To use these groups to store files and directories, FFS needs to have the
ability to place files and directories into a group, and track all necessary
information about them therein. To do so, FFS includes all the structures
you might expect a file system to have within each group, e.g., space for
inodes, data blocks, and some structures to track whether each of those
are allocated or free. Here is a depiction of what FFS keeps within a single
cylinder group:

S ib db Inodes Data

Let’s now examine the components of this single cylinder group in
more detail. FFS keeps a copy of the super block (S) in each group for
reliability reasons. The super block is needed to mount the file system;
by keeping multiple copies, if one copy becomes corrupt, you can still
mount and access the file system by using a working replica.

Within each group, FFS needs to track whether the inodes and data
blocks of the group are allocated. A per-group inode bitmap (ib) and
data bitmap (db) serve this role for inodes and data blocks in each group.
Bitmaps are an excellent way to manage free space in a file system be-
cause it is easy to find a large chunk of free space and allocate it to a file,
perhaps avoiding some of the fragmentation problems of the free list in
the old file system.

Finally, the inode and data block regions are just like those in the pre-
vious very-simple file system (VSFS). Most of each cylinder group, as
usual, is comprised of data blocks.
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Allocation of directories and files: 
–  “keep related stuff together” 
–  blocks of same file 
–  files and directories 

FFS Organization: Some Points 

Optimizing Storage Utilization: Blocks vs. Fragments 

File System Parameterization 
Goal: Parameterize processor capabilities and disk characteristics so 
that blocks can be allocated in an optimum, configuration-dependent way. 

1. Allocate new blocks on same cylinder as previous block in same file. 
2. Allocate new block rotationally well-positioned. 

Disk Parameters: 
number of blocks per track 
disk spin rate. 

CPU Parameters: 
expected time to service interrupt and schedule new disk transfer 
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Figure 41.3: FFS: Standard Versus Parameterized Placement

You might observe that this process is inefficient, requiring a lot of ex-
tra work for the file system (in particular, a lot of extra I/O to perform the
copy). And you’d be right again! Thus, FFS generally avoided this pes-
simal behavior by modifying the libc library; the library would buffer
writes and then issue them in 4KB chunks to the file system, thus avoid-
ing the sub-block specialization entirely in most cases.

A second neat thing that FFS introduced was a disk layout that was
optimized for performance. In those times (before SCSI and other more
modern device interfaces), disks were much less sophisticated and re-
quired the host CPU to control their operation in a more hands-on way.
A problem arose in FFS when a file was placed on consecutive sectors of
the disk, as on the left in Figure 41.3.

In particular, the problem arose during sequential reads. FFS would
first issue a read to block 0; by the time the read was complete, and FFS
issued a read to block 1, it was too late: block 1 had rotated under the
head and now the read to block 1 would incur a full rotation.

FFS solved this problem with a different layout, as you can see on the
right in Figure 41.3. By skipping over every other block (in the example),
FFS has enough time to request the next block before it went past the
disk head. In fact, FFS was smart enough to figure out for a particular
disk how many blocks it should skip in doing layout in order to avoid the
extra rotations; this technique was called parameterization, as FFS would
figure out the specific performance parameters of the disk and use those
to decide on the exact staggered layout scheme.

You might be thinking: this scheme isn’t so great after all. In fact, you
will only get 50% of peak bandwidth with this type of layout, because
you have to go around each track twice just to read each block once. For-
tunately, modern disks are much smarter: they internally read the entire
track in and buffer it in an internal disk cache (often called a track buffer
for this very reason). Then, on subsequent reads to the track, the disk will
just return the desired data from its cache. File systems thus no longer
have to worry about these incredibly low-level details. Abstraction and
higher-level interfaces can be a good thing, when designed properly.

Some other usability improvements were added as well. FFS was one
of the first file systems to allow for long file names, thus enabling more
expressive names in the file system instead of the traditional fixed-size
approach (e.g., 8 characters). Further, a new concept was introduced
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Log-Structured File Systems 

Observations (Early 90’s): 
 Technology progress is uneven. 

Processors:  
–  Speed increases exponentially. 

Disk Technology: 
–  Transfer bandwidth: can significantly increase 

with RAID 
–  Latency: no major improvement 

RAM: 
–  Size increases exponentially. 

 

Increasing RAM Size leads to … 

Large File Caches: 
– Caches handle larger portions of read requests. 
– Therefore, write requests will dominate disk traffic. 

Large Write Buffers: 
– Buffer large number of write requests before writing 

to disk. 
– This increases efficiency of individual write 

operation (sequential transfer rather than random). 

– Disadvantage: Data loss during system crash. 
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Problems with Berkeley Unix FFS … 

PROBLEM 1:  
FFS’s attempts to lay out file data sequentially, but 

–  Files are physically separated. 
–  inodes are separate from file content. 
–  Directory entries are separate from file content. 

As a result, file operations are expensive.  
–  Example: several accesses create file: 1 for new 

inode, 1 for inode map, 1 to new file data block, 1 to 
data block map, 1 to directory file, and 1 to 
directory inode. => 6 accesses to create single file. 

–  Example: writes to small files: <= 5% of disk 
bandwidth is used for user data.  

Problems with Berkeley Unix FFS … 

PROBLEM 2: Write operations are synchronized. 

File data writes are written asynchronously. 
 
Metadata (directories, inodes) are written synchronously. 
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Log-Structured File Systems 

Fundamental idea: Focus on Write performance! 

– Buffer file system changes in file cache. 

•  File data, directories, inodes, … 

– Write changes to disk sequentially. 

•  Aggregate small random writes into large 
asynchronous sequential writes. 

How to Write Sequentially 

Writing a single data block D, starting at location A0: 
 
 
 
 
Writing the updated inode I as well... 

D I 

A0 

Writing a multiple data blocks, starting at location A0: 
 

Dk,0 

blk[0]=A0 
blk[1]=A1 
blk[2]=A2 
blk[3]=A3 

A0 

Dk,1 

A1 

Dk,2 

A2 

Dk,3 

A3 

Dj,0 

blk[0]=A5 

A5 

blk[0]=A0 



CPSC 410 / 611 : Operating Systems File Management 

30 

How to Write Sequentially: Issues 

Writing a multiple data blocks, starting at location A0: 
 

Dk,0 

blk[0]=A0 
blk[1]=A1 
blk[2]=A2 
blk[3]=A3 

A0 

Dk,1 

A1 

Dk,2 

A2 

Dk,3 

A3 

Dj,0 

blk[0]=A5 

A5 

Issue 1: How to read data from the log 
•  aka, “how to find inodes?” 

... ... 

?? ?? ?? ?? ?? 

How to Write Sequentially: Locating Inodes 

Issue 1: How to read data from the log 
•  aka, “how to find inodes?” 

 
 
 
Solution: inode map  

•  store location of inodes in a map  
•  mostly cached in memory 

?? ?? ?? ?? ?? 

... ... 
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IOW: File Location and Reading 

•  Traditional “logs” require sequential scans to retrieve 
data. 

•  LFS adds index structures in log to allow for random 
access. 

•  inode identical to FFS:  
–  Once inode is read, number of disk I/Os to read file 

is same for LFS and FFS. 
•  inode position is not fixed. 

–  Therefore, store mapping of files to inodes in 
inode-maps. 

–  inode maps largely cached in memory. 

Disk Layout: Example 
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How to Write Sequentially: Writing to Log 

Writing a multiple data blocks, starting at location A0: 
 

Dk,0 

blk[0]=A0 
blk[1]=A1 
blk[2]=A2 
blk[3]=A3 

A0 

Dk,1 

A1 

Dk,2 

A2 

Dk,3 

A3 

Dj,0 

blk[0]=A5 

A5 

Issue 2: How to write data from the log 
•  aka, “how to find space for the blocks?” 

?? 

... ... 

?? 

Free-Space Management 

Issue: How to maintain sufficiently-long segments to 
allow for sequential writes of logs? 

Solution 1: Thread log through available “holes”. 
–  Problem: Fragmentation 

Solution 2: De-Fragment disk space (compact live data) 
–  Problem: cost of copying live data. 

LFS Solution: Eliminate fragmentation through fixed-
sized “holes” (segments) 

–  Reclaim segments by copying segment cleaning. 
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Segment Cleaning: Mechanism 

Compact live data in segments by 
1.  Read number of segments into memory. 
2.  Identify live data in these segments. 
3.  Write live data back into smaller number of 

segments. 

Issue: How to identify live data blocks? 
–  Maintain segment summary block in segment. 

•  Note: There is no need to maintain free-block list. 

Flash File Systems 

e.g. JFFS : The Journaling Flash File System 

RECALL: NAND Flash Memory: 
–  Flash chips are arranged in 8kB blocks. 
–  Each block is divided into 512B pages. 
–  Flash memory does not support “overwrite” 

operations. 
–  Only supports a limited number of “erase” 

operations. 
–  This is handled in the Flash Translation Layer (FTL) 
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JFFS:  Brief Overview 

•  JFFS is purely log structured. 

•  Data written to medium in form of “nodes”.  

•  Deletion is performed by setting “deleted” flag in 

metadata. 

•  Metadata retrieved during initial scan of medium at 

mount time. 

•  During garbage collection, reclaim “dirty space” that 

contains old nodes. 

File System Architecture: Virtual File System 

system call layer �
(file system interface)


virtual file system layer (v-nodes)


local UNIX file

system (i-nodes)


Example: Linux Virtual File System 
(VFS)


•  Provides generic file-system interface (separates 
from implementation)


•  Provides support for network-wide identifiers 
for files (needed for network file systems).





Objects in VFS:


•  inode objects (individual files)


•  file objects (open files)


•  superblock objects (file systems)


•  dentry objects (individual directory entries)
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File System Architecture: Virtual File System 

system call layer �
(file system interface)


virtual file system layer (v-nodes)


local UNIX file

system (i-nodes)


Example: Linux Virtual File System 
(VFS)


•  Provides generic file-system interface (separates 
from implementation)


•  Provides support for network-wide identifiers 
for files (needed for network file systems).





Objects in VFS:


•  inode objects (individual files)


•  file objects (open files)


•  superblock objects (file systems)


•  dentry objects (individual directory entries)


NFS client

(r-nodes)


RPC client stub


File System Architecture: Virtual File System 

system call layer �
(file system interface)


virtual file system layer (v-nodes)


local UNIX file

system (i-nodes)


Example: Linux Virtual File System 
(VFS)


•  Provides generic file-system interface (separates 
from implementation)


•  Provides support for network-wide identifiers 
for files (needed for network file systems).





Objects in VFS:


•  inode objects (individual files)


•  file objects (open files)


•  superblock objects (file systems)


•  dentry objects (individual directory entries)


Flash Memory

File system
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Sun’s Network File System (NFS) 
•  Architecture: 

–  NFS as collection of protocols the provide clients with a distributed 
file system. 

–  Remote Access Model (as opposed to Upload/Download Model) 
–  Every machine can be both a client and a server. 
–  Servers export directories for access by remote clients (defined in 

the /etc/exports file). 
–  Clients access exported directories by mounting them remotely. 

•  Protocols: 

–  file and directory access 
•  Servers are stateless (no OPEN/CLOSE calls) 

NFS: Basic Architecture 

system call layer 

virtual file system layer (v-nodes) virtual file system layer 

NFS client 
(r-nodes) 

local operating 
system (i-nodes) 

RPC client stub RPC server stub 

NFS server local file 
system interface 

client server 

system call layer 
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NFS Implementation: Issues 
•  File handles:  

–  specify filesystem and i-node number of file 
–  sufficient? 

•  Integration: 
–  where to put NFS on client? 
–  on server? 

•  Server caching: 
–  read-ahead 
–  write-delayed with periodic sync   vs.   write-through 

•  Client caching: 
–  timestamps with validity checks 

NFS: File System Model 
•  File system model similar to UNIX file system model 

–  Files as uninterpreted sequences of bytes 
–  Hierarchically organized into naming graph 
–  NSF supports hard links and symbolic links 
–  Named files, but access happens through file handles. 

•  File system operations 
–  NFS Version 3 aims at statelessness of server 
–  NFS Version 4 is more relaxed about this 

•  Lots of details at http://nfs.sourceforge.net/ 
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NFS: Client Caching 
•  Potential for inconsistent versions at different clients. 
•  Solution approach: 

–  Whenever file cached, timestamp of last modification on server is 
cached as well. 

–  Validation: Client requests latest timestamp from server 
(getattributes), and compares against local timestamp.  If fails, all 
blocks are invalidated. 

•  Validation check: 
–  at file open 
–  whenever server contacted to get new block 
–  after timeout (3s for file blocks, 30s for directories) 

•  Writes: 
–  block marked dirty and scheduled for flushing. 
–  flushing: when file is closed, or a sync occurs at client. 

•  Time lag for change to propagate from one client to other: 
–  delay between write and flush 
–  time to next cache validation 


