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Memory Management


•  Logical vs. physical address space

•  Fragmentation

•  Paging

•  Segmentation


An expensive way to run �
multiple processes: Swapping


waiting 

running 

start 

ready 

jobs are in memory jobs are on disk 

waiting_sw 

ready_sw 

OS 
swap_out 

swap_in 

swapping store memory 
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Memory Management


Observations:

1.  Process needs at least CPU and memory to run.

2.  CPU context switching is relatively cheap.

3.  Swapping memory in/out from/to disk is expensive.





So, we need to subdivide memory to accommodate 
multiple processes!


Q: How do we manage this memory?


Requirements for Memory Management

•  Relocation


–  We do not know a priori where memory of process will reside.

•  Protection


–  No uncontrolled references to memory locations of other 
processes.


–  Memory references must be checked at run-time.

•  Sharing


–  Ability to share data portions and program text portions.

•  Logical organization


–  Take advantage of semantics of use.

–  Data portions (read/write) vs. program text portions (read 

only).

•  Memory hierarchy


–  RAM vs. secondary storage

–  Swapping
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physical 
address 
space of  
process 
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CPU < + 

OS relocation 
register 
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register 
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space of process 
Pi 

Memory Management Unit Physical Memory 

Logical vs. Physical Memory Space


process    base     size 
P1             28         1000 
P2             1028     3000 
P3             5034     250 

partition table 

•  Logical address:  address as seen by the process (i.e. as seen by the CPU).

•  Physical address:  address as seen by the memory.


OS 
8MB 2MB 

Internal Fragmentation


4MB 8MB 12MB 

?! 

Problem with simple Relocation: Fragmentation


External Fragmentation


P4 ? 

P1 P1 

P2 

P1 

P2 

P3 

P1 

P3 
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Paging

•  Contiguous allocation causes (external) fragmentation.

•  Solution:  Partition memory blocks into smaller subblocks (pages) 

and allow them to be allocated non-contiguously.


Memory Management Unit 

logical memory 

physical memory 

simple relocation 

Memory Management Unit 

logical memory 
physical memory 

paging 

Basic Operations in Paging Hardware


Memory Management Unit 

CPU 

physical 
memory 

p d f d 

f 

p 

page table 

d 

Example: PDP-11 (16-bit address, 8kB pages) 
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Internal Fragmentation in Paging


•  Example:


logical memory 
13300B 

page size 4kB 

physical memory 

•  Last frame allocated may not be completely full. 
•  Average internal fragmentation per block is typically half frame size. 
•  Large frames vs. small frames: 

•  Large frames cause more fragmentation. 
•  Small frames cause more overhead (page table size, disk I/O) 

4084 bytes 
wasted! 

Implementation of Page Table


•  Page table involved in every access to memory.  Speed very 
important.


•  Page table in registers?

–  Example:  1MB logical address space, 2kB page size; needs a 

page table with 512 entries!

•  Page table in memory?


–  Only keep a page table base register that points to location 
of page table.


–  Each access to memory would require two accesses to 
memory! 


•  Cache portions of page table in registers?

–  Use translation lookaside buffers (TLBs): typically  a few 

dozens entries.

–  Hit ratio:  Percentage of time an entry is found.�

Hit ratio must be high in order to minimize overhead.
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Hierarchical (Multilevel) Paging

•  Problem:  Page tables can become very large! (e.g. 32-bit address space?)

•  Solution: Page the page table itself! (e.g. page directory vs. page table)

•  Two-level paging:


–  Example: 32 bit logical address, page size 4kB �
�
�
�
�



•  Three-level paging (SPARC), four-level paging (68030), ...

•  AMD64 (48-bit virtual addresses) has 4 levels.

•  Even deeper for 64 bit address spaces (5 to 6 levels)


f d 

f 

page table (10) offset(12) page directory (10) 

page table  
base register 

Variations: Inverted Page Table


process id
 page no


0


1


2


3


…


n


page no proc id offset 

offset 3 

•  Array of page numbers indexed by frame number.

–  page lookup: search for matching frame entry


•  Size scales with physical memory.

•  Single table for system (not per process)

•  Used in early virt. memory systems, such as the 

Atlas computer.

•  Not practical today. (Why?)
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Variations: Hashed Page Table


•  Used by many 64bit 
architectures:

–  IBM POWER

–  HP PA-RISC

–  Itanium


•  Scales with physical memory

•  One table for whole system



cons:

•  How about collisions?

•  Difficult to share memory 

between processes


page number offset 

hash function 

proc id page no chain frame no 

Software-loaded TLBs: Paging - MIPS Style


ASID VPN Address  
within page 

Address  
within frame PFN 

VPN/Mask ASID PFN Flags PFN Flags 

Process no. Program (virtual) address 

TLB 

Page table 
(in memory) 

refill when  
necessary 

Physical address 
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Recap: Memory Translation -- “VAX style”


1.  Split virtual address

2.  Concatenate more-significant bits with Process ASID to 

form page address.

3.  Look in the TLB to see if we find translation entry for 

page.

4.  If YES, take high-order physical address bits.


–  (Extra bits stored with PFN control the access to 
frame.)


5.  If NO, system must locate page entry in main-memory-
resident page table, load it into TLB, and start again. 


Memory Translation -- MIPS Style


•  In principle: Do the same as VAX, but with as little 
hardware as possible.


•  Apart from register with ASID, the MMU is just a TLB.


•  The rest is all implemented in software!


•  When TLB cannot translate an address, a special 
exception (TLB refill) is raised.


•  Note: This is easy in principle, but tricky to do 
efficiently.
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MIPS TLB Entry Fields


•  VPN: higher order bits of 
virtual address


•  ASID: identifies the address 
space


•  G: if set, disables the 
matching with the ASID


VPN ASID G PFN Flags 
N    D    V 

input output 

•  PFN: Physical frame number

•  N: 0 - cacheable, 1 - 

noncacheable

•  D: write-control bit (set to 1 if 

writeable)

•  V: valid bit


MIPS Translation Process


1.  CPU generates a program (virtual) address on a instruction fetch, 
a load, or a store.


2.  The 12 low-end bits are separated off.

3.  Case 1: TLB matches key: 


1.  Matching entry is selected, and PFN is glued to low-order bits 
of the program address.


2.  Valid?: The V and D bits are checked. If problem, raise 
exception, and set BadVAddr register with offending program 
address.


3.  Cached?: IF C bit is set, the CPU looks in the cache for a copy 
of the physical location’s data. If C bit is cleared, it neither 
looks in nor refills the cache.


4.  Case 2: TLB does not match: TLB Refill Exception (see next page)
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TLB Refill Exception


•  Figure out if this was a correct translation. If not, trap to 
handling of address errors.


•  If translation correct, construct TLB entry.


•  If TLB already full, select an entry to discard.


•  Write the new entry into the TLB.


Segmentation

•  Users think of memory in terms of segments (data, code, stack, objects, ....)

•  Data within a segment typically has uniform access restrictions.


Memory Management Unit 

logical memory 
physical memory 

paging 

segmentation Memory Management Unit 

logical memory 
physical memory 
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Segmentation Hardware


Memory Management Unit 

CPU 

physical 
memory 

s d 

s 

segment table 

limit base 

<? + 

Advantages of Segmentation

•  Data in a segment typically semantically related

•  Protection can be associated with segments


–  read/write protection

–  range checks for arrays


•  Data/code sharing

•  Disadvantages?


physical

memory


s d 

s 
limit base 

<? + 

s d 

s 
limit base 

<? + 

sharing 
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10bit 

page# page 
offset 

6bit 

Solution: Paged Segmentation

•  Example: MULTICS


segment number offset 

18bit 16bit 

Problem: 64kW segments -> external fragmentation! 

segment number 

18bit 10bit 

page# page 
offset 

6bit 
Problem: need 2^18 segment entries in segment table! 

8bit 10bit 

page# page 
offset 

Solution: Page the segments. 

Solution: Page the segment table. 


