
CPSC 410/611 : Operating Systems

Memory Management: Paging / Segmentation 1

Memory Management

•  Logical vs. physical address space

•  Fragmentation

•  Paging

•  Segmentation

An expensive way to run �
multiple processes: Swapping

waiting

running

start

ready

jobs are in memory jobs are on disk

waiting_sw

ready_sw

OS
swap_out

swap_in

swapping store memory

CPSC 410/611 : Operating Systems

Memory Management: Paging / Segmentation 2

Memory Management

Observations:

1.  Process needs at least CPU and memory to run.

2.  CPU context switching is relatively cheap.

3.  Swapping memory in/out from/to disk is expensive.

So, we need to subdivide memory to accommodate
multiple processes!

Q: How do we manage this memory?

Requirements for Memory Management

•  Relocation

–  We do not know a priori where memory of process will reside.

•  Protection

–  No uncontrolled references to memory locations of other
processes.

–  Memory references must be checked at run-time.

•  Sharing

–  Ability to share data portions and program text portions.

•  Logical organization

–  Take advantage of semantics of use.

–  Data portions (read/write) vs. program text portions (read

only).

•  Memory hierarchy

–  RAM vs. secondary storage

–  Swapping

CPSC 410/611 : Operating Systems

Memory Management: Paging / Segmentation 3

physical
address
space of
process
Pi

CPU < +

OS relocation
register

limit
register

addressing error! logical address
space of process
Pi

Memory Management Unit Physical Memory

Logical vs. Physical Memory Space

process base size
P1 28 1000
P2 1028 3000
P3 5034 250

partition table

•  Logical address: address as seen by the process (i.e. as seen by the CPU).

•  Physical address: address as seen by the memory.

OS
8MB 2MB

Internal Fragmentation

4MB 8MB 12MB

?!

Problem with simple Relocation: Fragmentation

External Fragmentation

P4 ?

P1 P1

P2

P1

P2

P3

P1

P3

CPSC 410/611 : Operating Systems

Memory Management: Paging / Segmentation 4

Paging

•  Contiguous allocation causes (external) fragmentation.

•  Solution: Partition memory blocks into smaller subblocks (pages)

and allow them to be allocated non-contiguously.

Memory Management Unit

logical memory

physical memory

simple relocation

Memory Management Unit

logical memory
physical memory

paging

Basic Operations in Paging Hardware

Memory Management Unit

CPU

physical
memory

p d f d

f

p

page table

d

Example: PDP-11 (16-bit address, 8kB pages)

CPSC 410/611 : Operating Systems

Memory Management: Paging / Segmentation 5

Internal Fragmentation in Paging

•  Example:

logical memory
13300B

page size 4kB

physical memory

•  Last frame allocated may not be completely full.
•  Average internal fragmentation per block is typically half frame size.
•  Large frames vs. small frames:

•  Large frames cause more fragmentation.
•  Small frames cause more overhead (page table size, disk I/O)

4084 bytes
wasted!

Implementation of Page Table

•  Page table involved in every access to memory. Speed very
important.

•  Page table in registers?

–  Example: 1MB logical address space, 2kB page size; needs a

page table with 512 entries!

•  Page table in memory?

–  Only keep a page table base register that points to location
of page table.

–  Each access to memory would require two accesses to
memory!

•  Cache portions of page table in registers?

–  Use translation lookaside buffers (TLBs): typically a few

dozens entries.

–  Hit ratio: Percentage of time an entry is found.�

Hit ratio must be high in order to minimize overhead.

CPSC 410/611 : Operating Systems

Memory Management: Paging / Segmentation 6

Hierarchical (Multilevel) Paging

•  Problem: Page tables can become very large! (e.g. 32-bit address space?)

•  Solution: Page the page table itself! (e.g. page directory vs. page table)

•  Two-level paging:

–  Example: 32 bit logical address, page size 4kB �
�
�
�
�

•  Three-level paging (SPARC), four-level paging (68030), ...

•  AMD64 (48-bit virtual addresses) has 4 levels.

•  Even deeper for 64 bit address spaces (5 to 6 levels)

f d

f

page table (10) offset(12) page directory (10)

page table
base register

Variations: Inverted Page Table

process id
 page no

0

1

2

3

…

n

page no proc id offset

offset 3

•  Array of page numbers indexed by frame number.

–  page lookup: search for matching frame entry

•  Size scales with physical memory.

•  Single table for system (not per process)

•  Used in early virt. memory systems, such as the

Atlas computer.

•  Not practical today. (Why?)

CPSC 410/611 : Operating Systems

Memory Management: Paging / Segmentation 7

Variations: Hashed Page Table

•  Used by many 64bit
architectures:

–  IBM POWER

–  HP PA-RISC

–  Itanium

•  Scales with physical memory

•  One table for whole system

cons:

•  How about collisions?

•  Difficult to share memory

between processes

page number offset

hash function

proc id page no chain frame no

Software-loaded TLBs: Paging - MIPS Style

ASID VPN Address
within page

Address
within frame PFN

VPN/Mask ASID PFN Flags PFN Flags

Process no. Program (virtual) address

TLB

Page table
(in memory)

refill when
necessary

Physical address

CPSC 410/611 : Operating Systems

Memory Management: Paging / Segmentation 8

Recap: Memory Translation -- “VAX style”

1.  Split virtual address

2.  Concatenate more-significant bits with Process ASID to

form page address.

3.  Look in the TLB to see if we find translation entry for

page.

4.  If YES, take high-order physical address bits.

–  (Extra bits stored with PFN control the access to
frame.)

5.  If NO, system must locate page entry in main-memory-
resident page table, load it into TLB, and start again.

Memory Translation -- MIPS Style

•  In principle: Do the same as VAX, but with as little
hardware as possible.

•  Apart from register with ASID, the MMU is just a TLB.

•  The rest is all implemented in software!

•  When TLB cannot translate an address, a special
exception (TLB refill) is raised.

•  Note: This is easy in principle, but tricky to do
efficiently.

CPSC 410/611 : Operating Systems

Memory Management: Paging / Segmentation 9

MIPS TLB Entry Fields

•  VPN: higher order bits of
virtual address

•  ASID: identifies the address
space

•  G: if set, disables the
matching with the ASID

VPN ASID G PFN Flags
N D V

input output

•  PFN: Physical frame number

•  N: 0 - cacheable, 1 -

noncacheable

•  D: write-control bit (set to 1 if

writeable)

•  V: valid bit

MIPS Translation Process

1.  CPU generates a program (virtual) address on a instruction fetch,
a load, or a store.

2.  The 12 low-end bits are separated off.

3.  Case 1: TLB matches key:

1.  Matching entry is selected, and PFN is glued to low-order bits
of the program address.

2.  Valid?: The V and D bits are checked. If problem, raise
exception, and set BadVAddr register with offending program
address.

3.  Cached?: IF C bit is set, the CPU looks in the cache for a copy
of the physical location’s data. If C bit is cleared, it neither
looks in nor refills the cache.

4.  Case 2: TLB does not match: TLB Refill Exception (see next page)

CPSC 410/611 : Operating Systems

Memory Management: Paging / Segmentation 10

TLB Refill Exception

•  Figure out if this was a correct translation. If not, trap to
handling of address errors.

•  If translation correct, construct TLB entry.

•  If TLB already full, select an entry to discard.

•  Write the new entry into the TLB.

Segmentation

•  Users think of memory in terms of segments (data, code, stack, objects,)

•  Data within a segment typically has uniform access restrictions.

Memory Management Unit

logical memory
physical memory

paging

segmentation Memory Management Unit

logical memory
physical memory

CPSC 410/611 : Operating Systems

Memory Management: Paging / Segmentation 11

Segmentation Hardware

Memory Management Unit

CPU

physical
memory

s d

s

segment table

limit base

<? +

Advantages of Segmentation

•  Data in a segment typically semantically related

•  Protection can be associated with segments

–  read/write protection

–  range checks for arrays

•  Data/code sharing

•  Disadvantages?

physical

memory

s d

s
limit base

<? +

s d

s
limit base

<? +

sharing

CPSC 410/611 : Operating Systems

Memory Management: Paging / Segmentation 12

10bit

page# page
offset

6bit

Solution: Paged Segmentation

•  Example: MULTICS

segment number offset

18bit 16bit

Problem: 64kW segments -> external fragmentation!

segment number

18bit 10bit

page# page
offset

6bit
Problem: need 2^18 segment entries in segment table!

8bit 10bit

page# page
offset

Solution: Page the segments.

Solution: Page the segment table.

