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Threading, Events, and Concurrency 

•  Threading Recap 

•  Threading in Multicore World 

•  User-Level Threads vs. Kernel-Level Threads 

–  Example: Scheduler Activations 

•  Thread-based vs. Event-based Concurrency 

–  Example: Windows Fibers 

History 
•  1960’s 

–  First “multiprocessors” 
•  1980’s 

–  Multiprocessing grows, primarily in academia and other 
research settings. 

•  1990’s  
–  Multiprocessors become widely available in the market place. 
–  Symmetric multiprocessing requires changes to OSs 
–  “Memory wall” 

•  More recently: 
–  … 
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Concurrency and Performance: the “Why?” 
Latency Reduction: 

–  Apply parallel algorithm. 
–  Concurrency in trivially parallelizable problems. 

Latency Hiding: 
–  Use concurrency to perform useful work while another 

operation is pending. 
–  Latency of operation is not affected, but hidden. 
–  Alternatives to concurrent execution: 

•  Non-blocking operations (asynchronous I/O) 
•  Event loops (poll()/select(), or completion ports) 

Throughput Increase: 
–  Employ multiple concurrent executions of sequential threads 

to accommodate more simultaneous work. 
–  Concurrency is then handled by specialized subsystems (OS, 

database, etc.) 

Threads Recap: User vs. Kernel-Level Threads 

•  User-level: kernel not aware of threads 
•  Kernel-level: all thread-management done in kernel 

P


threads 

library


P
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Threads Recap: Potential Problems with Threads 

•  General: Several threads run in the same address space: 
–  Protection must be explicitly programmed (by appropriate thread 

synchronization) 
–  Effects of misbehaving threads limited to task 

•  User-level threads: Some problems at the interface to the kernel: 
With a single-threaded kernel, as system call blocks the entire 
process. 

task
 kernel


system call


thread is blocked in kernel

(e.g. waiting for I/O)


Threads Recap: Singlethreaded vs. Multithreaded Kernel 

•  Protection of kernel data 
structures is trivial, since only 
one process is allowed to be in 
the kernel at any time. 

•  Special protection mechanism is 
needed for shared data 
structures in kernel.
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Threads Recap: Hybrid Multithreading 

CPUs


kernel


processes

user-level threads


light-weight

processes


kernel threads


Threading, Events, and Concurrency 

•  Threading Recap 

•  Threading in Multicore World 

•  User-Level Threads vs. Kernel-Level Threads 

–  Example: Scheduler Activations 

•  Thread-based vs. Event-based Concurrency 

–  Example: Windows Fibers 
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User- vs. Kernel-Level Threads: 
Scheduler Activations 

 
 
Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and 

Henry M. Levy, “Scheduler Activations: Effective Kernel 
Support for the User-level Management of Parallelism”. ACM 
SIGOPS Operating Systems Review, Volume 25, Issue 5, Oct. 
1991. 

User- vs. Kernel-Level Threads 
User-Level Threads:  
•  Managed by runtime library. 
•  Management operations require no kernel 

intervention. 
•  (+) Low-cost 
•  (+) Flexible (various APIs: POSIX, Actors, …) 
•  (+) Implementation requires no change to OS. 
•  (-) Performance issues due to mapping to OS 

resources (see later) 
Kernel-Level Threads: 
•  (+) Avoid system integration problems (see later) 
•  (-) Too heavyweight 
•  -> “user-level threads have ultimatively been 

implemented on top of the kernel threads of both 
Mach and Topaz” 

“Dilemma”: 
•  “employ kernel threads, which ‘work right’ but 

perform poorly, or employ user-level threads 
implemented on top of kernel threads or processes, 
which perform well but are functionally deficient.” 

P


threads 

library
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Goals of Scheduler Activations 
•  Functionality: 

–  Should mimic behavior of kernel thread management system: 
•  No idling processor  in presence of ready threads. 
•  No priority inversion 
•  Multiprogramming within and across address spaces 

•  Performance: 
–  Keep thread management overhead to same as user-level 

threads. 

•  Flexibility: 
–  Allow for changes in scheduling policies or even different 

concurrency models (workers, Actors, Futures). 

User-Level Threads: Advantages 
Kernel-level threads have inherent disadvantages 
 
•  Cost of accessing thread management operations: Must cross 

protection boundary on every thread operation, even for 
operations on threads of the same address space 

•  Cost of generality: A single implementation must be used by all 
applications.  
–  In contrast, user-level libraries can be tuned to applications. 

This data is old!! 
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User-Level Threads: Limitations 
It has been difficult to implement user-level threads and integrate 

them with system services, because 
 
“Kernel threads are the wrong abstraction for supporting user-level 

thread management”: 
1.  Kernel events, such as processor preemption and I/0 blocking 

and resumption, are handled by the kernel invisibly to the 
user level. 

2.  Kernel threads are scheduled obliviously with respect to the 
user-level thread state. 

 
Scenario: “When a user-level thread makes a blocking I/0 request or 

takes a page fault, the kernel thread serving as its virtual 
processor also blocks. As a result, the physical processor is lost 
to the address space while the I/0 is pending, …” 

 

User-Level Threads: Limitations (cont) 
Scenario: “When a user-level thread makes a blocking I/0 request or 

takes a page fault, the kernel thread serving as its virtual 
processor also blocks. As a result, the physical processor is lost 
to the address space while the I/0 is pending, …” 

 
Solution (?): “create more kernel threads than physical processors; 

when one kernel thread blocks because its user-level thread 
blocks in the kernel, another kernel thread is available to run 
user-level threads on that processor.” 

 
However: When the thread unblocks, there will be more runnable 

kernel threads than processors. -> The OS now decides on behalf 
of the application which user-level threads to run. 
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User-Level Threads: Limitations (cont) 
However: When the thread unblocks, there will be more runnable 

kernel threads than processors. -> The OS now decides on behalf 
of the application which user-level threads to run. 

 
Solution (?) : “… the operating system could employ some kind of 

time-slicing to ensure each thread makes progress.” 
 
However: “When user-level threads are running on top of kernel 

threads, time-slicing can lead to problems.” 
 
“For example, a kernel thread could be preempted while its user-

level thread is holding a spin-lock;  
any user-level threads accessing the lock will then spin-wait until 
the lock holder is re-scheduled.” 

 
Similar problems occur when handling multiple jobs. 
 

User-Level Threads: Limitations (cont) 
Logical correctness of user-level thread system built on kernel 

threads… 
 
Example: “Many applications, particularly those that require 

coordination among multiple address spaces, are free from 
deadlock based on the assumption that all runnable threads 
eventually receive processor time.” 

 
However: “But when user-level threads are multiplexed across a 

fixed number of kernel threads, the assumption may no longer 
hold:  
because a kernel thread blocks when its user-level thread blocks, 
an application can run out of kernel threads to serve as execution 
contexts, even when there are runnable user-level threads and 
available processors.” 
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SOLUTION: Kernel-Level Support  
for User-level Threads 

•  User-level thread system + new kernel interface 
•  “kernel provides each UL thread system with its own virtual 

multiprocessor” 
•  “number of processors in that machine may change during the 

execution of the program” 

•  Abstraction enforces following criteria: 
–  Kernel allocates physical processors to address spaces. 
–  UL thread system has complete control over which thread to run on 

allocated processors. (as opposed to earlier limitations) 
–  UL thread system is informed whenever number of allocated 

processors changes. 
–  UL thread system knows about suspended/resumed threads in kernel. 
–  UL thread system can request/release processors. 
–  UL thread system transparent to user. (i.e., user sees KL threads) 

traditional UL thread system 

Solution: “Scheduler Activations” 

UL Thread Library


scheduler activations 

P


UL Thread Library


P
 P

kernel support


Upcalls: 
• Add this processor 
• Processor has been 
preempted 
• SA has blocked 
• SA has unblocked 

“Down”-Calls: 
• Add more processors. 
• Processor is idle 
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“Scheduler Activations”: 
Abstraction vs. Implementation 

scheduler activations 

virtual multiprocessor 

P
 P
 P


scheduler activations 

SA


UL Thread Library


SA
 SA


Abstraction: Implementation: 

“Scheduler Activations”: 
How to Handle “Blocking” Threads 

UL threads using kernel threads 

2. block! 

1. system call 

UL threads using scheduler activations 

2. block! 

1. system call 

3. create new SA 

4. upcall 

5. resume 

3. ?! 
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“Scheduler Activations”: 
Resuming Blocked Threads 

UL threads using scheduler activations 

1. unblock! 

2. preempt 

3. upcall 

5. resume 

4. preempt 

Threading, Events, and Concurrency 

•  Threading Recap 

•  Threading in Multicore World 

•  User-Level Threads vs. Kernel-Level Threads 

–  Example: Scheduler Activations 

•  Thread-based vs. Event-based Concurrency 

–  Example: Windows Fibers 
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Recap: Threaded vs. Event-Driven Design 
Figures from: M. Welsh, D. Culler, and E. Brewer, SEDA: An Architecture for Well Conditioned,

Scalable Internet Services






Windows Fibers 

Aul Adya, Jon Howell, Marvin Theimer, William Bolosky, John R. 
Douceur, “Cooperative Task Management without Manual 
Stack Management”. Proceedings of the 2002 Usenix Annual 
Technical Conference, Monterey, CA, June 2002. 
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Task Management 
•  Question: How do we achieve multiprogramming, concurrency? 

•  Definition [Task]: Control flow. Tasks have access to shared 
global state. 

•  Preemptive Task Management: 
–  Execution of tasks can interleave. 

•  Serial Task Management: 
–  Execute each task to completion before starting new task. 

•  Cooperative Task Management: 
–  (Voluntarily) yield CPU at well-defined points in execution. 

Serial Task Management 

Pros: 
–  Only one task is running at a given time. 
–  No potential for conflict in accessing shared state. 
–  We can define so-called “inter-task invariants”; 

while one task is running, no other task can violate 
these invariants. 

Cons: 
–  Only one task is running at a given time! 
–  No multiprogramming. 
–  No multiprocessor parallelism. 
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Cooperative Task Management 

Pros: 
–  Allows for some controlled multiprogramming. 
–  Invariants must be ensured at yielding points only. 

Cons: 
–  Invariants are not automatically enforced.  

About those invariants . . . 
–  We need to ensure that local state does not depend on invalid 

assumptions about shared state when we resume after yield. 
–  Example: We want to open file before the yield. Is the file 

still there after we resume? 

Conflict Management 

Q: How to avoid inter-task conflicts on shared state? 

In serial task management: No problem! Entire task is an 
atomic operation. 

In cooperative task management: Event handlers are 
basically atomic units of operation. 
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Conflict Management (2) 

In preemptive task management: Invariants on the 
shared state must hold all the time. (?!) 

–  Pessimistic synchronization primitives: Limit the 
preemptivity to ensure that invariants hold when 
preemption happen. 

–  Optimistic synchronization primitives: Speculatively 
execute, but then roll back if invariants have been 
violated. 

Q: How to avoid inter-task conflicts on shared state? 

Cooperative Mgmt & Stack Management 

Q: How to realize cooperative task management? 

A solution: Event Handlers 

Example:  
(1) Receive network message 
(2) Read block from disk 
(3) Reply to message 
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Cons: 
–  Control flow for single task is broken up across 

multiple procedures. 
–  We now have to explicitly carry local state across 

procedures. (“Manual Stack Management”) 

Event Handlers & Stack Management 

A solution: Event Handlers 

Pros:  
–  Concurrency 

Example:  
(1) Receive network message 
(2) Read block from disk 
(3) Reply to message 

Stack Management vs. Task Management 
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Automatic Stack Management 

in-memory 

use on-disk structure 
(automatic) 

CAInfo GetCAInfo(CAID caId) { 
   CAInfo caInfo = LookupHashTable(caId); 
   return caInfo; 
} 

CAInfo GetCAInfoBlocking(CAID caId) { 
   CAInfo caInfo = LookupHashTable(caId); 
   if (caInfo != NULL) { 
      // Found node in the hash table 
      return caInfo; 
   } 
 
   caInfo = new CAInfo(); 
   // DiskRead blocks waiting for 
   // the disk I/O to complete. 
   DiskRead(caId, caInfo); 
   InsertHashTable(caId, CaInfo); 
   return caInfo; 
} 

Manual Stack Management 
class Continuation { 
   // The function called when 
   // this continuation is  
   // scheduled to run. 
   void (*function) 
          (Continuation cont); 
   // Return value set by the  
   // I/O operation. To be  
   // passed to continuation. 
   void *returnValue 
   // Bundled up state 
   void *arg1, *arg2, ...; 
} 

void GetCAInfoHandler2(Continuation *cont) { 
   // Recover live variables 
   CAID caId = (CAID) cont−>arg1; 
   CAInfo *caInfo = (CAInfo*) cont−>arg2; 
   Continuation *callerCont = 
              (Continuation*) cont−>arg3; 
   // Stash CAInfo object in hash 
   InsertHashTable(caId, caInfo); 
   // Now “return” results to original caller 
   (callerCont.function)(callerCont); 
} 

void GetCAInfoHandler1( 
                 CAID caId, 
                 Continuation *callerCont){ 
   // Return the result immediately if in cache 
   CAInfo *caInfo = LookupHashTable(caId); 
   if (caInfo != NULL) { 
      // Call caller’s continuation with result 
      (callerCont.function)(caInfo); 
      return; 
   } 
   // Make buffer space for disk read 
   caInfo = new CAInfo(); 
   // Save return address & live variables 
   Continuation *cont = 
       new Continuation(&GetCAInfoHandler2, 
                     caId, caInfo, callerCont); 
   // Send request 
   EventHandle eh = 
       InitAsyncDiskRead(caId, caInfo); 
   // Schedule event handler to run on reply 
   // by registering continuation 
   RegisterContinuation(eh, cont); 
} 
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Stack Ripping 
•  Programmer must explicitly save local state and then restore it 

later. 

•  Without ripped functions, this would all be managed by the 
compiler! 

•  Problems with stack ripping: 
–  function scoping: logic is distributed over multiple functions. 
–  automatic variables: local state is no more stored on stack. 
–  self-propagation of function ripping: 

•  A ripped function may require all functions up the call tree 
to be ripped in two as well. (see figure) 

•  Calls to ripped functions in control structures may require 
complicated ripping of calling function. (see figure)  

Stack Ripping 

a 

b 

c 

a1 

b1 

c1 

a3 

b2 

c2 

event 

All functions up the calling tree must be ripped. 
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Stack Ripping in Control Structures 
<some code here> 
while (x < 0)  { 
   … 
   c(); 
   … 
} 
<some more code here>  

<some code here> 
while (x < 0)  { 
   … 
   c1(); 

   c2(); 
   … 
   ?! 
} 
<some more code here>  

<some code here> 
while (x < 0)  { 
   … 
   c1(); 

   c2(); 
   … 
   ?! 
} 
<some more code here>  

Stack Ripping in Control Structures 
<some code here> 
f1(); 

function f3() { 
   <some more code here> 
} 

function f1() { 
   if (x < 0)  { 
      … 
      c1(f2); 
   } else { 
      invoke cont f3; 
} 

function f2() { 
   c2(); 
   … 
   invoke cont f1; 
}  

event! 
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Problems with Concurrency Assumptions 

Q: What if a non-yielding function is re-implemented to 
become yielding?  
Q: What are the implications for calling functions? 
Question: Would we even know?! 
Is this a problem for manual stack management? 
How about automatic stack management? 
Solutions?!  

–  Tools! 
Static check:  annotate code with yielding and atomic 
properties. 
(Dynamic check: startAtomic(), endAtomic(), 
yield()) 

Windows Fiber Programming 
Example: Copy a File 

typedef struct{ 
   DWORD dwFiberResultCode; // GetLastError() result code 
   HANDLE hFile;            // handle to operate on 
   DWORD dwBytesProcessed;  // number of bytes processed 

} FIBERDATASTRUCT; 

LPVOID g_lpFiber[FIBER_COUNT]; 
LPBYTE g_lpBuffer; 
DWORD  g_dwBytesRead;  

int __cdecl _tmain(int argc, TCHAR *argv[]){ 
   FIBERDATASTRUCT * fs = HeapAlloc(sizeof(FIBERDATASTRUCT) * FIBER_COUNT); 
   // Allocate storage for the read/write buffer 
   g_lpBuffer = (LPBYTE)HeapAlloc(GetProcessHeap(), 0, BUFFER_SIZE); 

   fs[READ_FIBER].hFile = CreateFile(…); // Open source file 
   fs[WRITE_FIBER].hFile = CreateFile(…); // Open destination file 
   // Convert thread to a fiber, to allow scheduling other fibers 

   g_lpFiber[PRIMARY_FIBER] = ConvertThreadToFiber(&fs[PRIMARY_FIBER]); 
   // Create Read and Write fibers 
   LPVOID read_fiber = CreateFiber(0,ReadFiberFunc,&fs[READ_FIBER]); 
   LPVOID write_fiber = CreateFiber(0,WriteFiberFunc,&fs[WRITE_FIBER]); 

   // Switch to the READ fiber    
   SwitchToFiber(g_lpFiber[READ_FIBER]);  
   // Here we have been scheduled again.  

   printf("ReadFiber: result code is %lu, %lu bytes processed\n", 
   fs[READ_FIBER].dwFiberResultCode, fs[READ_FIBER].dwBytesProcessed); 
   printf("WriteFiber: result code is %lu, %lu bytes processed\n", 
   fs[WRITE_FIBER].dwFiberResultCode, fs[WRITE_FIBER].dwBytesProcessed); 

   <… clean up and return …> 
} 
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Windows Fiber Programming 
Example: Copy a File 

VOID __stdcall ReadFiberFunc(LPVOID lpParameter){ 

   FIBERDATASTRUCT * fds = (FIBERDATASTRUCT*)lpParameter; 

   fds->dwBytesProcessed = 0; 

 

   while (1)   { 

      // Read data from file specified in the READ_FIBER structure 

      if (!ReadFile(fds->hFile, g_lpBuffer, BUFFER_SIZE, &g_dwBytesRead, NULL)){ 

         break; 

      } 

      // if we reached EOF, break 

      if (g_dwBytesRead == 0) break; 

      // Update number of bytes processed in the fiber data structure 

      fds->dwBytesProcessed += g_dwBytesRead; 

      // Switch to the write fiber 

      SwitchToFiber(g_lpFiber[WRITE_FIBER]); 

   } // while 

 

   // Update the fiber result code  

   fds->dwFiberResultCode = GetLastError(); 

   // Switch back to the primary fiber 

   SwitchToFiber(g_lpFiber[PRIMARY_FIBER]); 

} 

Windows Fiber Programming 
Example: Copy a File 

VOID __stdcall WriteFiberFunc(LPVOID lpParameter){ 

   FIBERDATASTRUCT * fds = (FIBERDATASTRUCT*) lpParameter; 

   DWORD dwBytesWritten; 

   // Assume all writes succeeded.  If a write fails, the fiber 

   // result code will be updated to reflect the reason for failure 

   fds->dwBytesProcessed = 0; 

   fds->dwFiberResultCode = ERROR_SUCCESS; 

   while (1) { 

      // Write data to the file specified in the WRITE_FIBER structure 

      if (!WriteFile(fds->hFile, g_lpBuffer, g_dwBytesRead, &dwBytesWritten, NULL)) 

         break; // If an error occurred writing, break 

      // Update number of bytes processed in the fiber data structure 

      fds->dwBytesProcessed += dwBytesWritten; 

      // Switch back to the read fiber 

      SwitchToFiber(g_lpFiber[READ_FIBER]); 

   } // while 

 

   // If an error occurred, update the fiber result code... 

   fds->dwFiberResultCode = GetLastError(); 

   // ...and switch to the primary fiber 

   SwitchToFiber(g_lpFiber[PRIMARY_FIBER]); 

} 
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Windows Fiber Programming 
Example: Copy a File 

 
voidDisplayFiberInfo(){ 
   FIBERDATASTRUCT * fds = (FIBERDATASTRUCT*) GetFiberData(); 
   LPVOID lpCurrentFiber = GetCurrentFiber(); 

   // 
   // Determine which fiber is executing, based on the fiber address 
   // 

   if (lpCurrentFiber == g_lpFiber[READ_FIBER]) 
      printf("Read fiber entered"); 
   else   { 
     if (lpCurrentFiber == g_lpFiber[WRITE_FIBER]) 

         printf("Write fiber entered"); 
     else 
     { 

         if (lpCurrentFiber == g_lpFiber[PRIMARY_FIBER]) 
            printf("Primary fiber entered"); 
         else 
            printf("Unknown fiber entered"); 

  } 
   } 
   // Display dwParameter from the current fiber data structure 
   printf(" (dwParameter is 0x%lx)\n", fds->dwParameter); 

} 

Certificate* GetCertData(User user) { 
   // Look up certificate in the memory 
   // cache and return the answer. 
   // Else fetch from disk/network 
   if (Lookup(user, cert)) 
      return certificate; 
   certificate = DoIOAndGetCert(); 
   return certificate; 
} 

Integrating Thread and Fiber Programming 
•  Question: How to ensure that code written in one style can call 

code written in the other style? 
•  Answer: Adapters! 
•  Example:  

bool FetchCert(User user, Certificate *cert) { 
   // Get the certificate data from a 
   // function that might do I/O 
   certificate = GetCertData(user); 
   if (!VerifyCert(user, cert)) { 
      return false; 
   } 
} 

bool VerifyCert(User user, Certificate * cert) { 
   // Get the Certificate Authority (CA) 
   // information and then verify certificate 
   ca = GetCAInfo(cert); 
   if (ca == NULL) return false; 
   return CACheckCert(ca, user, cert); 
} 

automatic 

manual 

manual 
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Fiber calls Thread 
void VerifyCertCFA(CertData certData,  
                   Continuation *callerCont) { 
   // Executed on MainFiber 
   Continuation *vcaCont =  
           new Continuation(VerifyCertCFA2, 
                            callerCont); 
   Fiber *verifyFiber =  
           new VerifyCertFiber(certData,  
                               vcaCont); 
   // On fiber verifyFiber, start executing 
   // VerifyCertFiber::FiberStart 
   SwitchToFiber(verifyFiber); 
   // Control returns here when 
   // verifyFiber blocks on I/O 
} 

void VerifyCertCFA2(Continuation *vcaCont) { 
   // Executed on MainFiber. 
   // Scheduled after verifyFiber is done 
   Continuation *callerCont = vcaCont−>arg1; 
   callerCont−>returnValue =vcaCont−>returnValue; 
   // “return” to original caller (FetchCert) 
   (callerCont−>function)(callerCont); 
} 

Fiber calls Thread (cont) 
void VerifyCertCFA(CertData certData,  
                   Continuation *callerCont) { 
   // Executed on MainFiber 
   Continuation *vcaCont =  
           new Continuation(VerifyCertCFA2, 
                            callerCont); 
   Fiber *verifyFiber =  
           new VerifyCertFiber(certData,  
                               vcaCont); 
   // On fiber verifyFiber, start executing 
   // VerifyCertFiber::FiberStart 
   SwitchToFiber(verifyFiber); 
   // Control returns here when 
   // verifyFiber blocks on I/O 
} 

VerifyCertFiber::FiberStart() { 
   // Executed on a fiber other than MainFiber 
   // The following call could block on I/O. 
   // Do the actual verification. 
   this−>vcaCont−>returnValue = 
                      VerifyCert(this−>certData); 
   // The verification is complete. 
   // Schedule VerifyCertCFA2 
   scheduler−>schedule(this−>vcaCont); 
} 


