
CSCE 410/611 : Operating Systems

Threads 1

Threading, Events, and Concurrency

•  Threading Recap

•  Threading in Multicore World

•  User-Level Threads vs. Kernel-Level Threads

–  Example: Scheduler Activations

•  Thread-based vs. Event-based Concurrency

–  Example: Windows Fibers

History
•  1960’s

–  First “multiprocessors”
•  1980’s

–  Multiprocessing grows, primarily in academia and other
research settings.

•  1990’s
–  Multiprocessors become widely available in the market place.
–  Symmetric multiprocessing requires changes to OSs
–  “Memory wall”

•  More recently:
–  …

CSCE 410/611 : Operating Systems

Threads 2

Concurrency and Performance: the “Why?”
Latency Reduction:

–  Apply parallel algorithm.
–  Concurrency in trivially parallelizable problems.

Latency Hiding:
–  Use concurrency to perform useful work while another

operation is pending.
–  Latency of operation is not affected, but hidden.
–  Alternatives to concurrent execution:

•  Non-blocking operations (asynchronous I/O)
•  Event loops (poll()/select(), or completion ports)

Throughput Increase:
–  Employ multiple concurrent executions of sequential threads

to accommodate more simultaneous work.
–  Concurrency is then handled by specialized subsystems (OS,

database, etc.)

Threads Recap: User vs. Kernel-Level Threads

•  User-level: kernel not aware of threads
•  Kernel-level: all thread-management done in kernel

P

threads

library

P

CSCE 410/611 : Operating Systems

Threads 3

Threads Recap: Potential Problems with Threads

•  General: Several threads run in the same address space:
–  Protection must be explicitly programmed (by appropriate thread

synchronization)
–  Effects of misbehaving threads limited to task

•  User-level threads: Some problems at the interface to the kernel:
With a single-threaded kernel, as system call blocks the entire
process.

task
 kernel

system call

thread is blocked in kernel

(e.g. waiting for I/O)

Threads Recap: Singlethreaded vs. Multithreaded Kernel

•  Protection of kernel data
structures is trivial, since only
one process is allowed to be in
the kernel at any time.

•  Special protection mechanism is
needed for shared data
structures in kernel.

CSCE 410/611 : Operating Systems

Threads 4

Threads Recap: Hybrid Multithreading

CPUs

kernel

processes

user-level threads

light-weight

processes

kernel threads

Threading, Events, and Concurrency

•  Threading Recap

•  Threading in Multicore World

•  User-Level Threads vs. Kernel-Level Threads

–  Example: Scheduler Activations

•  Thread-based vs. Event-based Concurrency

–  Example: Windows Fibers

CSCE 410/611 : Operating Systems

Threads 5

User- vs. Kernel-Level Threads:
Scheduler Activations

Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and

Henry M. Levy, “Scheduler Activations: Effective Kernel
Support for the User-level Management of Parallelism”. ACM
SIGOPS Operating Systems Review, Volume 25, Issue 5, Oct.
1991.

User- vs. Kernel-Level Threads
User-Level Threads:
•  Managed by runtime library.
•  Management operations require no kernel

intervention.
•  (+) Low-cost
•  (+) Flexible (various APIs: POSIX, Actors, …)
•  (+) Implementation requires no change to OS.
•  (-) Performance issues due to mapping to OS

resources (see later)
Kernel-Level Threads:
•  (+) Avoid system integration problems (see later)
•  (-) Too heavyweight
•  -> “user-level threads have ultimatively been

implemented on top of the kernel threads of both
Mach and Topaz”

“Dilemma”:
•  “employ kernel threads, which ‘work right’ but

perform poorly, or employ user-level threads
implemented on top of kernel threads or processes,
which perform well but are functionally deficient.”

P

threads

library

P

CSCE 410/611 : Operating Systems

Threads 6

Goals of Scheduler Activations
•  Functionality:

–  Should mimic behavior of kernel thread management system:
•  No idling processor in presence of ready threads.
•  No priority inversion
•  Multiprogramming within and across address spaces

•  Performance:
–  Keep thread management overhead to same as user-level

threads.

•  Flexibility:
–  Allow for changes in scheduling policies or even different

concurrency models (workers, Actors, Futures).

User-Level Threads: Advantages
Kernel-level threads have inherent disadvantages

•  Cost of accessing thread management operations: Must cross

protection boundary on every thread operation, even for
operations on threads of the same address space

•  Cost of generality: A single implementation must be used by all
applications.
–  In contrast, user-level libraries can be tuned to applications.

This data is old!!

CSCE 410/611 : Operating Systems

Threads 7

User-Level Threads: Limitations
It has been difficult to implement user-level threads and integrate

them with system services, because

“Kernel threads are the wrong abstraction for supporting user-level

thread management”:
1.  Kernel events, such as processor preemption and I/0 blocking

and resumption, are handled by the kernel invisibly to the
user level.

2.  Kernel threads are scheduled obliviously with respect to the
user-level thread state.

Scenario: “When a user-level thread makes a blocking I/0 request or

takes a page fault, the kernel thread serving as its virtual
processor also blocks. As a result, the physical processor is lost
to the address space while the I/0 is pending, …”

User-Level Threads: Limitations (cont)
Scenario: “When a user-level thread makes a blocking I/0 request or

takes a page fault, the kernel thread serving as its virtual
processor also blocks. As a result, the physical processor is lost
to the address space while the I/0 is pending, …”

Solution (?): “create more kernel threads than physical processors;

when one kernel thread blocks because its user-level thread
blocks in the kernel, another kernel thread is available to run
user-level threads on that processor.”

However: When the thread unblocks, there will be more runnable

kernel threads than processors. -> The OS now decides on behalf
of the application which user-level threads to run.

CSCE 410/611 : Operating Systems

Threads 8

User-Level Threads: Limitations (cont)
However: When the thread unblocks, there will be more runnable

kernel threads than processors. -> The OS now decides on behalf
of the application which user-level threads to run.

Solution (?) : “… the operating system could employ some kind of

time-slicing to ensure each thread makes progress.”

However: “When user-level threads are running on top of kernel

threads, time-slicing can lead to problems.”

“For example, a kernel thread could be preempted while its user-

level thread is holding a spin-lock;
any user-level threads accessing the lock will then spin-wait until
the lock holder is re-scheduled.”

Similar problems occur when handling multiple jobs.

User-Level Threads: Limitations (cont)
Logical correctness of user-level thread system built on kernel

threads…

Example: “Many applications, particularly those that require

coordination among multiple address spaces, are free from
deadlock based on the assumption that all runnable threads
eventually receive processor time.”

However: “But when user-level threads are multiplexed across a

fixed number of kernel threads, the assumption may no longer
hold:
because a kernel thread blocks when its user-level thread blocks,
an application can run out of kernel threads to serve as execution
contexts, even when there are runnable user-level threads and
available processors.”

CSCE 410/611 : Operating Systems

Threads 9

SOLUTION: Kernel-Level Support
for User-level Threads

•  User-level thread system + new kernel interface
•  “kernel provides each UL thread system with its own virtual

multiprocessor”
•  “number of processors in that machine may change during the

execution of the program”

•  Abstraction enforces following criteria:
–  Kernel allocates physical processors to address spaces.
–  UL thread system has complete control over which thread to run on

allocated processors. (as opposed to earlier limitations)
–  UL thread system is informed whenever number of allocated

processors changes.
–  UL thread system knows about suspended/resumed threads in kernel.
–  UL thread system can request/release processors.
–  UL thread system transparent to user. (i.e., user sees KL threads)

traditional UL thread system

Solution: “Scheduler Activations”

UL Thread Library

scheduler activations

P

UL Thread Library

P
 P

kernel support

Upcalls:
• Add this processor
• Processor has been
preempted
• SA has blocked
• SA has unblocked

“Down”-Calls:
• Add more processors.
• Processor is idle

CSCE 410/611 : Operating Systems

Threads 10

“Scheduler Activations”:
Abstraction vs. Implementation

scheduler activations

virtual multiprocessor

P
 P
 P

scheduler activations

SA

UL Thread Library

SA
 SA

Abstraction: Implementation:

“Scheduler Activations”:
How to Handle “Blocking” Threads

UL threads using kernel threads

2. block!

1. system call

UL threads using scheduler activations

2. block!

1. system call

3. create new SA

4. upcall

5. resume

3. ?!

CSCE 410/611 : Operating Systems

Threads 11

“Scheduler Activations”:
Resuming Blocked Threads

UL threads using scheduler activations

1. unblock!

2. preempt

3. upcall

5. resume

4. preempt

Threading, Events, and Concurrency

•  Threading Recap

•  Threading in Multicore World

•  User-Level Threads vs. Kernel-Level Threads

–  Example: Scheduler Activations

•  Thread-based vs. Event-based Concurrency

–  Example: Windows Fibers

CSCE 410/611 : Operating Systems

Threads 12

Recap: Threaded vs. Event-Driven Design
Figures from: M. Welsh, D. Culler, and E. Brewer, SEDA: An Architecture for Well Conditioned,

Scalable Internet Services

Windows Fibers

Aul Adya, Jon Howell, Marvin Theimer, William Bolosky, John R.
Douceur, “Cooperative Task Management without Manual
Stack Management”. Proceedings of the 2002 Usenix Annual
Technical Conference, Monterey, CA, June 2002.

CSCE 410/611 : Operating Systems

Threads 13

Task Management
•  Question: How do we achieve multiprogramming, concurrency?

•  Definition [Task]: Control flow. Tasks have access to shared
global state.

•  Preemptive Task Management:
–  Execution of tasks can interleave.

•  Serial Task Management:
–  Execute each task to completion before starting new task.

•  Cooperative Task Management:
–  (Voluntarily) yield CPU at well-defined points in execution.

Serial Task Management

Pros:
–  Only one task is running at a given time.
–  No potential for conflict in accessing shared state.
–  We can define so-called “inter-task invariants”;

while one task is running, no other task can violate
these invariants.

Cons:
–  Only one task is running at a given time!
–  No multiprogramming.
–  No multiprocessor parallelism.

CSCE 410/611 : Operating Systems

Threads 14

Cooperative Task Management

Pros:
–  Allows for some controlled multiprogramming.
–  Invariants must be ensured at yielding points only.

Cons:
–  Invariants are not automatically enforced.

About those invariants . . .
–  We need to ensure that local state does not depend on invalid

assumptions about shared state when we resume after yield.
–  Example: We want to open file before the yield. Is the file

still there after we resume?

Conflict Management

Q: How to avoid inter-task conflicts on shared state?

In serial task management: No problem! Entire task is an
atomic operation.

In cooperative task management: Event handlers are
basically atomic units of operation.

CSCE 410/611 : Operating Systems

Threads 15

Conflict Management (2)

In preemptive task management: Invariants on the
shared state must hold all the time. (?!)

–  Pessimistic synchronization primitives: Limit the
preemptivity to ensure that invariants hold when
preemption happen.

–  Optimistic synchronization primitives: Speculatively
execute, but then roll back if invariants have been
violated.

Q: How to avoid inter-task conflicts on shared state?

Cooperative Mgmt & Stack Management

Q: How to realize cooperative task management?

A solution: Event Handlers

Example:
(1) Receive network message
(2) Read block from disk
(3) Reply to message

CSCE 410/611 : Operating Systems

Threads 16

Cons:
–  Control flow for single task is broken up across

multiple procedures.
–  We now have to explicitly carry local state across

procedures. (“Manual Stack Management”)

Event Handlers & Stack Management

A solution: Event Handlers

Pros:
–  Concurrency

Example:
(1) Receive network message
(2) Read block from disk
(3) Reply to message

Stack Management vs. Task Management

CSCE 410/611 : Operating Systems

Threads 17

Automatic Stack Management

in-memory

use on-disk structure
(automatic)

CAInfo GetCAInfo(CAID caId) {
 CAInfo caInfo = LookupHashTable(caId);
 return caInfo;
}

CAInfo GetCAInfoBlocking(CAID caId) {
 CAInfo caInfo = LookupHashTable(caId);
 if (caInfo != NULL) {
 // Found node in the hash table
 return caInfo;
 }

 caInfo = new CAInfo();
 // DiskRead blocks waiting for
 // the disk I/O to complete.
 DiskRead(caId, caInfo);
 InsertHashTable(caId, CaInfo);
 return caInfo;
}

Manual Stack Management
class Continuation {
 // The function called when
 // this continuation is
 // scheduled to run.
 void (*function)
 (Continuation cont);
 // Return value set by the
 // I/O operation. To be
 // passed to continuation.
 void *returnValue
 // Bundled up state
 void *arg1, *arg2, ...;
}

void GetCAInfoHandler2(Continuation *cont) {
 // Recover live variables
 CAID caId = (CAID) cont−>arg1;
 CAInfo *caInfo = (CAInfo*) cont−>arg2;
 Continuation *callerCont =
 (Continuation*) cont−>arg3;
 // Stash CAInfo object in hash
 InsertHashTable(caId, caInfo);
 // Now “return” results to original caller
 (callerCont.function)(callerCont);
}

void GetCAInfoHandler1(
 CAID caId,
 Continuation *callerCont){
 // Return the result immediately if in cache
 CAInfo *caInfo = LookupHashTable(caId);
 if (caInfo != NULL) {
 // Call caller’s continuation with result
 (callerCont.function)(caInfo);
 return;
 }
 // Make buffer space for disk read
 caInfo = new CAInfo();
 // Save return address & live variables
 Continuation *cont =
 new Continuation(&GetCAInfoHandler2,
 caId, caInfo, callerCont);
 // Send request
 EventHandle eh =
 InitAsyncDiskRead(caId, caInfo);
 // Schedule event handler to run on reply
 // by registering continuation
 RegisterContinuation(eh, cont);
}

CSCE 410/611 : Operating Systems

Threads 18

Stack Ripping
•  Programmer must explicitly save local state and then restore it

later.

•  Without ripped functions, this would all be managed by the
compiler!

•  Problems with stack ripping:
–  function scoping: logic is distributed over multiple functions.
–  automatic variables: local state is no more stored on stack.
–  self-propagation of function ripping:

•  A ripped function may require all functions up the call tree
to be ripped in two as well. (see figure)

•  Calls to ripped functions in control structures may require
complicated ripping of calling function. (see figure)

Stack Ripping

a

b

c

a1

b1

c1

a3

b2

c2

event

All functions up the calling tree must be ripped.

CSCE 410/611 : Operating Systems

Threads 19

Stack Ripping in Control Structures
<some code here>
while (x < 0) {
 …
 c();
 …
}
<some more code here>

<some code here>
while (x < 0) {
 …
 c1();

 c2();
 …
 ?!
}
<some more code here>

<some code here>
while (x < 0) {
 …
 c1();

 c2();
 …
 ?!
}
<some more code here>

Stack Ripping in Control Structures
<some code here>
f1();

function f3() {
 <some more code here>
}

function f1() {
 if (x < 0) {
 …
 c1(f2);
 } else {
 invoke cont f3;
}

function f2() {
 c2();
 …
 invoke cont f1;
}

event!

CSCE 410/611 : Operating Systems

Threads 20

Problems with Concurrency Assumptions

Q: What if a non-yielding function is re-implemented to
become yielding?
Q: What are the implications for calling functions?
Question: Would we even know?!
Is this a problem for manual stack management?
How about automatic stack management?
Solutions?!

–  Tools!
Static check: annotate code with yielding and atomic
properties.
(Dynamic check: startAtomic(), endAtomic(),
yield())

Windows Fiber Programming
Example: Copy a File

typedef struct{
 DWORD dwFiberResultCode; // GetLastError() result code
 HANDLE hFile; // handle to operate on
 DWORD dwBytesProcessed; // number of bytes processed

} FIBERDATASTRUCT;

LPVOID g_lpFiber[FIBER_COUNT];
LPBYTE g_lpBuffer;
DWORD g_dwBytesRead;

int __cdecl _tmain(int argc, TCHAR *argv[]){
 FIBERDATASTRUCT * fs = HeapAlloc(sizeof(FIBERDATASTRUCT) * FIBER_COUNT);
 // Allocate storage for the read/write buffer
 g_lpBuffer = (LPBYTE)HeapAlloc(GetProcessHeap(), 0, BUFFER_SIZE);

 fs[READ_FIBER].hFile = CreateFile(…); // Open source file
 fs[WRITE_FIBER].hFile = CreateFile(…); // Open destination file
 // Convert thread to a fiber, to allow scheduling other fibers

 g_lpFiber[PRIMARY_FIBER] = ConvertThreadToFiber(&fs[PRIMARY_FIBER]);
 // Create Read and Write fibers
 LPVOID read_fiber = CreateFiber(0,ReadFiberFunc,&fs[READ_FIBER]);
 LPVOID write_fiber = CreateFiber(0,WriteFiberFunc,&fs[WRITE_FIBER]);

 // Switch to the READ fiber
 SwitchToFiber(g_lpFiber[READ_FIBER]);
 // Here we have been scheduled again.

 printf("ReadFiber: result code is %lu, %lu bytes processed\n",
 fs[READ_FIBER].dwFiberResultCode, fs[READ_FIBER].dwBytesProcessed);
 printf("WriteFiber: result code is %lu, %lu bytes processed\n",
 fs[WRITE_FIBER].dwFiberResultCode, fs[WRITE_FIBER].dwBytesProcessed);

 <… clean up and return …>
}

CSCE 410/611 : Operating Systems

Threads 21

Windows Fiber Programming
Example: Copy a File

VOID __stdcall ReadFiberFunc(LPVOID lpParameter){

 FIBERDATASTRUCT * fds = (FIBERDATASTRUCT*)lpParameter;

 fds->dwBytesProcessed = 0;

 while (1) {

 // Read data from file specified in the READ_FIBER structure

 if (!ReadFile(fds->hFile, g_lpBuffer, BUFFER_SIZE, &g_dwBytesRead, NULL)){

 break;

 }

 // if we reached EOF, break

 if (g_dwBytesRead == 0) break;

 // Update number of bytes processed in the fiber data structure

 fds->dwBytesProcessed += g_dwBytesRead;

 // Switch to the write fiber

 SwitchToFiber(g_lpFiber[WRITE_FIBER]);

 } // while

 // Update the fiber result code

 fds->dwFiberResultCode = GetLastError();

 // Switch back to the primary fiber

 SwitchToFiber(g_lpFiber[PRIMARY_FIBER]);

}

Windows Fiber Programming
Example: Copy a File

VOID __stdcall WriteFiberFunc(LPVOID lpParameter){

 FIBERDATASTRUCT * fds = (FIBERDATASTRUCT*) lpParameter;

 DWORD dwBytesWritten;

 // Assume all writes succeeded. If a write fails, the fiber

 // result code will be updated to reflect the reason for failure

 fds->dwBytesProcessed = 0;

 fds->dwFiberResultCode = ERROR_SUCCESS;

 while (1) {

 // Write data to the file specified in the WRITE_FIBER structure

 if (!WriteFile(fds->hFile, g_lpBuffer, g_dwBytesRead, &dwBytesWritten, NULL))

 break; // If an error occurred writing, break

 // Update number of bytes processed in the fiber data structure

 fds->dwBytesProcessed += dwBytesWritten;

 // Switch back to the read fiber

 SwitchToFiber(g_lpFiber[READ_FIBER]);

 } // while

 // If an error occurred, update the fiber result code...

 fds->dwFiberResultCode = GetLastError();

 // ...and switch to the primary fiber

 SwitchToFiber(g_lpFiber[PRIMARY_FIBER]);

}

CSCE 410/611 : Operating Systems

Threads 22

Windows Fiber Programming
Example: Copy a File

voidDisplayFiberInfo(){
 FIBERDATASTRUCT * fds = (FIBERDATASTRUCT*) GetFiberData();
 LPVOID lpCurrentFiber = GetCurrentFiber();

 //
 // Determine which fiber is executing, based on the fiber address
 //

 if (lpCurrentFiber == g_lpFiber[READ_FIBER])
 printf("Read fiber entered");
 else {
 if (lpCurrentFiber == g_lpFiber[WRITE_FIBER])

 printf("Write fiber entered");
 else
 {

 if (lpCurrentFiber == g_lpFiber[PRIMARY_FIBER])
 printf("Primary fiber entered");
 else
 printf("Unknown fiber entered");

 }
 }
 // Display dwParameter from the current fiber data structure
 printf(" (dwParameter is 0x%lx)\n", fds->dwParameter);

}

Certificate* GetCertData(User user) {
 // Look up certificate in the memory
 // cache and return the answer.
 // Else fetch from disk/network
 if (Lookup(user, cert))
 return certificate;
 certificate = DoIOAndGetCert();
 return certificate;
}

Integrating Thread and Fiber Programming
•  Question: How to ensure that code written in one style can call

code written in the other style?
•  Answer: Adapters!
•  Example:

bool FetchCert(User user, Certificate *cert) {
 // Get the certificate data from a
 // function that might do I/O
 certificate = GetCertData(user);
 if (!VerifyCert(user, cert)) {
 return false;
 }
}

bool VerifyCert(User user, Certificate * cert) {
 // Get the Certificate Authority (CA)
 // information and then verify certificate
 ca = GetCAInfo(cert);
 if (ca == NULL) return false;
 return CACheckCert(ca, user, cert);
}

automatic

manual

manual

CSCE 410/611 : Operating Systems

Threads 23

Fiber calls Thread
void VerifyCertCFA(CertData certData,
 Continuation *callerCont) {
 // Executed on MainFiber
 Continuation *vcaCont =
 new Continuation(VerifyCertCFA2,
 callerCont);
 Fiber *verifyFiber =
 new VerifyCertFiber(certData,
 vcaCont);
 // On fiber verifyFiber, start executing
 // VerifyCertFiber::FiberStart
 SwitchToFiber(verifyFiber);
 // Control returns here when
 // verifyFiber blocks on I/O
}

void VerifyCertCFA2(Continuation *vcaCont) {
 // Executed on MainFiber.
 // Scheduled after verifyFiber is done
 Continuation *callerCont = vcaCont−>arg1;
 callerCont−>returnValue =vcaCont−>returnValue;
 // “return” to original caller (FetchCert)
 (callerCont−>function)(callerCont);
}

Fiber calls Thread (cont)
void VerifyCertCFA(CertData certData,
 Continuation *callerCont) {
 // Executed on MainFiber
 Continuation *vcaCont =
 new Continuation(VerifyCertCFA2,
 callerCont);
 Fiber *verifyFiber =
 new VerifyCertFiber(certData,
 vcaCont);
 // On fiber verifyFiber, start executing
 // VerifyCertFiber::FiberStart
 SwitchToFiber(verifyFiber);
 // Control returns here when
 // verifyFiber blocks on I/O
}

VerifyCertFiber::FiberStart() {
 // Executed on a fiber other than MainFiber
 // The following call could block on I/O.
 // Do the actual verification.
 this−>vcaCont−>returnValue =
 VerifyCert(this−>certData);
 // The verification is complete.
 // Schedule VerifyCertCFA2
 scheduler−>schedule(this−>vcaCont);
}

