
CSCE 613 : Operating Systems Memory Models

1

CSCE 613: Interlude: Distributed Shared Memory

•  Shared Memory Systems

•  Consistency Models

•  Distributed Shared Memory Systems
–  page based
–  shared-variable based

•  Reading (old!):
–  Coulouris: Distributed Systems, Addison Wesley, Chapter 17
–  Tanenbaum: Distributed Operating Systems, Prentice Hall, 1995,

Chapter 6
–  Tanenbaum, van Steen: Distributed Systems, Prentice Hall, 2002,

Chapter 6.2
–  M. Stumm and S. Zhou: Algorithms Implementing Distributed

Shared Memory, IEEE Computer, vol 23, pp 54-64, May 1990

Distributed Shared Memory
•  Shared memory: difficult to realize vs. easy to program with.

•  Distributed Shared Memory (DSM): have collection of
workstations share a single, virtual address space.

•  Vanilla implementation:
–  references to local pages done in hardware.
–  references to remote page cause HW page fault; trap to OS;

load the page from remote; restart faulting instruction.

•  Optimizations:
–  share only selected portions of memory.
–  replicate shared variables on multiple machines.

CSCE 613 : Operating Systems Memory Models

2

Shared Memory
•  DSM in context of shared memory for multiprocessors.

•  Shared memory in multiprocessors:
–  On-chip memory

•  multiport memory, huh?
–  Bus-based multiprocessors

•  cache coherence
–  Ring-based multiprocessors

•  no centralized global memory.
–  Switched multiprocessors

•  directory based
–  NUMA (Non-Uniform Memory Access) multiprocessors

•  no attempt made to hide remote-memory access latency

Comparison of (old!) Shared Memory Systems

single-bus
multi-

processor

switched
multi-

processor

NUMA
machine

Page-based
DSM

Shared
variable

DSM

Object
based
DSM

managed by MMU managed by OS
managed by language
runtime system

hardware-controlled
caching software-controlled caching

remote access in hardware remote access in
software

sequent
firefly

Dash
Alewife

Cm*
Butterfly

Ivy
Mirage

Munin
Midway

Linda
Orca

CSCE 613 : Operating Systems Memory Models

3

Prologue for DSM: Memory Consistency Models

•  Perfect consistency is expensive.
•  How to relax consistency requirements?

•  Definition: Consistency Model: Contract between application and
memory. If application agrees to obey certain rules, memory
promises to work correctly.

Memory Consistency: Example
•  Example: Critical Section

•  Relies on all CPUs seeing update of counter before update of
mutex

•  Depends on assumptions about ordering of stores to memory

 /* lock(mutex) */
 < implementation of lock would come here>
 /* counter++ */
 load r1, counter
 add r1, r1, 1
 store r1, counter
 /* unlock(mutex) */
 store zero, mutex

CSCE 613 : Operating Systems Memory Models

4

Consistency Models
•  Strict consistency
•  Sequential consistency
•  Causal consistency
•  PRAM (pipeline RAM) consistency
•  Weak consistency
•  Release consistency

•  increasing restrictions on application software
•  increasing performance

Strict Consistency
•  Most stringent consistency model:

Any read to a memory location x returns the value stored
by the most recent write operation to x.

•  strict consistency observed in simple uni-processor systems.
•  has come to be expected by uni-processor programmers

– very unlikely to be supported by any multiprocessor

•  All writes are immediately visible by all processes
•  Requires that absolute global time order is maintained

•  Two scenarios:

P1: W(x)1
P2: R(x)1

P1: W(x)1
P2: R(x)NIL R(x)1

CSCE 613 : Operating Systems Memory Models

5

Example of Strong Ordering: Sequential Ordering

•  Strict Consistency is impossible to implement.
•  Sequential Consistency:

–  Loads and stores execute in program order
–  Memory accesses of different CPUs are “sequentialised”; i.e.,

any valid interleaving is acceptable, but all processes must see
the same sequence of memory references.

•  Traditionally used by many architectures
 CPU 0 CPU 1
 store r1, adr1 store r1, adr2
 load r2, adr2 load r2, adr1

•  In this example, at least one CPU must load the other's new value.

Sequential Consistency
•  Strict consistency impossible to implement.
•  Programmers can manage with weaker models.
•  Sequential consistency [Lamport 79]

The result of any execution is the same as if the operations of
all processors were executed in some sequential order, and the
operations of each individual processor appear in this sequence
in the order specified by its program.

•  Memory accesses of different CPUs are “sequentialised”; Any
valid interleaving is acceptable, but all processes must see the
same sequence of memory references.

•  Scenarios:
P1: W(x)1

P2: W(x)0

P3: R(x)0 R(x)1

P4: R(x)0 R(x)1

P1: W(x)1

P2: W(x)0

P3: R(x)0 R(x)1

P4: R(x)1 R(x)0

CSCE 613 : Operating Systems Memory Models

6

Sequential Consistency: Observations
•  Sequential consistency does not guarantee that read returns

value written by another process anytime earlier.
•  Results are not deterministic.
•  Sequential consistency is programmer-friendly, but expensive.

•  Lipton & Sandbert (1988) show that improving the read
performance makes write performance worse, and vice versa.

•  Modern HW features interfere with sequential consistency; e.g.:
–  write buffers to memory (aka store buffer, write-behind

buffer, store pipeline)
–  instruction reordering by optimizing compilers
–  superscalar execution
–  pipelining

Linearizability (Herlihy and Wing, 1991)

•  Assume that events are timestamped with clock with finite
precision (e.g.loosely synchronized clocks).

•  Let tsOP(x) be timestamp of operation OP on data item x. OP is
either a read(x) or a write(x).

The result of any execution is the same as if the operations of all
processors were executed in some sequential order, and the operations
of each individual processor appear in this sequence in the order
specified by its program. In addition, if tsOP1(x) < tsOP2(x), then
operation OP1(x) should precede OP2(x) in this sequence.

•  Stricter than Sequential Consistency.

CSCE 613 : Operating Systems Memory Models

7

Weaker Consistency Models: Total Store Order

•  Total Store Ordering (TSO) guarantees that the
sequence in which store, FLUSH, and atomic
load-store instructions appear in memory for a
given processor is identical to the sequence in which
they were issued by the processor.

•  Both x86 and SPARC processors support TSO.

•  A later load can bypass an earlier store
operation. (!)

•  i.e., local load operations are permitted to obtain
values from the write buffer before they have
been committed to memory.

Total Store Order (cont)
•  Example:

 CPU 0 CPU 1
 store r1, adr1 store r1, adr2

 load r2, adr2 load r2, adr1

•  Both CPUs may read old value!
•  Need hardware support to force global ordering of

privileged instructions, such as:
–  atomic swap
–  test & set
–  load-linked + store-conditional
–  memory barriers

•  For such instructions, stall pipeline and flush write
buffer.

CSCE 613 : Operating Systems Memory Models

8

It gets weirder: Partial Store Ordering
•  Partial Store Ordering (PSO) does not guarantee that the

sequence in which store, FLUSH, and atomic load-store
instructions appear in memory for a given processor is identical to
the sequence in which they were issued by the processor.

•  The processor can reorder the stores so that the sequence of
stores to memory is not the same as the sequence of stores
issued by the CPU.

•  SPARC processors support PSO; x86 processors do not.
•  Ordering of stores is enforced by memory barrier (instruction

STBAR for Sparc) : If two stores are separated by memory
barrier in the issuing order of a processor, or if the instructions
reference the same location, the memory order of the two
instructions is the same as the issuing order.

Partial Store Order (cont)
•  Example:

•  Store to mutex can “overtake” store to counter.
•  Need to use memory barrier to separate issuing order.
•  Otherwise, we have a race condition.

 /* lock(mutex) */
 < implementation of lock would come here>
 /* counter++ */
 load r1, counter
 add r1, r1, 1
 store r1, counter
 /* MEMORY BARRIER */
 STBAR
 /* unlock(mutex) */
 store zero, mutex

CSCE 613 : Operating Systems Memory Models

9

Causal Consistency
•  Weaken sequential consistency by making distinction between

events that are potentially causally related and events that are
not.

•  Distributed forum scenario: causality relations may be violated
by propagation delays.

•  Causal consistency:
Writes that are potentially causally related must be seen by
all processes in the same order. Concurrent writes may be

seen in a different order on different machines.

•  Scenario

P1: W(x)1 W(x)3
P2: R(x)1 W(x)2
P3: R(x)1 R(x)3 R(x)2
P4: R(x)1 R(x)2 R(x)3

Causal Consistency (cont)

P1: W(x)1
P2: R(x)1 W(x)2
P3: R(x)2 R(x)1
P4: R(x)1 R(x)2

•  Other scenarios:

P1: W(x)1
P2: W(x)2
P3: R(x)2 R(x)1
P4: R(x)1 R(x)2

CSCE 613 : Operating Systems Memory Models

10

•  Drop requirement that causally-related writes must be seen in
same order by all machines.

•  PRAM consistency:
Writes done by a single process are received by all other

processes in the order in which they were issued, but writes
from different processes may be seen in a different order by

different processes.
•  Scenario:

•  Easy to implement: all writes generated by different processors
are concurrent

•  Counterintuitive result:

PRAM (pipelined RAM) Consistency

P1: W(x)1
P2: R(x)1 W(x)2
P3: R(x)1 R(x)2
P4: R(x)2 R(x)1

P2: b = 1;
 if (a==0) kill(P1);

P1: a = 1;
 if (b==0) kill(P2);

Weak Consistency
•  PRAM consistency still unnecessarily restrictive for many

applications: requires that writes originating in single process
be seen everywhere in order.

•  Example:
–  reading and writing of shared variables in tight loop inside a

critical section.
–  Other processes are not supposed to touch variables, but

writes are propagated to all memories anyway.

•  Introduce synchronization variable:
–  When synchronization completes, all writes are propagated

outward and all writes done by other machines are brought
in.

–  All shared memory is synchronized.

CSCE 613 : Operating Systems Memory Models

11

Weak Consistency (cont)
1. Accesses to synchronization variables are sequentially ordered.
2. No access to a synchronization variable is allowed to be

performed until all previous writes have completed everywhere.
3. No data access (read or write) is allowed to be performed until all

previous accesses to synchronization variables have been
performed.

•  All processes see accesses to synchronization variables in same
order.

•  Accessing a synchronization variable “flushes the pipeline” by forcing
writes to complete.

•  By doing synchronization before reading shared data, a process can
be sure of getting the most recent values.

•  Scenarios: P1: W(x)1 W(x)2) S
P2: R(x)1 R(x)2 S
P3: R(x)2 R(x)1 S

P1: W(x)1 W(x)2) S
P2: S R(x)1

Release Consistency
•  Problem with weak consistency:

–  When synchronization variable is accessed, we don’t know if
process is finished writing shared variables or about to start
reading them.

–  Need to propagate all local writes to other machines and gather all
writes from other machines.

•  Operations:
–  acquire critical region: c.s. is about to be entered.

•  make sure that local copies of variables are made consistent
with remote ones.

–  release critical region: c.s. has just been exited.
•  propagate shared variables to other machines.

–  Operations may apply to a subset of shared variables
•  Scenario:

P1: Acq(L) W(x)1 W(x)2) Rel(L)
P2: Acq(L) R(x)2 Rel(L)
P3: R(x)1

CSCE 613 : Operating Systems Memory Models

12

Release Consistency (cont)
•  Possible implementation

–  Acquire:
1. Send request for lock to synchronization processor; wait until granted.
2. Issue arbitrary read/writes to/from local copies.

–  Release:
1. Send modified data to other machines.
2. Wait for acknowledgements.
3. Inform synchronization processor about release.

–  Operations on different locks happen independently.
•  Release consistency:

1. Before an ordinary access to a shared variable is performed, all previous
acquires done by the process must have completed successfully.

2. Before a release is allowed to be performed, all previous reads and writes
done by the process must have completed.

3. The acquire and release accesses must be PRAM consistent (processor
consistent) (sequential consistency is not required!)

Consistency Models: Summary

CSCE 613 : Operating Systems Memory Models

13

Page-Based DSM
•  NUMA

–  processor can directly reference local and remote memory
locations

–  no software intervention
•  Workstations on network

–  can only reference local memory
•  Goal of DSM

–  add software to allow NOWs to run multiprocessor code
–  simplicity of programming
–  “dusty deck” problem

Basic Design
•  Emulate cache of multiprocessor using the MMU and system

software

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 2 5

9

CPU

1 3 6

8

CPU

4 7 11

12

CPU

15 0

10 14

13 15

CPU

CSCE 613 : Operating Systems Memory Models

14

Design Issues
•  Replication

–  replicate read-only portions
–  replicate read and write portions

•  Granularity
–  restriction: memory portions multiples of pages
–  pros of large portions:

•  amortize protocol overhead
•  locality of reference

–  cons of large portions
•  false sharing!

A
B

Processor 1

code using A

A
B

Processor 2

code using B

Design Issues (cont)
•  Update Options: Write-Update vs. Write-Invalidate

•  Write-Update:
–  Writes made locally are multicast to all copies of the data item.
–  Multiple writers can share same data item.
–  Consistency depends on multicast protocol.

•  E.g. Sequential consistency achieved with totally ordered
multicast.

–  Reads are cheap
•  Write-Invalidate:

–  Distinguish between read-only (multiple copies possible) and writable
(only one copy possible).

–  When process attempts to write to remote or replicated item, it
first sends a multicast message to invalidate copies; If necessary,
get copy of item.

–  Ensures sequential consistency.

CSCE 613 : Operating Systems Memory Models

15

A Protocol for Sequential Consistency (reads)
Processor 1

P W

owner

Processor 2

Processor 1

P R

owner

Processor 2

Processor 1

P R

owner

Processor 2

R

Processor 1

P R

Processor 2

R

owner

Processor 1

P

Processor 2

R

owner

Processor 1

P

Processor 2

W

owner

A Protocol for Sequential Consistency (write)
Processor 1

P W

owner

Processor 2

Processor 1

P R

owner

Processor 2

Processor 1

P R

owner

Processor 2

R

Processor 1

P R

Processor 2

R

owner

Processor 1

P

Processor 2

R

owner

Processor 1

P

Processor 2

W

owner

CSCE 613 : Operating Systems Memory Models

16

Design Issues (cont)
•  Finding the Owner

–  broadcast request for owner
•  combine request with requested operation
•  problem: broadcast effects all participants (interrupts all

processors), uses network bandwidth
–  page manager

•  possible hot spot
•  multiple page manager, hash on page address

–  probable owner
•  each process keeps track of probable owner
•  Update probable owner whenever

–  Process transfers ownership of a page
–  Process handles invalidation request for a page
–  Process receives read access for a page from another process
–  Process receives request for page it does not own (forwards request

to probable owner and resets probable owner to requester)
•  periodically refresh information about current owners

Probable Owner Chains

B

A

C D E
owner

B

A

C D E

owner A issues write

B

A

C D E
owner

A issues read

B

A

C D E
owner

alternatively …

CSCE 613 : Operating Systems Memory Models

17

Design Issues (cont)
•  Finding the copies

–  How to find the copies when they must be invalidated
–  broadcast requests

•  what when broadcasts are not reliable?
–  copysets

•  maintained by page manager or by owner

3 4

CPU

2 3 4

CPU

1 2 3

CPU

2 3

CPU

2
4

1

CPU

4

1
3
4

5 2
4

Design Issues (cont)
•  Synchronization

–  locks
–  semaphores
–  barrier locks

–  Traditional synchronization mechanisms for multiprocessors
don’t work; why?

–  Synchronization managers

CSCE 613 : Operating Systems Memory Models

18

Shared-Variable DSM
•  Is it necessary to share entire address space?
•  Share individual variables.
•  more variety in possible in update algorithms for replicated

variables
•  opportunity to eliminate false sharing

•  Examples: Munin (predecessor of Threadmarks)

[Bennet, Carter, Zwaenepoel, “Munin: Distributed Shared Memory Based on
Type-Specific Memory Coherence”, Proc Second ACM Symp. on Principles

and Practice of Parallel Programming, ACM, pp. 168-176, 1990.]

Munin [Bennet et al, 1990]

•  Use MMU: place each shared object onto separate page.

•  Annotate declarations of shared variables.
–  keyword shared
–  compiler puts variable on separate page

•  Synchronization:
–  lock variables
–  barriers
–  condition variables

•  Release consistency
•  Multiple update protocols
•  Directories for data location

CSCE 613 : Operating Systems Memory Models

19

Release Consistency in Munin/Treadmarks
•  Uses (eager) release consistency
•  Critical regions

–  writes to shared variables occur inside critical region
–  reads can occur anywhere
–  when critical region exited, modified variables are brought up

to date on all machines.
•  Three classes of variables:

–  ordinary variable:
•  not shared; can be written only by process that created

them.
–  shared data variables:

•  visible to multiple processes; appear sequentially
consistent.

–  synchronization variable:
•  accessible via system-supplied access procedures
•  lock/unlock for locks, increment/wait for barriers

Release Consistency in Munin (cont)
•  Example:

•  Eager vs. Lazy Release Consistency

lock(L);
a=1; /* changes to
b=2; * shared
c=3; * variables*/
unlock(L);

a,b,c a,b,c

CSCE 613 : Operating Systems Memory Models

20

Multiple Protocols
•  Annotations for shared-variable declarations:

–  read-only
•  do not change after initialization; no consistency problems
•  protected by MMU

–  migratory
•  not replicated; migrate from machine to machine as critical

regions are entered
•  associated with a lock

–  write-shared
•  safe for multiple programs to write to it
•  use “diff” protocol to resolve multiple writes to same

variable
–  conventional

•  treated as in conventional page-based DSM: only one copy
of writeable page; moved between processors.

–  others…

Twin Pages in Munin/Treadmarks
•  Initially, write-shared page is marked as read-only.
•  When write occurs, twin copy of page is made, and original

page becomes read/write
•  Release:

1.  word-by-word comparison of dirty pages with their twins
2.  send the differences to all processes needing them
3.  reset page to read-only
4.  receiver compare incoming pages for modified words
5.  if both local and incoming word have been modified, signal

runtime error

6

R

6

RW

6

twin

8

RW

6

twin

8

RW

6

twin

word 4
6->8

message
sent

initially before write after write during release

CSCE 613 : Operating Systems Memory Models

21

Effect of Using Twin Pages (no twins)
Process1:
/* wait for process 2 */
wait_at_barrier(b);
for(i=0;i<n;i+=2)
 a[i] = a[i]+f(i);
/* wait until proc 2 is done */
wait_at_barrier(b);

Process2:
/* wait for process 1 */
wait_at_barrier(b);
for(i=1;i<n;i+=2)
 a[i] = a[i]+g(i);
/* wait until proc 1 is done */
wait_at_barrier(b);

........

barrier barrier

a[0]= a[2]= a[n-1]=

a[1]= a[3]= a[n]=

P1:

P2:

barrier
manager

Effect of Twin Pages (with twins)
Process1:
/* wait for process 2 */
wait_at_barrier(b);
for(i=0;i<n;i+=2)
 a[i] = a[i]+f(i);
/* wait until proc 2 is done */
wait_at_barrier(b);

........

barrier barrier

a[0]= a[2]= a[n-1]=

a[1]= a[3]= a[n]=

P1:

P2:

barrier
manager

send changes

Process2:
/* wait for process 1 */
wait_at_barrier(b);
for(i=1;i<n;i+=2)
 a[i] = a[i]+g(i);
/* wait until proc 1 is done */
wait_at_barrier(b);

