
CSCE 613 : Operating Systems Structure and Abstractions

1

CSCE 613: Structure, Abstractions
[1] Robert C. Daley and Jack B. Dennis, "Virtual Memory, Processes, and Sharing in

MULTICS". Communications of the ACM, Vol(II)-5, May 1968.

[2] E. W. Dijkstra, "The Structure of the THE-Multiprogramming System".
Communications of the ACM, Vol(2)-5, May 1968.

[3] Dennis M. Ritchie and Ken Thompson, "The UNIX Time-Sharing System".
Communications of the ACM, Vol(17)-7, July 1974.

[4] Jochen Liedtke, “On !-Kernel Construction” Proceedings of the 15th ACM
Symposium on Operating System Principles (SOSP), Copper Mountain Resort, CO,
December 1995 .

[5] M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, Hector M. Briceno,
Russel Hunt, David Mazieres, Thomas Pinckney, Robert Grimm, John Jannotti, and
Kenneth Mackenzie, "Application Performance and Flexibility on Exokernel
Systems". Proceedings of the 16th Symposium on Operating Systems Principles
(SOSP), October 1997.

[1] Multics: Background
From F.J. Corbato and V.A. Vyssotsky, “Introduction and Overview of the Multics System”, 1965
Fall Joint Computer Conference.

•  Multiplexed Information and Computing Service:
–  Computing system as 24/7 utility.

•  Requirement for generality/adaptability -> programming in high-
level language (PL/I).

•  Requirements for Large, service-oriented computer installations:
1.  Economies of scale, with more opportunities to amortize man-

power, consolidation of resource, and management overhead.
2.  Meet increasing user demand through replication of

processors and memory units.
3.  Demand for high availability.
4.  Need for intelligent use of multiprogramming.
5.  Timesharing for efficient utilization and sharing of

information.

CSCE 613 : Operating Systems Structure and Abstractions

2

Multics System Configuration (example)
•  Composability /

“Partitionability”

•  Components are independent/
asynchronous -> easy upgrade
and increase in system
capacity.

•  For maintenance, system can
be partitioned.

Multics: Addressing
•  Segmentation with dual-page-size paging. (64 words vs. 1024

words).

•  Segments are visible to user, Pages are invisible.

CSCE 613 : Operating Systems Structure and Abstractions

3

Multics: Reasons for Segments
1.  “The user is able to program in a two-dimensional virtual memory

system. Thus, any single segment can grow (or shrink) during
execution.

2.  The user can, by merely specifying a starting point in a segment,
operate a program implicitly without prior planning of the
segments needed or of the storage requirements. For example, if
an error diagnostic segment is unexpectedly called for, it is
brought in automatically by the supervisor; it is never brought in
unless needed.

3.  The largest amount of code which must be bound (loaded)
together as a solid block is a single segment.

4.  Program segments appear to be the only reasonable way to
permit pure procedures and data bases to be shared among
several users simultaneously. Pure procedure programs, by
definition, do not modify themselves.”

5.  Per-segment privileges, e.g. “execute-only” bit (!?)

Multics: Paging

Advantages of Paging:

1.  The use of paged memory allows flexible techniques for dynamic
storage management without the overhead of moving programs
back and forth in the primary memory. This reduced overhead is
important in responsive time-shared systems where there is
heavy traffic between primary and secondary memories.

2.  The mechanism of paging, when properly implemented, allows the
operation of incompletely loaded programs; the supervisor need
only retain in main memory the more active pages, thus making
more effective use of high-speed storage. Whenever a
reference to a missing page occurs, the supervisor must
interrupt the program, fetch the missing page, and re-initiate
the program without loss of information.

CSCE 613 : Operating Systems Structure and Abstractions

4

Multics: Design Features of the Software
•  Any segment has to know another segment only by symbolic

name. Intersegment binding occurs dynamically as needed during
program execution. The mechanism operates at high efficiency
after the first binding occurs.

•  A segment is able to reference symbolically a location within
another segment; dynamically and automatically; after binding
occurs the first time, program execution is at full speed.

•  It is straightforward for procedures to be pure procedures,
capable of being shared by several users.

•  Similarly, it is straightforward to write recursive procedures.
•  The general conventions are such that the call, save, and return

macros used to link one independently compiled procedure to
another do not depend on whether or not the two procedures are
in the same segment.

•  Each user is provided with a private software "stack" for
temporary storage within each subroutine.

Multics: Other Features
•  Ability to have one process spawn other processes to run on

several processors.

•  Ability for data bases to be shared among simultaneously
operating programs.

•  Batch processing facilities included as a subset.

–  Users can attach terminals to processes.

•  Scheduling of resources (and charging for their use) done by
supervisor (OS)

CSCE 613 : Operating Systems Structure and Abstractions

5

Design Considerations in the File System
•  File System as “memory system which gives the users and the

supervisors alike the illusion of maintaining a private set of
segments or files of information for an indefinite period of time.”

•  All files of information are referred to by symbolic name and not
by address.

•  “This retention is independent of the complex of secondary
storage devices of different capacity and access.”

•  Issues of privacy and security, addressed through access
privileges.

•  Synchronization of data access (shared reads vs. exclusive
writes).

•  Automatic backup to recover from mishaps.

Multics: Other Considerations

•  Uniform view of most I/O devices:
–  “A program can read from either a terminal or a disk file, or

output can be sent either to a file or to a punch, a typewriter,
or a printer.”

•  On-line documentation.

•  Transition from traditional batch system: Multics runs
concurrently, but independently, from GECOS batch processing
system.

CSCE 613 : Operating Systems Structure and Abstractions

6

[2] THE - Overview
•  Stated goal: “to process smoothly a continuous flow of user

programs as a service …”

•  Objectives:
–  Low response time for short jobs.
–  “Economic use” of peripheral devices
–  Automatic control of storage & high utilization of CPU

•  Multi-user / Multi-access is not the intention.
–  -> No sharing.

THE - System Structure
•  Storage Allocation

–  “Pages” vs. “Segments” (comparable to “frames” vs. “pages”)
–  Paging eliminates fragmentation on drum.

•  Processor Allocation
–  “Sequential Processes”, one for each user job, and one for

each device, plus drum and console processes.
–  “Harmonious Cooperation” ensured by explicit synchronization

(semaphores).
–  Global scheduling possible in principle, i.e. independent of

number of underlying processors.

•  System Hierarchy
–  (see next slide)

CSCE 613 : Operating Systems Structure and Abstractions

7

THE – System Hierarchy
Level-0: Processor allocation / abstraction

Level-1: Virtual memory management / memory abstraction.

Level-2: “Message Interpreter” : operator console communicates to
processes.

Level-3: Buffer management for input/output streams : device
abstraction.

Level-4: User programs

Level-5: Operator.

Levels also used for proof of deadlock freedom.

THE: Semaphores
•  Synchronization Primitives:

–  Semaphores

•  Two uses of semaphores:
–  Mutual Exclusion
–  “Private Semaphores”

CSCE 613 : Operating Systems Structure and Abstractions

8

[3] UNIX: Design Considerations
•  System designed to “make it easy to write, test, and run

programs”.

•  Support for interactive use.

•  Elegance of design enforced by severe resource constraints.

•  Ability of System to “maintain itself”.
–  Source programs always available and easily modified, so

system rewrite easy to perform on-line.

•  All programs should be usable with any file or device as input or
output -> device considerations pushed into the kernel -> device
drivers!

UNIX: Hardware-Software Environment
•  Memory Hierarchy: 144KB core memory, one 1MB fixed-head disk,

four 2.5MB moving-head disks.

•  After early iterations in assembler, the 1973 version is
implemented in C.

CSCE 613 : Operating Systems Structure and Abstractions

9

UNIX File System
•  Ordinary Files:

–  Structure of files controlled by the programs that use them.
•  Directories:

–  Map hierarchical name space to files in system.
•  Special Files

–  Particular to UNIX
–  Each I/O device associated with a special file in /dev

directory, and device accessed by reading/writing to file.
–  Benefits:

•  Uniform interface to devices
•  Can borrow file system name space to identify device
•  Can borrow file system protection mechanisms

•  Removable File Systems
•  Protection

Unix File System Implementation: inodes

single
indirect
double

indirect
triple

indirect

0

9

10

11

12

di
re

ct

multilevel indexed allocation table

file information:
- size (in bytes)
- owner UID and GID
- relevant times (3)
- link and block counts
- permissions

inode

multilevel
allocation

table

CSCE 613 : Operating Systems Structure and Abstractions

10

Directory Implementation

file information:
- size (in bytes)
- owner UID and GID
- relevant times (3)
- link and block counts
- permissions

inode

Where is the
filename?!

Name information is contained in separate
Directory File, which contains entries of type:

(name of file , inode1 number of file)

1 More precisely: Number of block that contains inode.

myfile.txt 12345

name inode

…

23567

…

1

…

inode
12345

block 23567

“some text in the
file…”

Hard Links

shell command
ln /dirA/name1 /dirB/name2

is typically implemented using the link system call:

#include <stdio.h>
#include<unistd.h>

if (link(“/dirA/name1”, “/dirB/name2”) == -1)
 perror(“failed to make new link in /dirB”);

name1 12345

name inode

…

23567

…

1

…

inode
12345

block 23567

“some text in the
file…”

directory entry in /dirA

name2 12345

name inode

directory entry in /dirB

2

CSCE 613 : Operating Systems Structure and Abstractions

11

Hard Links: unlink

#include <stdio.h>
#include<unistd.h>

if (unlink(“/dirA/name1”) == -1)
 perror(“failed to delete link in /dirA”);

…

23567

…

2

…

inode
12345

block 23567

“some text in the
file…”

name1 12345

name inode

directory entry in /dirA

name2 12345

name inode

directory entry in /dirB

1

if (unlink(“/dirB/name2”) == -1)
 perror(“failed to delete link in /dirB”);

0

UNIX: Processes
•  Def [Image]: An image is a computer execution environment.

–  core image, general register values, status of open files,
current directory, etc.

•  Def [Process]: A process is the execution of an image.
–  While the process is executing on behalf of a process, the

image must reside in core.

•  User-core part of the image:
–  program text segment, writable data segment, stack segment

•  The fork system call: generates two independent copies of core
image, with shared open files.

•  IPC through pipes (make use of file I/O read/write calls)

CSCE 613 : Operating Systems Structure and Abstractions

12

UNIX: Traps
•  Program termination upon hardware detection of program faults.

•  Process termination by terminal-generated signals.

•  Specialized signal handlers to either ignore or catch signals within
the process.

•  Example: catch non-implemented instructions and emulate in
software.

[4] On µ-kernel Construction
•  Basic idea: Minimize mandatory part of OS (“kernel”) and

“implement outside of kernel whatever is possible”.

•  Advantages:
–  “A clear interface enforces a modular system structure.”
–  “Servers malfunction is as isolated as any other user

program’s malfunction.”
–  “The system is more flexible and tailorable.”

•  Problem: performance.
•  Folklore: “increased user-kernel mode and address-space switches

are responsible”

CSCE 613 : Operating Systems Structure and Abstractions

13

µ-kernels: Functional Requirements
•  Functional as opposed to Performance requirements.

•  Principle of Independence:
–  “A programmer must be able to implement an arbitrary

subsystem S in such a way that it cannot be disturbed or
corrupted by other subsystems S’.”

–  Then “S can give guarantees independent of S’.”

•  Principle of Integrity:
–  “There must be a way for S1 to address S2 and establish a

communication channel that can neither be corrupted nor
eavesdropped by S’.”

µ-kernels: Address Spaces
•  “At hardware level, address space is mapping that associates

each virtual page to a physical page frame or marks it ‘non-
accessible’.”

•  Micro-kernel has to hide hardware concept of address space.
(Otherwise, protection would be impossible to implement.)

•  Micro-kernel abstraction of address space has to be simple and
similar to hardware concept.

•  Basic idea: “Support recursive construction of address spaces
outside the kernel.”

CSCE 613 : Operating Systems Structure and Abstractions

14

µ-kernels: Address Spaces (2)
•  Basic idea: “Support recursive construction of address spaces

outside the kernel.”
•  Given: Let Subsystem S0 manage Address space σ0, the physical

memory.
•  Kernel supports creation and maintenance of additional address

spaces on top of σ0 through three operations:
–  Grant: Owner of address space can grant any of its pages to

another space, provided recipient agrees. Page is removed from
granter’s address space.

–  Map: The owner of an address space can map any of its pages
into another address space, provided recipient agrees.

–  Flush: Flushed page remains accessible in flusher’s address
space, but is removed from all other address spaces.

•  Only Grant/Map/Flush operations are retained inside the kernel.
•  Memory managers and pagers are implemented on top of the kernel.

Address Spaces: Example

file system, implemented as pager

file managers,
implemented as pagers

underlying memory pager

CSCE 613 : Operating Systems Structure and Abstractions

15

µ-kernels: I/O
•  Use address spaces to abstract device ports.

•  Trivial for memory-mapped I/O (e.g. PowerPC, which has pure
memory mapped I/O)

•  Possible for I/O ports as well.

µ-kernels: Threads and IPC
•  Threads must be provided as abstraction by the kernel:

–  This allows to control mapping of thread to associated address
space.

–  Also supports preemption, e.g.

•  Cross-Address-Space communication (IPC) must be supported by
kernel.
–  Possible implementation: messages between threads in kernel.
–  Other forms of communication (RPC, thread migration) can be

built on top of message based IPC.

•  Note: grant and map operations for address spaces rely on IPC,
since they require communication between issuer and recipient.

CSCE 613 : Operating Systems Structure and Abstractions

16

µ-kernels: Interrupts
•  “Natural abstraction for hardware interrupt is the IPC message.”
•  Regard hardware as “a set of threads that have special thread ids

and send empty messages (only consisting of sender id) to
interrupt handling threads.

•  Interrupt handling thread then de-multiplexes interrupt based on
sender id.

•  Mapping from interrupt to message is handled by kernel.
–  But kernel does not need to know interrupt semantics.

•  Technical details like releasing of interrupt and invocation of
iret instruction needs to be carefully handled.

µ-kernels: Support for Naming
•  Kernel supplies identifiers for subsystems, threads, and address

spaces.

•  Identifiers must be unique in space and time.

•  Also, kernel is able to issue identifiers in trustworthy fashion.

CSCE 613 : Operating Systems Structure and Abstractions

17

µ-kernels: Facilities
Memory Spaces
•  Grant
• Map
•  Flush

Threading Naming

I/O
IPC

Interrupts

µ-kernels: Flexibility
•  Examples of basic OS services that can be implemented on top of

micro-kernel:
–  Memory Manager. Physical memory manager can be implemented as

server. Other memory managers can be stacked on top of it.
–  Pager. Can be integrated with memory manager or user memory

manager as server. Can be integrated or stacked with file system
servers.

–  Multimedia Resource Allocation. Use memory allocators to request
fixed allocations of resources.

–  Device Drivers. Implemented as threads and use memory managers.
–  Second Level Cache and TLB. …
–  Remote Communication. Implemented by communication server that

translate local messages to external communication protocols. Access
communication hardware through device drivers.

–  Unix Server. …

CSCE 613 : Operating Systems Structure and Abstractions

18

µ-kernels: Performance Implications

•  Why are Operating Systems so slow?!

•  System call overhead

–  Kernel-User Context Switch Overhead

–  Address Space Switch Overhead

•  Memory

Why are OSs so Slow?
(Why Aren’t Operating Systems Getting Faster As Fast As Hardware? John Ousterhout, 1989)

CSCE 613 : Operating Systems Structure and Abstractions

19

Why are OSs so Slow? (2)

Autopsy of a Kernel Call
Example: Mach get_self_thread call on 50MHz 486:
•  18 µsec on 486/50
•  This is 900 cycles

–  Bare machine instruction to enter kernel mode: 71 cycles
–  Instruction to return to user mode: 36 cycles
–  The remaining 800 cycles are kernel overhead.
–  These could be about:

•  500 instructions, or
•  270 cache misses, or
•  90 TLB misses

•  Counterexample: L3 has kernel overhead of 15 cycles.
–  can grow to 57 cycles (3 TLB misses, 10 cache misses)

CSCE 613 : Operating Systems Structure and Abstractions

20

Kernel Calls: Reflection and Conclusion
•  What is a kernel call fundamentally?

indirect call + stack switch + set “kernel bit”

•  Similarly the return operation consists of

normal return operation + stack switch + reset “kernel bit”

•  Stack switching can be hidden with appropriate support from CPU.

•  Liedke’s conclusion: “Kernel-user mode switches are not a serious
conceptual problem but an implementation one.”

Switching Address Spaces
•  What happens during an address space switch?

–  Switching the cache (?)
–  Switching the page table: 1 to 10 cycles
–  TLB (!)

•  Tagged TLBs (e.g. MIPS)
–  TLB entry contains address space id (ASID)
–  Switching therefore transparent

•  Untagged TLBs (Pentium, PowerPC, Alpha)
–  Address switch requires TLB flush
–  Cost is in TLB loads after the flush (e.g. 900 cycles on Pentium)

•  Solutions:
–  On PowerPC, use segments instead of address spaces.
–  On Pentium, the same, with some dynamic management
–  Large address spaces: Use address spaces, makes no difference. (TLB

needs to be reloaded anyway to accommodate large working sets.)

CSCE 613 : Operating Systems Structure and Abstractions

21

Memory Overhead
•  Measure: Memory Cycle Overhead Per Instruction (MCPI)

Contribute to MCPI:
•  black: system i-cache or d-cache misses
•  white: system write buffer stalls,

system uncached reads,
user i-cache and d-cache misses,
user write buffer stalls

[5] ExoKernel: Motivation
•  Traditionally, operating systems as interface between applications

and physical resources.
•  This provides abstraction and a virtual machine for applications to

execute.
•  However, this restricts flexibility of application builders:

–  application-level control over file caching?
–  application-specific virtual memory policies?
–  tuned implementations of file-systems for databases?
–  Application-level signal handling?

•  The Exokernel approach: Export hardware resources securely (!)
instead of emulating them.

•  Three techniques:
–  Secure bindings: apps bind securely to resources and handle events.
–  Visible resource revocation: apps participate in resource revocation.
–  Abort Protocol: break bindings of uncooperative apps by force.

CSCE 613 : Operating Systems Structure and Abstractions

22

Exokernel: Library Operating Systems

•  Abstractions should be implemented at application level.
•  Library OSs use exokernel interface, and implement higher-level

abstractions to best meet performance and functionality goals of
applications.

Exokernel: Design
•  Challenge: Give library operating systems maximum freedom in

managing physical resources while protecting them from each
other.

•  To achieve this goal, an exokernel separates protection from
management through a low-level interface.

•  Three Tasks:
1.  tracking ownership of resources
2.  ensuring protection by guarding all resource usage or binding

points
3.  revoking access to resources

CSCE 613 : Operating Systems Structure and Abstractions

23

Exokernel: Design Principles
•  Securely expose hardware.

–  The kernel should provide secure low-level primitives that
allow all hardware resources to be accessed as directly as
possible.

•  Expose allocation.
–  Allow library operating systems to request specific physical

resources.
•  Expose Names.

–  Export physical names.
–  Physical names are efficient, since they remove a level of

indirection otherwise required to translate between virtual
and physical names.

•  Expose Revocation.
–  Utilize a visible resource revocation protocol so that well-

behaved library operating systems can perform effective
application-level resource management.

Exokernel: What about Policy?!
•  An exokernel hands over resource policy decisions to library

operating systems.

•  However:
–  An exokernel must include policy to arbitrate between

competing library operating systems: it must determine the
absolute importance of different applications, their share of
resources, etc.

–  While an exokernel cedes management of resources over to
library operating systems, it controls the allocation and
revocation of these resources.

–  By deciding which allocation requests to grant and from which
applications to revoke resources, an exokernel can enforce
traditional partitioning strategies, such as quotas or
reservation schemes.

CSCE 613 : Operating Systems Structure and Abstractions

24

Exokernel: Secure Bindings
•  A secure binding is a protection mechanism that decouples

authorization from the actual use of a resource.
•  Secure bindings improve performance in two ways.

1.  The protection checks involved in enforcing a secure binding
are expressed in terms of simple operations that the kernel
(or hardware) can implement quickly.

2.  A secure binding performs authorization only at bind time,
which allows management to be decoupled from protection.

•  “Simply put, a secure binding allows the kernel to protect
resources without understanding them.”

•  Basic techniques for secure bindings:
1.  HW support: ownership checks may be done in HW
2.  SW caching: e.g. software TLBs
3.  Downloading of code into kernel: allow an application thread

of control to be immediately executed on kernel events.

Example – Multiplexing Physical Memory
•  When a lib OS allocates a physical memory page, the exokernel

creates a secure binding for that page by recording the owner
and the read and write capabilities specified by the library
operating system.

•  When the processor contains a TLB, and the exokernel must
check memory capabilities when a lib OS attempts to enter a new
virtual-to-physical mapping.

•  To improve lib OS performance by reducing the number times
secure bindings must be established, an exokernel may cache
virtual-to-physical mappings in a large software TLB.

•  If the underlying hardware defines a page-table interface, then
an exokernel must guard the page table instead of the TLB.

CSCE 613 : Operating Systems Structure and Abstractions

25

Exokernel: Multiplexing the Network
•  How much protocol-specific knowledge to we need?
•  How to identify intended recipient?

•  Packet filters: Implementation of secure binding where code –
packet filters – are downloaded into the kernel.

•  How to ensure that packet filter does not “lie”? (i.e., claim that a
packet belongs to its application.)

•  Sharing the network interface for outgoing messages is easy:
Messages are simply copied from application space into a transmit
buffer.

•  With appropriate hardware support, transmission buffers can be
mapped into application space just as easily as physical memory
pages.

Downloading Code
•  Downloading code into the kernel has two main performance

advantages:
1.  Elimination of kernel crossings.
2.  Code can be executed when the application is not scheduled.

•  Application-specific Safe Handlers (ASH) can be downloaded
into the kernel to participate in message processing.
–  An ASH is associated with a packet

filter and runs on packet reception.
–  an ASH can initiate a message.
–  Using this feature, roundtrip latency

can be greatly reduced, since replies
can be transmitted on the spot instead
of being deferred until the application
is scheduled.

