
CPSC-662 Distributed Computing Distributed File Systems

1

Distributed File Systems

• Issues in Distributed File Service

• Case Studies:
– Sun Network File System
– Coda File System
– Web

• Reading: 
– Coulouris: Distributed Systems, Addison Wesley, Chapters 7,8
– Tanenbaum/van Steen: Distributed Systems, Prentice Hall, 2002, 

Chapter 10
– A.S. Tanenbaum: Distributed Operating Systems, Prentice Hall, 1995, 

Chapter 5

File Service Components

• File Service
– Operations on individual files

• Directory Service 
– Manage directories

• Naming Service
– Location independence: files can be moved without their names being 

changed.
– Common approaches to file and directory naming:

• Machine + path naming, e.g. /machine/path or machine:path
• Mounting remote file systems onto the local file hierarchy
• A single name space that looks the same on all machines

– Two-level naming: symbolic names as seen by user vs.binary names 
as seen by system.



CPSC-662 Distributed Computing Distributed File Systems

2

Requirements

• Transparency:
– Access transparency
– Location transparency
– Concurrency transparency
– Failure transparency
– Performance transparency
– Replication transparency
– Migration transparency

• Others:
– Heterogeneity
– Scalability
– Support for fine-grained distribution of data
– Partitions & disconnected operation

File Sharing
• What is the semantics of file operations in a distributed system? What is 

the problem?
• “Unix” semantics:  the system enforces absolute time ordering on all 

operations and always returns the most recent value.
– Straightforward for system with single server and no caching.
– What about multiple servers or caching clients?
– Relax semantics of file sharing.

• Session semantics:
– Changes to an open file are initially visible only to the process that modified 

the file.  Changes are propagated only when the file is closed.
– What if two processes cache and modify the file?

• Immutable files:
– Files are created and replaced, not modified.
– Problem of concurrent operations simply disappears.

• Atomic Transactions:
– BEGIN TRANSACTION / END TRANSACTION.
– Transactions are executed indivisbly.



CPSC-662 Distributed Computing Distributed File Systems

3

Where is State Information to be maintained?

File Servers: System Structure

stateless servers  vs. “stateful” servers.

fault tolerance shorter request messages
no OPEN/CLOSE calls better performance
no server space wasted on tables readahead possible
no limits on number of open files idempotency easier
no problems if a client crashes file locking possible

Separation of File Service and Directory Service?

Separation of File Clients and File Servers?

Aspects of Distributed File Systems

CommunicationCommunication

ProcessesProcesses

NamingNaming

SynchronizationSynchronization

Fault ToleranceFault Tolerance

SecuritySecurity

Caching and ReplicationCaching and Replication



CPSC-662 Distributed Computing Distributed File Systems

4

Sun’s Network File System (NFS)

• Architecture:
– NFS as collection of protocols the provide clients with a distributed 

file system.
– Remote Access Model (as opposed to Upload/Download Model)
– Every machine can be both a client and a server.
– Servers export directories for access by remote clients (defined in the 

/etc/exports file).
– Clients access exported directories by mounting them remotely.

• Protocols:
– mounting 

• Client sends a path name and server returns a file handle.
• Static mounting (at boot-up) vs. automounting.
• Hard mounting vs. soft mounting

– file and directory access
• Servers are stateless (no OPEN/CLOSE calls)

NFS: Basic Architecture

system call layer

virtual file system layer (v-nodes) virtual file system layer

NFS client
(r-nodes)

local operating
system (i-nodes)

RPC client stub RPC server stub

NFS server local file
system interface

client server

system call layer



CPSC-662 Distributed Computing Distributed File Systems

5

NFS Implementation: Issues

• File handles: 
– specify filesystem and i-node number of file
– sufficient?

• Integration:
– where to put NFS on client?
– on server?

• Server caching:
– read-ahead
– write-delayed with periodic sync vs.   write-through

• Client caching:
– timestamps with validity checks

NFS: File System Model

• File system model similar to UNIX file system model
– Files as uninterpreted sequences of bytes
– Hierarchically organized into naming graph
– NSF supports hard links and symbolic links
– Named files, but access happens through file handles.

• File system operations
– NFS Version 3 aims at statelessness of server
– NFS Version 4 is more relaxed about this



CPSC-662 Distributed Computing Distributed File Systems

6

NFS: File System Operations

NFS: Communication

• OS independence achieved through use of RPC.

• Every NFS operation can be implemented through separate 
RPC call.
– e.g. lookup / read in Version 3

• Compound procedures in Version 4
– e.g. lookup / open / read can be combined in single request/reply.

• Compound procedures have no transactional semantics.
– IOWs: No measures are taken to avoid conflicts by concurrent 

operations from other clients.



CPSC-662 Distributed Computing Distributed File Systems

7

NFS: Processes

• Client – Server

• Stateless servers in Version 3
– File locking?

• Separate Lock Manager
– Authentication?
– Caching?

• Version 4: stateless approach abandoned

NFS: File Locking

• Version 3: locking handled by separate (stateful) lock 
manager.
– What if clients or servers fail while locks are being held?
– Need proper recovery schemes.

• Version 4: Locking integrated into file access protocol:
– Operations: lock, lockt, locku, renew
– Nonblocking lock; requires polling, but can ask to temporarily keep 

request in FIFO queue at server.
– Locks are granted for a specific time (lease); simplifies recovery.

• Share Reservation in NFS for Window-based systems



CPSC-662 Distributed Computing Distributed File Systems

8

NFS: Client Caching

• Potential for inconsistent versions at different clients.
• Solution approach:

– Whenever file cached, timestamp of last modification on server is cached as 
well.

– Validation: Client requests latest timestamp from server (getattributes), and 
compares against local timestamp.  If fails, all blocks are invalidated.

• Validation check:
– at file open
– whenever server contacted to get new block
– after timeout (3s for file blocks, 30s for directories)

• Writes:
– block marked dirty and scheduled for flushing.
– flushing: when file is closed, or a sync occurs at client.

• Time lag for change to propagate from one client to other:
– delay between write and flush
– time to next cache validation

NFS: Fault Tolerance

• RPC Failures:
– When reply is lost, retransmission may trigger multiple invocations of 

requests.
– Problem solved with duplicate-request cache and transaction 

identifiers.

• Fault tolerance becomes an issue when servers start 
becoming stateful in Version 4.

• File Locking Failures:
– Client crashes: associate lease with locks.

• Locks can only held until lease expires. Leases can be renewed by server.
• After recovery, leases may only be renewed during a grace period; no 

new leases are given out.
– False removal of leases due to network partitions (unaddressed)

• Lease renevals don’t make it to the lock holder.



CPSC-662 Distributed Computing Distributed File Systems

9

The Coda File System

• Descendant of CMU’s Andrew File System (AFS)
• AFS’ Design for Scalability

– Whole-file serving:
• on opening a file, the entire file is transferred to client

– Whole-file caching:
• persistent cache contains most recently used files on that computer.

– Observations:
• shared files updated infrequently
• working set of single user typically fits into cache on local machine
• file access patterns
• what about transactional data (databases)

• Coda/AFS Architecture:
– Small number of dedicated Vice file servers.
– Much larger collection of Virtue workstations give users and 

processes access to the file system.
– Coda provides globally shared name space.

Internal Organization

user
program VenusVenus ViceVice

workstation server

user
program

local file system

virt file system

RPC stub RPC stub



CPSC-662 Distributed Computing Distributed File Systems

10

CODA: Communication

• Interprocess communication using RCP2
(http://www.coda.cs.cmu.edu/doc/html/rpc2_manual.html)

• RPC2 provides reliable RPC over UDP.
• Support for Side Effects

– RPC connections may be associated with Side-Effects to allow 
application-specific network optimizations to be performed. An 
example is the use of a specialized protocol for bulk transfer of large 
files. Detailed information pertinent to each type of side effect is 
specified in a Side Effect Descriptor. 

– Adding support for a new type of side effect is analogous to adding a 
new device driver in Unix. To allow this extensibility, the RPC code 
has hooks at various points where side-effect routines will be called. 
Global tables contain pointers to these side effect routines. The basic 
RPC code itself knows nothing about these side-effect routines. 

• Support for MultiRPC (enables for parallel calls, e.g. 
invalidations)

Coda: Processes

• Clear distinction between client and server processes

• Venus processes represent clients.

• Vice processes represent servers.

• All processes realized as collection of user-level threads.

• Additional low-level thread handles I/O operations (why?)



CPSC-662 Distributed Computing Distributed File Systems

11

Coda: Synchronization

• Attempt to provide transactional semantics (weaker than 
normally supported by transactions)

• Problem: Continue to provide uninterrupted file service when 
servers are temporarily unavailable (failure, partition, 
disconnection)

open(RD)

server

client 1

client 2

open(WR)

Session 1

Session 2

Opening a File in AFS

• User process issues open(FileName, mode) call.
• UNIX kernel passes request to Venus if file is shared.
• Venus checks if file is in cache.  If not, or no valid callback 

promise, gets file from Vice.
• Vice copies file to Venus, with a callback promise. Logs 

callback promise.
• Venus places copy of file in local cache.
• UNIX kernel opens file and returns file descriptor to 

application.



CPSC-662 Distributed Computing Distributed File Systems

12

Cache Coherency

• Callback promise:  
– Token from Vice server.
– Guarantee that Venus will be notified if file is modified.

• 2 states:
– valid:callback promise as received from server upon open call.
– cancelled: callback was issued when somebody else issued an update 

to file (callback break).  

• Callback promise is checked whenever client opens file in 
cache.

• What about callbacks that are lost?
• Callback renewals with current timestamp of file.


