
CPSC-662 Distributed Computing Java/DSM

1

DSM Case Study I:

Java/DSM
A Platform for Heterogeneous 

Computing

W. Yu, A. Cox
Department of Computer Science

Rice University
July, 1997

Java/DSM: Introduction

• DSM (as opposed to, e.g., message passing) allows to 
focus on algorithmic issues instead than on managing 
partitioned data sets.

• Java RMI = RPC + support for object references 
across machines

• However: 
– Programmer still needs to manage coherency of replicated 

data 
– Programmer still needs to fine-tune remote interfaces



CPSC-662 Distributed Computing Java/DSM

2

Java/DSM: Motivation

• Systems for heterogeneous computing environments:

– Shared memory abstraction : (Agora, Mermaid)
• Mermaid based on IVY DSM system; supports C language.
• Hardware differences are exposed to programmer (padding 

and ordering of aggregate structures)
• Mermaid automatically performs format conversions between 

machine, but requires non-standard compiler support.
– Message passing

• MPI, PVM, etc…
• PVM: send()/receive() primitives, and programmer needs to 

marshal data using pack()/unpack() routines.
• Little/no support for sharing of complex data structures.

– RPC/RMI
• Programmer must decide when/to whom/what to communicate

Java/DSM: User Interface

• One Java VM per host.
• Java VM similar to JDK Java VM, except that all 

objects are allocated in shared memory region.
• Threads cannot migrate.

• RMI: 
– Remote object can only be accessed through remote 

interface methods.
• Java/DSM:

– Remote objects are accessed just as local objects.
– Static variables are shared by all objects in the system.



CPSC-662 Distributed Computing Java/DSM

3

Java/DSM: Memory Management
• Do not want to maintain entire object reference graph across all

machines.
• Instead, have each machine perform garbage collection independently.
• However, need to be careful that objects referenced only by remote 

machines are not prematurely reclaimed.
• Java/DSM garbage collector:

– Each collector maintains an export list, and an import list:
– Export list: remote references to locally created objects. Maintained by 

parsing all outgoing messages.
– Import list: local references to remote objects. Maintained by parsing 

incoming messages.
• During GC:

– Exported references are treated as root set of references. 
– Imported references that are not marked are sent back to their owners.
– Owners use reference counting to decide when a reference can be removed 

from the export list.
• Occasionally, synchronized collection is needed to reclaim cyclic 

structures.

Java/DSM: Data Conversion

• When a data item is passed between machines, data conversion 
is required.

• Type lookup:
– Objects in JDK-1.0.2: handle & body

– Add back pointer from body to handler.

– Require all objects allocated from the same page to be of same 
size.

– Given an address, can identify page number, look up size of objects 
within the page, find beginning of object, and follow back pointer 
to find type information.

• Special problem when a data item crosses a page boundary.

body

Type information

handle

body

Type information

handle



CPSC-662 Distributed Computing Java/DSM

4

Java/DSM: Data Conversion

page_number = (page_start – first_shared_page) / page_size;
object_size = page_info[page_number].size;

/* size of objects in this page. */
addr = page_start;
while (addr < next_page) {

back_pointer_address = addr + back_pointer_offset;
back_pointer = (JHandle*)(*(long*) back_pointer_address);
class = back_pointer -> class;

convert_pointer(back_pointer_address);
addr += sizeof(long*); /* locate the start of data. */
for (i = 0; i < class->fields_count; i++) {

type_code = class->fields[i].signature;
convert(addr, type_code);
addr += field_length(type_code);

}
}

Java/DSM: Changes to JVM

• The heap is allocated using ThreadMarks’ shared memory 
allocation routine

• Classes loaded by the JVM are put in shared memory. The 
loading is synchronized.

• During garbage collection, the GC must recognize objects 
created by remote machines, mark those references locally, 
and send the unused remote references to their owners after 
the collection.

• To support data conversion, we require a mapping from an 
arbitrary address to the object’s handle. The straightforward 
solution is to require that all objects on a page are the same 
size, and put a pointer to the handle at the beginning of every 
object.

• Most of the changes are in the memory management module. 
Rest of JVM is virtually unchanged.



CPSC-662 Distributed Computing Java/DSM

5

Example Application: Distributed 
Spreadsheet

• Distributed spreadsheet based on public domain sc.
• Extensions for distributed operation:

– Define regions of cells.
– Assign read/write privileges for each region to users.
– Lock a region to prevent others from writing it.
– Check if other users have made changes.
– Incorporate changes made by other users.

• Internal data structure:
– Cells are organized in a two-dimensional array.
– Each cell entry contains information such as its type, 

current value, printable form, and a lock bit.
– If entry is expression, this is stored in form of an E-tree 

(expression tree) with references to other cells.

Distributed SpreadSheet: Realization

• DSM (simple!)
– Identify race conditions
– Add synchronization

• RMI
– Central server gives poor performance

• Server does not scale well (hot spot)
• Interface to remote objects must be fine tuned (e.g. must be 

able to aggregate requests to clusters of cells)
– Replicated data needs support for coherence

• Update scheme: changes to the spreadsheet are actively 
propagated to others. Simple, but has much overhead.

• Invalidate scheme: short invalidation messages are sent 
instead of the changed data. Higher performance, but requires 
complicated timestamp mechanism to track ordering of events.



CPSC-662 Distributed Computing Java/DSM

6

Problem: Reference Marshaling in RMI Version

Pass-by-copy

Pass-by-reference

Example: cell A[0] contains expression 


