CPSC-662 Distributed Computing JavalDSM

DSM Case Study 1:

Java/DSM
A Platform for Heterogeneous
Computing

W. Yu, A. Cox
Department of Computer Science
Rice University
July, 1997

Java/DSM: Introduction

« DSM (as opposed to, e.g., message passing) allows to
focus on algorithmic issues instead than on managing
partitioned data sets.

« Java RMI = RPC + support for object references
across machines

* However:
- Programmer still needs to manage coherency of replicated
data
- Programmer still needs to fine-tune remote interfaces

CPSC-662 Distributed Computing JavalDSM

Java/DSM: Motivation
» Systems for heterogeneous computing environments:

- Shared memory abstraction : (Agora, Mermaid)
* Mermaid based on 1VY DSM system; supports C language.

» Hardware differences are exposed to programmer (padding
and ordering of aggregate structures)

* Mermaid automatically performs format conversions between
machine, but requires non-standard compiler support.
- Message passing
* MPI, PVM, etc..

e PVM: send()/recei ve() primitives, and programmer needs to
marshal data using pack()/ unpack() routines.

 Little/no support for sharing of complex data structures.
- RPC/RMI
¢ Programmer must decide when/to whom/what to communicate

Java/DSM: User Interface

e One Java VM per host.
e Java VM similar to JDK Java VM, except that all
objects are allocated in shared memory region.

e Threads cannot migrate.

* RMI:

- Remote object can only be accessed through remote
interface methods.

» Java/DSM:
- Remote objects are accessed just as local objects.
- Static variables are shared by all objects in the system.

CPSC-662 Distributed Computing

JavalDSM

Java/DSM: Memory Management

< Do not want to maintain entire object reference graph across all
machines.

< Instead, have each machine perform garbage collection independently.

« However, need to be careful that objects referenced only by remote
machines are not prematurely reclaimed.

* Java/DSM garbage collector:

Each collector maintains an export list, and an import list:

Export list: remote references to locally created objects. Maintained by
parsing all outgoing messages.

Import list: local references to remote objects. Maintained by parsing
incoming messages.

e During GC:

Exported references are treated as root set of references.
Imported references that are not marked are sent back to their owners.

Owners use reference counting to decide when a reference can be removed
from the export list.

e Occasionally, synchronized collection is needed to reclaim cyclic
structures.

Java/DSM: Data Conversion

« When a data item is passed between machines, data conversion
is required.

« Type lookup: ,—.lrypTormaﬂorl

Objects in JDK-1.0.2: handle & body harjdle

Add back pointer from body to handler. ,—b,'l'ypTormatiorl

harjdle
e

Require all objects allocated from the same page to be of same
size.

Given an address, can identify page number, look up size of objects
within the page, find beginning of object, and follow back pointer
to find type information.

e Special problem when a data item crosses a page boundary.

CPSC-662 Distributed Computing JavalDSM

Java/DSM: Data Conversion

page_nunber

(page_start — first_shared_page) / page_size
obj ect _si ze

page_i nf o[page_nunber]. si ze
/* size of objects in this page. */

addr = page_start
whi |l e (addr < next_page) {
back_poi nt er _address = addr + back_poi nter_offset;

back_poi nter = (JHandl e*) (*(l ong*) back_poi nter_address);
cl ass = back_pointer -> class

convert _poi nt er (back_poi nter_address);
addr += si zeof (I ong*); /* locate the start of data. */
for (i =0; i < class->fields_count; i++) {

type_code = class->fields[i].signature

convert (addr, type_code)

addr += field_l ength(type_code);

Java/DSM: Changes to JVM

e The heap is allocated using ThreadMarks' shared memory
allocation routine

e Classes loaded by the JVM are put in shared memory. The
loading is synchronized.

e During garbage collection, the GC must recognize objects
created by remote machines, mark those references locally,
and send the unused remote references to their owners after
the collection.

e To support data conversion, we require a mapping from an
arbitrary address to the object's handle. The straightforward
solution is to require that all objects on a page are the same

size, and put a pointer to the handle at the beginning of every
object.

* Most of the changes are in the memory management module.
Rest of JVM is virtually unchanged.

CPSC-662 Distributed Computing JavalDSM

Example Application: Distributed
Spreadsheet

e Distributed spreadsheet based on public domain sc.

« Extensions for distributed operation:

- Define regions of cells.
Assign read/write privileges for each region to users.
Lock a region to prevent others from writing it.
Check if other users have made changes.
Incorporate changes made by other users.

* Internal data structure:
- Cells are organized in a two-dimensional array.
- Each cell entry contains information such as its type,
current value, printable form, and a lock bit.
- If entry is expression, this is stored in form of an E-tree
(expression tree) with references to other cells.

Distributed SpreadSheet: Realization

e« DSM (simple!)
- ldentify race conditions
- Add synchronization

* RMI

- Central server gives poor performance
* Server does not scale well (hot spot)
e Interface to remote objects must be fine tuned (e.g. must be
able to aggregate requests to clusters of cells)
- Replicated data needs support for coherence
* Update scheme: changes to the spreadsheet are actively
propagated to others. Simple, but has much overhead.
¢ Invalidate scheme: short invalidation messages are sent

instead of the changed data. Higher performance, but requires
complicated timestamp mechanism to track ordering of events.

CPSC-662 Distributed Computing JavalDSM

Problem: Reference Marshaling in RM1 Version

Example: cell A[O] contains expression AL = AL+ AL = A

Foa P
bk (I T
Blachmne | Sbschine I
s Por o
«—
Pass-by-reference
| Y P S,
Packine | Slichine 2 1
[
P I T 1

Pass-by-copy > [

Bachme | Shchine I

