
CPSC-662 Distributed Computing Atomic Transactions

1

Atomic Transactions

• The Transaction Model / Primitives

• Implementation

• Reading:
– Coulouris: Distributed Systems, Addison Wesley, Chapters 14

– A.S. Tanenbaum: Distributed Operating Systems, Prentice Hall, 1995,
Chapter 3.4

Atomic Transactions

• Example: online bank transaction:
withdraw(amount, account1)

deposit(amount, account2)

• What if network fails before deposit?

• Solution: Group operations in an atomic transaction.

• Volatile storage vs. stable storage.

• Primitives:
– BEGIN_TRANSACTION

– END_TRANSACTION

– ABORT_TRANSACTION

– READ

– WRITE

CPSC-662 Distributed Computing Atomic Transactions

2

ACID Properties

A atomic: transactions happen indivisibly

C consistent: no violation of system invariants

I isolated: no interference between concurrent
transactions

D durable: after transaction commits, changes are
permanent

Serializability

BEGIN TRANSACTION
 x := 0;
 x := x + 1;
END TRANSACTION

BEGIN TRANSACTION
 x := 0;
 x := x + 2;
END TRANSACTION

BEGIN TRANSACTION
 x := 0;
 x := x + 3;
END TRANSACTION

schedule 1 x=0 x=x+1 x=0 x=x+2 x=0 x=x+3 legal

schedule 2 x=0 x=0 x=x+1 x=x+2 x=0 x=x+3 legal

schedule 3 x=0 x=0 x=x+1 x=0 x=x+2 x=x+3 illegal

Schedule is serial if the steps of each transaction occur consecutively.
Schedule is serializable if its effect is “equivalent” to some serial schedule.

CPSC-662 Distributed Computing Atomic Transactions

3

Testing for Serializability: Serialization Graphs

• Input: Schedule S for set of transactions T1, T2, …, Tk.

• Output: Determination whether S is serializable.

• Method:
– Create serialization graph G:

• Nodes: correspond to transactions

• Arcs: G has an arc from Ti to Tj if there is a Ti:UNLOCK(Am) operation
followed by a Tj:LOCK(Am) operation in the schedule.

– Perform topological sorting of the graph.
• If graph has cycles, then S is not serializable.

• If graph has no cycles, then topological order is a serial order for
transactions.

• Theorem: This algorithm correctly determines if a schedule
is serializable.

Implementation

• How to maintain information from not-yet committed
transactions: “Prepare for aborts”
– private workspace

– writeahead log / intention lists with rollback

• Commit protocol
– 2-phase commit protocol.

• Concurrency control:
– pessimistic -> lock-based: 2-phase locking

– optimistic -> timestamp-based with rollback

CPSC-662 Distributed Computing Atomic Transactions

4

Serializability through Two-Phase Locking

• read locks vs. write locks

• lock granularity

• arbitrary locking:
– non-serializable schedules

– deadlocks!

• Two-Phase Commit:

– modify data items only after lock point

– all schedules are serializable

lock point

acquire phase release phase

Two-Phase Locking (cont)

• Theorem: If S is any schedule of two-phase transactions,
 then S is serializable.

• Proof:

Suppose not. Then the serialization graph G for S has a

cycle,

Ti1 -> Ti2 -> … -> Tip -> Ti1

Therefore, a lock by Ti1 follows an unlock by Ti1,

contradicting the assumption that Ti1 is two-phase.

CPSC-662 Distributed Computing Atomic Transactions

5

Transactions that Read “Dirty” Data

(1) LOCK A

(2) READ A

(3) A:=A-1

(4) WRITE A

(5) LOCK B

(6) UNLOCK A

(7) LOCK A

(8) READ A

(9) A:=A*2

(10) READ B

(11) WRITE A

(12) COMMIT

(13) UNLOCK A

(14) B:=B/A

T1 T2

Assume that T1 fails after (13).

1. T1 still holds lock on B.
2. Value read by T2 at step (8) is

wrong.

T2 must be rolled back and
restarted.

3. Some transaction T3 may
have read value of A between
steps (13) and (14)

Strict Two-Phase Locking

• Strict two-phase locking:
– A transaction cannot write into the database until it has reached its

commit point.

– A transaction cannot release any locks until it has finished writing
into the database; therefore locks are not released until after the
commit point.

• pros:
– transaction read only values of committed transactions

– no cascaded aborts

• cons:
– limited concurrency

– deadlocks

• Models/protocols can be extended for READ/WRITE locks.

CPSC-662 Distributed Computing Atomic Transactions

6

Optimistic Concurrency Control

“Forgiveness is easier to get than permission”

• Basic idea:
– Process transaction without attention to serializability.

– Keep track of accessed data items.

– At commit point, check for conflicts with other transactions.

– Abort if conflicts occurred.

• Problem:
– would have to keep track of conflict graph and only allow additional

access to take place if it does not cause a cycle in the graph.

Timestamp-based Optimistic Concurrency Control

• Data items are tagged with read-time and write-time.

• 1. Transaction cannot read value of item if that value has
not been written until after the transaction executed.

Transaction with T.S. t1 cannot read item with write-time t2 if t2 > t1.

(abort and try with new timestamp)

• 2. Transaction cannot write item if item has value read at
later time.

Transaction with T.S. t1 cannot write item with read-time t2 if t2 > t1.

(abort and try with new timestamp)

• Other possible conflicts:
– Two transactions can read the same item at different times.

– What about transaction with T.S. t1 that wants to write to item with write-time
t2 and t2>t1?

CPSC-662 Distributed Computing Atomic Transactions

7

Timestamp-Based Conc. Control (cont)

Rules for preserving serial order using timestamps:

a) Perform the operation X if X=READ and t>=t w or if
X=WRITE, t >= t r, and t >= t w.

X=READ: set read-time to t if t > tr.
X=WRITE: set write-time to t if t > tw.

b) Do nothing if X=WRITE and tr <= t < t w.

c) Abort transaction if X=READ and t < tw or X=WRITE
and t < tr.

Timestamp-based Optimistic Concurrency Control

• Accesses to data items are tagged with timestamp (e.g.
Lamport)

• Examples:

RA WA RB

WA RA RB

RARB

WARB

WA WB

WA TC WB

WAWB

TCWB

