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Distributed Shared Memory

• Shared Memory Systems

• Consistency Models

• Distributed Shared Memory Systems
– page based

– shared-variable based

• Reading:
– Coulouris: Distributed Systems, Addison Wesley, Chapter 17

– A.S. Tanenbaum: Distributed Operating Systems, Prentice Hall, 1995,
Chapter 6

– M. Stumm and S. Zhou: Algorithms Implementing Distributed Shared
Memory, IEEE Computer, vol 23, pp 54-64, May 1990

Distributed Shared Memory

• Shared memory: difficult to realize vs. easy to program with.

• Distributed Shared Memory (DSM): have collection of
workstations share a single, virtual address space.

• Vanilla implementation:
– references to local pages done in hardware.

– references to remote  page cause HW page fault; trap to OS; load the
page from remote; restart faulting instruction.

• Optimizations:
– share only selected portions of memory.

– replicate shared variables on multiple machines.
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Shared Memory

• DSM in context of shared memory for multiprocessors.

• Shared memory in multiprocessors:
– On-chip memory

• multiport memory, huh?

– Bus-based multiprocessors
• cache coherence

– Ring-based multiprocessors
• no centralized global memory.

– Switched multiprocessors
• directory based

– NUMA (Non-Uniform Memory Access) multiprocessors
• no attempt made to hide remote-memory access latency

Bus-Based Multiprocessors

• snooping caches

• cache consistency protocols

• write through:

CPU

cache
memoryCPU

cache

CPU

cache

CPU

cache

bus

Event Action taken by a cache in response to its
own CPU’s operation

Action taken by a cache in response
to remote CPU’s operation

Read miss Fetch data from meory and store in cache (No action)

Read hit Fetch data from local cache (No action)

Write miss Update data in memory and store in cache (No action)

Write hit Update memory and cache Invalidate cache entry
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Bus-based Multiprocessors: Write-Once Cache Protocol

A B

W1

C W1

clean

A B

W1

C W1

clean

W1

clean

1. Initial state
Word with value W1 is in memory
and also cached in B.

2. A reads word and gets W1.
B does not respond, but memory does.

A B

W1

C W1

invalid

W2

dirty

3. A writes value W2. B invalidates entry.
A’s copy is marked dirty.
Subsequent writes are done locally, without
bus traffic.

A B

W1

C W1

invalid

W2

invalid

4. C reads or writes to word.  A sees
request, provides the value, and
invalidates local entry. C now has
only valid copy.

W2

dirty

Ring-Based Multiprocessors
[Delp et al. ‘Memory as a Network Abstraction”, IEEE Network, vol 5,

 pp 34-41, July 1991]

• No centralized global memory.

• Memory blocks in shared space
have home memory field.

• Read:
1. wait for token

2. send out request

3. some machine has block; puts it in
token, clear exclusive bit.

• Write:
– block local; only copy

• write locally

– block is local; not only copy

• send out invalidation packet

• set exclusive field

– block not local

• send out request/invalidation

CPU CPU

CPUCPU

CPU

Private Memory

MMU Cache
Home 

Memory
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Switched Multiprocessors (Dash)
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Comparison of Shared Memory Systems

single-bus 
multi-

processor

switched 
multi-

processor

NUMA
machine

Page-based
DSM

Shared
variable

DSM

Object
based
DSM

managed by MMU managed by OS
managed by language
runtime system

hardware-controlled 
caching software-controlled caching

remote access in hardware remote access in software

sequent
firefly

Dash
Alewife

Cm*
Butterfly

Ivy
Mirage

Munin
Midway

Linda
Orca



CPSC-662 Distributed Computing DSM  1

5

Consistency Models

• Single copy of writeable page:
–simple, but expensive for heavily shared pages

• Multiple copies of writeable page
–how to keep pages consistent?

• Perfect consistency is expensive.

• How to relax consistency requirements?

• Consistency model
Contract between application and memory.

If application agrees to obey certain rules, memory promises to work
correctly.

Consistency Models

• Strict consistency

• Sequential consistency

• Causal consistency

• PRAM (pipeline RAM) consistency

• Weak consistency

• Release consistency

• increasing restrictions on application software

• increasing performance
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Strict Consistency

• Most stringent consistency model:
Any read to a memory location x returns the value stored

by the most recent write operation to x.

• strict consistency observed in uni-processor systems.

• has come to be expected by uni-processor programmers
–very unlikely to be supported by any multiprocessor

• All writes are immediately visible by all processes

• Absolute global time order is maintained

• Two scenarios:

P1:  W(x)1

P2:         R(x)1

P1:  W(x)1

P2:       R(x)0  R(x)1

Sequential Consistency

• Strict consistency nearly impossible to implement.

• Programmers can manage with weaker models.

• Sequential consistency [Lamport 79]
The result of any execution is the same as if the operations of all
processors were executed in some sequential order, and the
operations of each individual processor appear in this sequence in the
order specified by its program.

• Any valid interleaving is acceptable, but all processes must
see the same sequence of memory references.

• Scenarios:

• Sequential consistency does not guarantee that read returns
value written by another process anytime earlier.

• Results are not deterministic.

P1:  W(x)1

P2:       R(x)1  R(x)1

P1:  W(x)1

P2:       R(x)0  R(x)1



CPSC-662 Distributed Computing DSM  1

7

Sequential Consistency (cont)

• Implementation on DSM or multiprocessor
– ensure that memory operation started only after all previous ones have

been completed

– example: use totally-ordered reliable broadcast mechanism to
broadcast operations on shared variables

– remember: exact order of operations does not matter as long as
processes agree on the order of operations on the shared memory.

• Sequential consistency is programmer-friendly but expensive

Causal Consistency
• Weaken sequential consistency by making distinction

between events that are potentially causally related and
events that are not.

• USENET scenario: causality relations may be violated by
propagation delays.

• Causal consistency:
Writes that are potentially causally related must be seen by all

processes in the same order.  Concurrent writes may be seen in a
different order on different machines.

• Scenario

P1:  W(x)1               W(x)3

P2:         R(x)1  W(x)2

P3:         R(x)1              R(x)3 R(x)2

P4:         R(x)1              R(x)2 R(x)3
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Causal Consistency (cont)

P1:  W(x)1               

P2:         R(x)1  W(x)2

P3:                        R(x)2 R(x)1

P4:                        R(x)1 R(x)2

• Other scenarios:

P1:  W(x)1               

P2:             W(x)2

P3:                        R(x)2 R(x)1

P4:                        R(x)1 R(x)2

PRAM (pipelined RAM) Consistency
• Drop requirement that causally-related writes must be seen in same order

by all machines.

• PRAM consistency:

Writes done by a single process are received by all other processes in
the order in which they were issued, but writes from different

processes may be seen in a different order by different processes.

• Scenario:

• Easy to implement: all writes generated by different processors are
concurrent

• Counterintuitive result:

P1:  W(x)1               

P2:          R(x)1 W(x)2

P3:                        R(x)1 R(x)2

P4:                        R(x)2 R(x)1

P2: b = 1;
    if (a==0) kill(P1);

P1: a = 1;
    if (b==0) kill(P2);
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Weak Consistency

• PRAM consistency still unnecessarily restrictive for many
applications: requires that writes originating in single process
be seen everywhere in order.

• Example:
– reading and writing of shared variables in tight loop inside a critical

section.

– Other processes are not supposed to touch variables, but writes are
propagated to all memories anyway.

• Introduce synchronization variable:
– When synchronization completes, all writes are propagated outward

and all writes done by other machines are brought in.

– All shared memory is synchronized.

Weak Consistency (cont)
1. Accesses to synchronization variables are sequentially ordered.

2. No access to a synchronization variable is allowed to be performed until all
previous writes have completed everywhere.

3. No data access (read or write) is allowed to be performed until all previous
accesses to synchronization variables have been performed.

• All processes see accesses to synchronization variables in same order.

• Accessing a synchronization variable “flushes the pipeline” by forcing writes to
complete.

• By doing synchronization before reading shared data, a process can be sure of
getting the most recent values.

• Scenarios:
P1: W(x)1 W(x)2)  S              

P2:                  R(x)1 R(x)2 S

P3:                  R(x)2 R(x)1 S

P1: W(x)1 W(x)2)  S              

P2:                  S  R(x)1
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Release Consistency

• Problem with weak consistency:

– When synchronization variable is accessed, we don’t know if process
is finished writing shared variables or about to start reading them.

– Need to propagate all local writes to other machines and gather all
writes from other machines.

• Operations:

– acquire  critical region: c.s. is about to be entered.
• make sure that local copies of variables are made consistent with remote

ones.

– release  critical region: c.s. has just been exited.
• propagate shared variables to other machines.

– Operations may apply to a subset of shared variables

• Scenario:
P1: Acq(L) W(x)1 W(x)2) Rel(L)              

P2:                           Acq(L) R(x)2 Rel(L)

P3:                                              R(x)1

Release Consistency (cont)
• Possible implementation

– Acquire:
1. Send request for lock to synchronization processor; wait until granted.

2. Issue arbitrary read/writes to/from local copies.

– Release:
1. Send modified data to other machines.

2. Wait for acknowledgements.

3. Inform synchronization processor about release.

– Operations on different locks happen independently.

• Release consistency:

1. Before an ordinary access to a shared variable is performed, all
previous acquires done by the process must have completed
successfully.

2. Before a release is allowed to be performed, all previous reads and
writes done by the process must have completed.

3. The acquire and release accesses must be  PRAM consistent
(processor consistent) (sequential consistency is not required!)



CPSC-662 Distributed Computing DSM  1

11

Consistency Models: Summary

Consistency Description

Strict Absolute time ordering of all shared accesses matters

Sequential All processes see all shared accesses in the same order

Causal All processes see all causally-related shared accesses in the
same order

PRAM All processes see writes from each procesor in the order they
were issued.  Writes from different processors may not
always be in the same order.

Weak Shared data can only be counted on to be consistent after a
synchronization is done

Release Shared data are made consistent when a critical region is
exited

Page-Based DSM

• NUMA
– processor can directly reference local and remote memory locations

– no software intervention

• Workstations on network
– can only reference local memory

• Goal of DSM
– add software to allow NOWs to run multiprocessor code

– simplicity of programming

– “dusty deck” problem
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Basic Design

• Emulate cache of multiprocessor using the MMU and system
software

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 2 5

9

CPU

1 3 6

8

CPU

4 7 11

12

CPU

150

10 14

13 15

CPU

Design Issues

• Replication
– replicate read-only portions

– replicate read and write portions

• Granularity
– restriction: memory portions multiples of pages

– pros of large portions:
• amortize protocol overhead

• locality of reference

– cons of large portions
• false sharing!

A
B

Processor 1

code using A

A
B

Processor 2

code using B
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Design Issues (cont)

• Achieving Sequential Consistency
– Only one copy of each page

• consistency trivially guaranteed

– Replicated pages:
• read-only pages:

– ok

• read-write pages
– read operation

• install local copy, make it read-only

– write operation

• update or invalidate other copies?

• invalidation typically used (why?)

• Typical protocol
– R (readable), W (readable and writeable) pages

– each page has owner; process that most recently wrote to page

A Protocol for Sequential Consistency (reads)

Processor 1

P W
owner

Processor 2

Processor 1

P R
owner

Processor 2

Processor 1

P R
owner

Processor 2

R

Processor 1

P R

Processor 2

R
owner

Processor 1

P

Processor 2

R
owner

Processor 1

P

Processor 2

W
owner
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A Protocol for Sequential Consistency (write)

Processor 1

P W
owner

Processor 2

Processor 1

P R
owner

Processor 2

Processor 1

P R
owner

Processor 2

R

Processor 1

P R

Processor 2

R
owner

Processor 1

P

Processor 2

R
owner

Processor 1

P

Processor 2

W
owner

Design Issues (cont)

• Finding the Owner
– broadcast request for owner

• combine request with requested operation

• problem: broadcast effects all participants (interrupts all processors), uses
network bandwidth

– page manager
• possible hot spot

• multiple page manager, hash on page address

– probable owner
• each process keeps track of probable owner

• periodically refresh information about current owners
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Design Issues (cont)

• Finding the copies
– How to find the copies when they must be invalidated

– broadcast requests
• what when broadcasts are not reliable?

– copysets
• maintained by page manager or by owner

3 4

CPU

2 3 4

CPU

1 2 3

CPU

2 3

CPU

2
4

1

CPU

4

1
3
4

5
2
4

Design Issues (cont)

• Synchronization
– locks

– semaphores

– barrier locks

– Traditional synchronization mechanisms for multiprocessors don’t
work; why?

– Synchronization managers
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Shared-Variable DSM

• Is it necessary to share entire address space?

• Share individual variables.

• more variety in possible update algorithms for replicated
variables

• opportunity to eliminate false sharing

• Examples: Munin (predecessor of Threadmarks)

[Bennet, Carter, Zwaenepoel, “Munin: Distributed Shared Memory Based on Type-
Specific Memory Coherence”, Proc Second ACM Symp. on Principles and

Practice of Parallel Programming, ACM, pp. 168-176, 1990.]

Munin [Bennet et al, 1990]

• Use MMU: place each shared object onto separate page.

• Annotate declarations of shared variables.
– keyword   shared

– compiler puts variable on separate page

• Synchronization:
– lock variables

– barriers

– condition variables

• Release consistency

• Multiple update protocols

• Directories for data location
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Release Consistency in Munin

• Uses (eager) release consistency

• Critical regions
– writes to shared variables occur inside critical region

– reads can occur anywhere

– when critical region exited, modified variables are brought up to date
on all machines.

• Three classes of variables:
– ordinary variable:

• not shared; can be written only by process that created them.

– shared data variables:
• visible to multiple processes; appear sequentially consistent.

– synchronization variable:
• accessible via system-supplied access procedures

• lock/unlock for locks, increment/wait for barriers

Release Consistency in Munin (cont)

• Example:

lock(L);
a=1; /* changes to
b=2;  * shared 
c=3;  * variables*/
unlock(L);

a,b,c a,b,c
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Multiple Protocols

• Annotations for shared-variable declarations:
– read-only

• do not change after initialization; no consistency problems

• protected by MMU

– migratory
• not replicated; migrate from machine to machine as critical regions are

entered

• associated with a lock

– write-shared
• safe for multiple programs to write to it

• use “diff” protocol to resolve multiple writes to same variable

– conventional
• treated as in conventional page-based DSM: only one copy of writeable

page; moved between processors.

Twin Pages in Munin

• Initially, write-shared page is marked as read-only.

• When write occurs, twin copy of page is made, and original
page becomes read/write

• Release:
– word-by-word comparison of dirty pages with their twins

– send the differences to all processes needing them

– reset page to read-only

– compare incoming pages for modified words

– if both local and incoming word have been modified, signal runtime
error

6

R

6

RW

6

twin

8

RW

6

twin

8

RW

6

twin

word 4
6->8

message
sent
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Sequential vs Release Consistent Memory

Process1:
/* wait for process 2 */
wait_at_barrier(b);
for(i=0;i<n;i+=2)
  a[i] = a[i]+f(i);
/* wait until proc 2 is done */
wait_at_barrier(b);

Process2:
/* wait for process 1 */
wait_at_barrier(b);
for(i=1;i<n;i+=2)
  a[i] = a[i]+g(i);
/* wait until proc 1 is done */
wait_at_barrier(b);

........

barrier barrier

a[0]= a[2]= a[n-1]=

a[1]= a[3]= a[n]=

P1:

P2:

barrier
manager

Sequential vs Release Consistent Memory

Process1:
/* wait for process 2 */
wait_at_barrier(b);
for(i=0;i<n;i+=2)
  a[i] = a[i]+f(i);
/* wait until proc 2 is done */
wait_at_barrier(b);

........

barrier barrier

a[0]= a[2]= a[n-1]=

a[1]= a[3]= a[n]=

P1:

P2:

barrier
manager

send changes


