
CPSC-662 Distributed Computing Synchronization

1

Synchronization

• Problems in synchronization in distributed systems.

• Synchronization vs. mutual exclusion

• Centralized synchronization mechanisms in distributed systems

• Distributed synchronization mechanisms

Reading: Coulouris, Chapter 10

Synchronization: Introduction

• A scary scenario:

• Synchronization: temporal ordering of sets of events produced
by concurrent processes in time.
• Synchronization between senders and receivers of messages.
• Control of joint activity.
• Serialization of concurrent access to shared objects/resources.

• Why not Semaphores ?!
• centralized systems: shared memory, central clock
• distributed system: message passing, no global clock

• Events cannot be totally ordered!

client Obj1 Obj2
deposit

confirm

withdraw

CPSC-662 Distributed Computing Synchronization

2

A Partial Event Ordering for Distributed Systems
(Lamport 1978)

• Absence of central time means: no notion of happened-when (no total
ordering of events)

• But can generate a happened-before notion (partial ordering of events)
• Happened-Before relation:

1. Pi a b
Event a happened-before Event b. (a -> b)

2. Pi a

Event a happened-before Event b. (a -> b)
Pj b

3. Pi a

Event a happened-before Event c. (a -> c) (transitivity)

Pj b c

happened-before Relation

• What when no happened-before relation exists
between two events?

Pi
a

Events x and y are concurrent.

Pj
b c

dx

y

?

• Problem:
• only approximate knowledge of state of other

processes
• Need global time:

• common clock
• synchronized clocks

CPSC-662 Distributed Computing Synchronization

3

Synchronization Schemes

based on mutual exclusion

no mutual exclusion

centralized distributed

central process circulating token

physical clock
eventcount

physical clocks
logical clocks

Centralized Synchronization Mechanisms

1. Send request message to coordinator to enter C.S.
2. If C.S. is free, the coordinator sends a reply

message. Otherwise it queues request and delays
sending reply message until C.S. becomes free.

3. When leaving C.S., send a release message to
inform coordinator.

• Characteristics:
– ensures mutual exclusion
– service is fair
– small number of messages required
– fully dependent on coordinator

coordinator

P1

P2

P3

1
2

3

1. Physical Clocks
provide a single clock

2. Central Process

CPSC-662 Distributed Computing Synchronization

4

Centralized Synch. Mechanisms:
3. Eventcounts

• Primitives:

advance(E)
• increase value of E by one. Indicates that particular event

has happened.
• Invoked by signaler.

read(E)
• return “current” value of E.
• returns lower bound; why?

await(E, v)
• suspend calling process until value of E is at least v.

Eventcounts vs. Semaphores

• Example: Producer-Consumer Problem:

Producer:
int i = 0;

while (TRUE) {
 i++;
 produce item;

 await(EMPTY, i-N);

 deposit item;

 advance(FULL);

}

Consumer:
int i = 0;

while (TRUE) {
 i++;
 await(FULL,i);

 remove item;

 advance(EMPTY)

 consume item;

}

Eventcount * FULL; Eventcount * EMPTY;

CPSC-662 Distributed Computing Synchronization

5

Eventcounts: Implementation

• read:
1. send read message with seq#.
2. reply current value with seq#.
3. return from read call with value

• advance
1. send advance message to owner

• await
1. observer sends await(v) message to owner
2. when value reaches v, owner sends “await

confirm” message to observer.
3. observer returns from await.

E

signaler observer

owner

1

2
3

E

signaler observer

owner1

E

signaler observer

owner
1

2
3

Distributed Synchronization: Physical Clocks

• Conditions for a physical clock Ci:

dC

dt
k

i

! <1

! " <i j C t C ti j, () () #

• runs at approximately
correct rate:

• should tell approximately
the correct time:

• Synchronizing clocks by exchanging messages:

Pi

Pj

t

t’

message m

message delay !m t t= " '

minimum delay µm > 0

unpredictable delay ! " µm m m= #

CPSC-662 Distributed Computing Synchronization

6

Clock Synchronization: Basic Algorithm

1.) while no synchronization message arrives, clock Ci increases

monotonically

2.) Pi sends synchronization message m at time t with timestamp Tm

= Ci(t).

3.) Pj receives synchronization message m at time t’. Updates Cj to

be

C t C t Tj j m m('): max(('),)= + µ

Clock Condition

Distributed Synchronization: 2. Logical Clocks

• Absolute time?

• Is chronological ordering necessary?

• Logical clock: assigns a number to each local event.

! " Events : if , then () < ()a b a b C a C b,

Clock Condition

• In Other Words:
a b

c

Ci (a) < Ci(b) Ci (b) < Cj(c)

Pi

Pj

CPSC-662 Distributed Computing Synchronization

7

Total Ordering with Logical Clocks
• Rules:

– Rule 1: increment Ci after every
local event.

– Rule 2: timestamp outgoing
messages with current local clock

– Rule 3: Upon receiving message
with timestamp TS, Pj updates
local clock Cj to be
Cj = max (Cj, TS+1)

• Total ordering of events: assuming that clocks satisfy Clock
Condition, define following relation:

for events a on Pi and b on Pj.

a b

C a C b

C a C b i j

i j

i j

! "

<

= <

() ()

() ()

or

 and

aCi Ci+1

aCi Ci+1

TS = Ci

Cj Cj = max(Cj,TS+1)
TS

Example: Distributed Checkpointing

• “At 5pm everybody writes its state to stable storage!”
• Centralized System:

• Distributed System:

rriiing!

rriiing!

rriiing!

CPSC-662 Distributed Computing Synchronization

8

Distributed Checkpointing and Logical Clocks

“At logical-clock time 5000 write state
to stable storage!”

4999 5000 5001

4890 4891 4892

5001

msg(4891) msg(5001)

5002
+

5002

Logical Clocks and Distributed Mutual Exclusion

• Mutual Exclusion:
– Process holding resource must release it before another

process can acquire it.
– Grant requests for resources in order in which they were

made.
– Requests are eventually granted, as long as holding processes

return resources.

CPSC-662 Distributed Computing Synchronization

9

Lamport’s Algorithm

req
(T m

:P i)

ack(Tk)
Pi Pj Pi

req(Tm:Pi)req(Ts:Po)...

rel
ease(

P i)

PiPj

req(Tm:Pi)req(Ts:Po)...

Ricart and Agrawala

Reminder: Central Coordinator

Pi coordinator

request, reply, release cycle

req
(se

q#
,P i)

Other participants form
Distributed Coordinator

CPSC-662 Distributed Computing Synchronization

10

Maekawa (1985)

• Ricart and Agrawala
– fully symmetric algorithm: all processes run exactly the same

algorithm.
– improvements by fiddling with messages.

• Alternative
– relax symmetry
– allow arbitration requests to be exchanged be sets of nodes with

pairwise non-null intersections.

• Choice of subsets (Coteries)
– all pairwise intersections are non-null
– every Node i contained in its own subset S(i)
– all S(i)s should have the same size
– every Node i should be contained in same number of subsets

Maekawa (cont)

• Example: Finite Projective Planes

S(0) = {0,5,6}
S(1) = {1,3,6}
S(2) = {2,1,0}
S(3) = {3,0,4}
S(4) = {4,1,5}
S(5) = {5,3,2}
S(6) = {6,4,2}

0

1

2

3

46

5

• Use request, reply, release cycle
• need messages3 N

CPSC-662 Distributed Computing Synchronization

11

Distributed Mutual Exclusion: Conclusion

Centralized Scheme Coteries
(Maekawa)

Fully Distributed Scheme
(Ricart and Agrawala)

Pi PiPi

3 messages messages 3N messages3 N

