
CPSC-662 Distributed Computing Group Communication

1

Group Communication

• Point-to-point vs. one-to-many
• Multicast communication
• Atomic multicast
• Virtual synchrony
• Group management
• ISIS

Reading:
• Coulouris: Distributed Systems, Addison Wesley,

Chapter 4.5, Chapter 11.4, Chapter 14

Group Communication: Introduction

• One-to-many communication
• Dynamic membership
• Groups can have various communication patterns

– peer group
– server group
– client-server group
– subscription (diffusion) group
– hierarchical groups

CPSC-662 Distributed Computing Group Communication

2

Group Membership Management

Leave

Fail

Join

Send

multicast group

Multicast Communication

• Reliability guarantees:
– Unreliable multicast: Attempt is made to transmit the

message to all members without acknowledgement.
– (Reliable multicast: Message may be delivered to some but

not all group members.)
– Atomic multicast: All members of the group receive message,

or none of them do.

• Message reception: message has been received and buffered in
the receiver machine. Not yet delivered to the application.

• Message delivery: The previously received message is delivered to
the application.

CPSC-662 Distributed Computing Group Communication

3

Multicast Communication: Message Ordering

• Globally (chronologically) ordered multicast: All members are
delivered messages in order they were sent.

• Totally (consistently) ordered multicast: Either m1 is delivered
before m2 to all members, or m2 is delivered before m1 to all
members.

• Causally ordered multicast: If the multicast of m1 happened-
before the multicast of m2, then m1 is delivered before m2 to all
members.

• Sync-ordered multicast: If m1 is sent with sync-ordered multicast
primitive, and m2 is sent with any ordered multicast primitive,
then either m1 is delivered before m2 at all members, or m2 is
delivered before m1 at all members.

• Unordered multicast: no particular order is required on how
messages are delivered.

Message Ordering: Examples

A
B

C

D

E
F

G

CPSC-662 Distributed Computing Group Communication

4

Atomic Multicast

• Simple multicast algorithm: Send a message to every process in
the multicast group, using reliable message passing mechanism
(e.g. TCP).
– Is not atomic: does not handle processor failures.

• “Fix” to simple multicast algorithm: Use 2-phase-commit (2PC)
technique and treat multicast as transaction.
– Works, but correctness guarantees stronger than necessary
– 1. If sending process S fails to obtain ack from process P, S

must abort delivery of message.
– 2. If S fails after delivering m to all processors, but before

sending “commit” message, delivery of m is blocked until S
recovers.

• 2PC protocol does more work than is really necessary.

2-Phase-Commit Protocol

• Protocol for atomic commit.

Coord
Commit?

yes!

yes!

yes!

Commit!

point of no return

Coord

Commit?

no!

yes!

yes!

Abort!

CPSC-662 Distributed Computing Group Communication

5

Basic 2-Phase-Commit
Coordinator

• multicast: ok to commit?
• collect replies

– all ok => send commit
– else => send abort

Participant:

• ok to commit =>
 save to temp area, reply ok

• commit =>
 make change permanent

• abort =>
 delete temp area

Handling Participant Failures in 2PC
Coordinator

• multicast: ok to commit?
• collect replies

– all ok =>
• log “commit” to

“outcomes” table
• send commit

– else =>
• send abort

• collect acknowledgements
• garbage-collect “outcome”

information

Participant:

• ok to commit =>
 save to temp area, reply ok

• commit =>
 make change permanent

• abort =>
 delete temp area

• after failure:
for each pending protocol,
contact coordinator to learn
outcome

CPSC-662 Distributed Computing Group Communication

6

Handling Participant Failures in 2PC
Coordinator
• multicast: ok to commit?
• collect replies

– all ok =>
• log “commit” to “outcomes”

table
• wait until on persistent storage
• send commit

– else
• send abort

• collect acknowledgements
• garbage-collect “outcome” information

after failure
for each pending protocol in “outcomes” table
send outcome (commit or abort)
wait for acknowledgements
garbage-collect “outcome” information

Participant:
first time message received:
• ok to commit =>

 save to temp area, reply ok
• commit =>

 make change permanent
• abort =>

 delete temp area

Message is a duplicate (recovering
coordinator)

• send acknowledgement

After failure:
for each pending protocol,
contact coordinator to learn outcome

Dynamic Group Membership Problem

• Dynamic Uniformity: Any action taken by a process must be consistent
with subsequent actions by the operational part of system.

• D.U. not required whenever the operational part of the system is taken
to “define” the system, and the states and actions of processes that
subsequently fail can be discarded.

• D. U. vs. commit protocols:
– Commit protocol: If any process commits some action, all processes

will commit it. This obligation holds within a statically defined set of
processes: a process that fails may later recover, so the commit
problem involves an indefinite obligation with regard to a set of
participants that is specified at the outset. In fact, the obligation
even holds if a process reaches a decision and then crashes without
telling any other process what that decision was.

– D.U.: The obligation to perform an action begins as soon as any
process in the system performs that action, and then extends to
processes that remain operational, but not to processes that fail.

CPSC-662 Distributed Computing Group Communication

7

The Group Membership Problem

• Group Membership Service (GMS) maintains membership of distributed
system on behalf of processes.

• Operations:

Operation Function Failure Handling

join(proc-id, callback)
returns(time, GMS-list)

Calling process is added to member-
ship list. Returns logical time and
list of current members. Callback
invoked whenever core membership
changes

Idempotent: can be reissued
with same outcome.

leave(proc-id)
returns void

Can be issued by any member of the
system. GMS drops specified
process from membership list and
issues notification to all members of
the system. Process must re-join.

Idempotent.

monitor(proc-id,callback)
returns callback-id

Can be issued by any member of the
system. GMS registers a callback
and will invoke callback(proc-id)
later if the designated process
fails.

Idempotent.

Implementing a GMS

• GMS itself needs to be highly available.
• GMS server needs to solve the GMS problem on its

own behalf.
• Group Membership Protocol (GMP) needed for

membership management in GMS (few processes),
while more light-weight protocol can be used for the
remainder of the system (with large numbers of
processes).

• The specter of partitions: What to do when single
GMS splits into multiple GMS sub-instances, each of
which considers the other to be faulty? ⇒ primary
partition

• Merging partitions?

CPSC-662 Distributed Computing Group Communication

8

A Simple Group Membership Protocol

• Failure detection by time-out on ping operations.
• GMS coordinator: GMS member that has been operational for the

longest period of time.
• Handling of members suspected of having failed (shunning)

– Upon detection of apparent failure: stop accepting
communication from failed process. Immediately multicast
information about apparent failure. Receiving processes shun
faulty process as well.

– If shunned process actually operational, it will learn that it
has been shunned when it next attempts to communicate.
Now must re-join using a new process identifier.

A Simple Group Membership Protocol (2)

• Round-based protocol (join/leave requests)
• Two phases when old GMS coordinator not part of members to

join/leave.
• First round:

– GMS coordinator sends list of joins/leaves to all current members.
– Waits for as many acks as possible, but requires majority from

current membership.
• Second round:

– GMS commits the update, and sends notification of failures that
were detected during first round.

• Third round necessary when current coordinator is suspected of having
failed, and some other coordinator must take over.
– New coordinator starts by informing at least a majority of the

GMS process listed in the current membership that coordinator
has failed.

– Then continue as before.

CPSC-662 Distributed Computing Group Communication

9

Atomic Multicast in Presence of Failures

• Dynamically Uniform FAMC: If any process delivers, then all
processes that remain operational will deliver, regardless of
whether first process remains operational after delivering.

• Not Dynamically Uniform FAMC: If one waits long enough, one
finds that either all processes that remained operational
delivered, or none.

• Why do we care?

Definition: Failure-Atomic Multicast (FAMC):
For a specified class of failures, multicast will
either reach all destinations, or not.

Dynamically Uniform vs. Not Dynamically Uniform

crash!

delivered

crash!

not delivered

Dynamically Uniform FAMC

Dynamically Non-Uniform
FAMC

CPSC-662 Distributed Computing Group Communication

10

Dynamically Non-Uniform FAMC
Simple (inefficient) multicast protocol:

•Sender
– Add header with list of members at

time when message is sent.
– Send out message to all members of

the group.
•Member:

– Upon receipt of the message,
immediately deliver.

– Resend message to all destinations.
– Receives one message from sender and

one from each non-failed receiver.
– Discard all copies of message that

arrive after message delivered.

•Protocol expensive!

Dynamically Non-Uniform FAMC (2)

• The protocol is Failure-Atomic, i.e. if a process delivers message, all
destinations that remain operational must also receive and deliver
message.

• The protocol is not Dynamically Uniform Failure-Atomic:

crash!
crash!

Example:

CPSC-662 Distributed Computing Group Communication

11

Dynamically Uniform FAMC

• Simple modification to previous protocol:
– Delay delivery of messages until copy has been received from

every destination in current membership list provided by
Group Membership Service.

Virtual Synchrony

• “Send to all members or to none”
– Who are the members, in particular in presence of failures?

• Group view: current list of members in the group.
– Group view is consistent among all processes.
– Members are added/deleted through view changes.

• Virtually synchronous atomic multicast:
– 1. There is a unique group view in any consistent state on which all

members of the group agree.
– 2. If a message m is multicast in group view v before view change c,

either no processor in v that executes c ever receives m, or every
processor in v that executes c receives m before performing c.

CPSC-662 Distributed Computing Group Communication

12

Virtual Synchrony (2)
• Define G as set of messages multicast between any two consecutive

view changes.
• All processors in a group view v that do not fail receive all messages

in G.
• A processor p that fails may not receive all of G; but we know what

p received; this simplifies recovery.

p

view change view change

View change managed by group membership protocol.

ISIS
http://simon.cs.cornell.edu/Info/Projects/ISIS

• Group communication toolkit
• Facilities:

– Multicast
– Group view maintenance
– State transfer

• Synchrony
– Closely synchronous

• All common events
are processes in
same order (total
and causal ordering)

– Virtually synchronous
• Failures are synch-

ordered

Multicast protocols:

FBCAST: unordered

CBCAST: causally ordered

ABCAST: totally ordered

GBCAST: sync-ordered
used for managing group
membership

CPSC-662 Distributed Computing Group Communication

13

ISIS: CBCAST

• Group has n members
• Each member i maintains timestamp vector TSi with n components.
• TSi[j] = timestamp of last message received by i from j.

A B C
[0,0,0] [0,0,0] [0,0,0]

[1,0,0]

[1,1,0]

[1,0,0]

CBCAST (2)

mc_receive(msg m)
Pi: let Pj be sender of m
 let tsj be timestamp vector in m
 check:
 1. tsj[j] = TSi[j]+1
 /* this is next message in sequence from Pj
 no messages have been missed. */
 2. for all k<>j: tsj[k] <= TSi[k]
 /* Sender has seen a message that the
 receiver has missed. */
 If both tests passed, message is delivered, else
 it is buffered.

mc_send(msg m, view v)
Pi: TSi[i] := TSi[i]+1

 send m to all members of view v

 send TSi[] as part of message m.

CPSC-662 Distributed Computing Group Communication

14

CBCAST: Example

4

6

8

2

1

5

3

7

8

2

1

5

3

5

8

2

1

5

3

7

8

2

1

5

2

6

8

2

1

5

3

7

8

3

1

5

vector in message
sent by P0

state of vectors at the other machines

Virtually Synchronous Group View Changes

• Virtual synchrony: all messages sent during a view vi are guaranteed to
be delivered to all operational members of vi before ISIS delivers
notification of vi+1.

• Process p joins to produce group vi+1:
– no message of vi is delivered to p
– all messages sent by members of vi+1 after notification has been sent

by ISIS will be delivered to p.
• Sender s fails in view vi:

– messages are stored at receivers until they are group stable.
– if sender of non group stable message fails, holder of message is

elected, and continues multicast.
• Some member q of vi fails, producing vi+1:

– did q receive all messages in vi?
– did q send messages to other failed processes?

CPSC-662 Distributed Computing Group Communication

15

ABCAST: causally and totally ordered

Originally: form of 2PC protocol
1. Sender S assigns timestamp (sequence number) to message.
2. S sends message to all members.
3. Each receivers picks timestamp, larger than any other timestamp it has

received or sent, and sends this to S.
4. When all acks arrived, S picks largest timestamp among them, and sends

a commit message to all members, with the new timestamp.
5. Committed messages are sent in order of their timestamps.

Alternatives:
Sequencers

Interlude: Causally and Totally Ordered Communication:
A Dissenting Voice

Reference: D. Cheriton and D. Skeen
“Understanding the Limitations of Causally and Totally Ordered Communication”, 14th ACM Symposium

on Operating Systems Principles, 1993

• Unrecognized causality (can’t say “for sure”)

– causal relationships between messages at semantic level may not be
recognizable by the happens-before relationship on messages.

• Lack of serialization ability (can’t say “together”)

– cannot ensure serializable ordering between operations that correspond
to groups of messages.

• Unexpressed semantic ordering constraints (can’t say “whole story”)

– many semantic ordering constraints are not expressible in happens-before
relationship

• No efficiency gain over state-level techniques (can’t say efficiently)

– not efficient, not scalable

CPSC-662 Distributed Computing Group Communication

16

Interlude (2): Unrecognized Causality
Example 1: Shop Floor Control

client A

SFC 1

database

SFC 2

client B

“start” request
and reply

“stop” request
and reply

“start”
broadcasted

“stop”
broadcasted

?

Interlude (3): Unrecognized Causality
Example 2: Fire Control

P

Q

R

first “fire”
message

second “fire”
message

“fire out”
message

CPSC-662 Distributed Computing Group Communication

17

Reliable Multicast Protocol
(B.Whetten,T.Montgomery,S.Kaplan.

“A High-Performance, Totally Ordered Multicast Protocol”,
ftp://research.ivv.nasa.gov/pub/doc/RMP/RMP_dagstuhl.ps...)

• Entities:
– process:

• sender/receiver of packets
– group:

• basic unit of group communication.
• set of processes that receive messages sent to given IP

Multicast address and port.
– membership of a group can change over time

• Taxonomy:
– Quality of Service
– Synchrony
– Fault-Tolerance

RMP: Quality of Service (QoS)
• Quality of Service related to semantics.
• unreliable

– packet is received zero-or-more times at destination
– no ordering

• reliable

– packet is received at least once at each destination
• source-ordered

– packet arrives exactly once at each destination
– same order as sent from source
– no ordering guarantee when more than one source

• totally ordered

– serializes all packets to a group

CPSC-662 Distributed Computing Group Communication

18

RMP: Virtual Synchrony

• e.g. in ISIS (Birman et al.)
– All sites see the same set of messages before and after a

group membership change.

membership
change!

Pa Pb Pc PA PB PC PDPd

• Allows distributed applications to execute as if
communication was synchronous when it actually is
asynchronous.

RMP: Fault-Tolerance
• node failures, network partitions
• atomic delivery within partition:

– If one member of the group in a partition delivers packet (to
application), all members in that partition will deliver packet
if they were in the group when the packet was sent.

– No guarantee about delivery or ordering between partitions.
• K-resilient atomicity:

– Totally ordered
– Delivery is atomic at all sites that do not fail or partition,

provided that no more than K sites fail or partition at once.
– with K=floor(N/2)+1 atomicity guaranteed for any number of

failures.

CPSC-662 Distributed Computing Group Communication

19

RMP: Fault-Tolerance (cont)

• majority resilience:

– If two members deliver any two messages, they agree on
ordering of messages.

– Guarantees total ordering across partitions, but not atomicity.
• total resilience (safe delivery):

– Sender knows that all members received it before it can be
delivered.

– One or more sites can fail before delivering the packet.

Algorithms in RMP

• Basic delivery algorithm
– handles delivery of packets to members

• Membership change algorithm
– handles membership change requests, updates view at

members.
• Reformation algorithm

– reconfigures group after failure, synchronizes members
• Multi-RPC algorithm

– allows non-members to sent to group
• Flow control and congestion control

– similar to Van Jacobson TCP congestion control algorithm

CPSC-662 Distributed Computing Group Communication

20

ACKs in Reliable Multicast
• Def: Packet becomes stable: Sender knows that all destinations have

received packet.
• positive ACKs:

– quick stability
– scalability?

• cumulative ACKs:

– parameter: number of packets per ACK
– load vs. length of time for packet to go stable

• negative ACKs:

– burden of error detection shifts to destination
– sequence numbers
– time to go stable unbounded
– lost packet only detected after another packet is received.

Basic Delivery Algorithm

• NACKs for reliable delivery, ACKs for total ordering and stability.
• packet ID: {RMP proc ID, seq # for proc, QoS level} uniquely identifies packet.

sender token site

1. send packet

2. send ACK with global seq# (timestamp)

• Functions of ACK:
• positive acknowledgment to sender (“token site has received packet”)
• allows for total and causal ordering of packets
• timestamp as global basis for detection of dropped packets.
• ACK contains info for more than one packet (ordered)

• Q: When does packet become stable?

CPSC-662 Distributed Computing Group Communication

21

Reaching Stability

• While sending ACK, token site forwards token to next process in
group:
– Before accepting token, member is required to have all

packets with timestamps less than in ACK.
– If site in group with N members receives token, it knows that

all packets with TS <= currTS-N have been received by all
members.

acks

ack and token
(with current TS)

Basic Delivery Algorithm at Receiving Node
• Ordering of packets, detection of missing packets, buffering of packets for re-

transmission.
• Each site has

– DataList: contains Data packets that are not yet ordered
– OrderingQ: contains slots:

• pointer to packet
• delivery status (missing, requested, received, delivered)
• timestamp

• Data packet arrives: placed in DataList
• ACK arrives: placed in OrderingQ, creating one or more slots at end of queue

if necessary (with info for more than one packet)
• Data packet or ACK arrives:

– scan OrderingQ: match Data packets in DataList with slots that have been
created by an ACK.

– when match is found, Data packet is transferred to slot.
– when hole occurs in OrderingQ, send out NACK, requesting for

retransmission of packet.
• OrderingQ is “flushed” whenever token arrives.

CPSC-662 Distributed Computing Group Communication

22

A Cool Homepage on Multicast Protocols:

http://hill.lut.ac.uk/DS-Archive/MTP.html

