
CPSC-662 Distributed Computing Object-Oriented Distributed Technology

1

Large-Scale Systems (2): Legion

• Legion vision:
 Metasystem consisting of millions of hosts, billions of objects, co-
existing in a loose confederation tied together with high-speed links.

• Legion objectives

• Legion object model

• Legion home page:
http://www.cs.virginia.edu/~legion

• Reading:
–A.S.Grimshaw, Wm. A. Wulf. “Legion. The Next Logical Step Toward
the World-Wide Virtual Computer”
(http://legion.virginia.edu/copy-cacm.html)
–M. Lewis, A. Grimshaw. “The Core Legion Object Model”
(http://www.cs.virginia.edu/~legion/copy-core.html)

Legion Objectives (1)

• Site autonomy
Organizations want to keep juristictional boundaries in place.

• Extensible core
Allow users to construct their own mechanisms and policies.

• Scalable architecture
No centralized structures

• Easy-to-use, seamless computational environment
Legion must mask the complexity of the hardware environment and of
communication and synchronization of parallel processing.

• High performance via parallelism
e.g. task and data parallelism

• Single, persistent name space
Single name space for file and data access.



CPSC-662 Distributed Computing Object-Oriented Distributed Technology

2

Legion Objectives (2)

• Security for users and resource owners
Cannot strengthen existing OS protection and security mechanisms.
Existing mechanisms should not be weakened by Legion. Need
mechanisms for users to manage security needs.

• Management and exploitation of resource heterogeneity
Inter-operability between heterogeneous hardware and software
components.

• Multiple language support and inter-operability
Integrate heterogeneous source language applications, support for legacy
codes.

• Fault-tolerance
Dealing with failure and dynamic re-configuration

Constraints

... cannot replace host operating systems
Operate at middleware level.

... cannot legislate changes to the interconnection network
Can layer better protocols over existing ones.

... cannot require that Legion run as “root”
Most Legion users want it to run with the least possible privileges.



CPSC-662 Distributed Computing Object-Oriented Distributed Technology

3

The Core Legion Object Model

• Each object belongs to class; each class is itself an object.

• Object-mandatory member functions:
– may_I(), save_state(), restore_state()

• Class-mandatory member functions:
– create(), derive(), inherit_from()

• User-level class objects responsible for managing instances
and subclasses:
– creation, location, security policies, object placement policies

Security

• Various users can have wide variety of security concerns.

• Provide users with mechanisms to build robust security
measures.

• Message layer:
– Inter-object communication and authentication

• Discretionary layer:
– Access control predicate may_I(); must be called before invoking any

method.

• Mandatory layer:
– Legion objects can act as Security Agents; monitor other objects.



CPSC-662 Distributed Computing Object-Oriented Distributed Technology

4

Naming and Binding

• LOID : Every Legion object is named by a Legion Object
Identifier.

Format
Class

Identifier
Instance
Number

Public Key

• Format: defines size, format of other fields

• Class identifier: handled by LegionClass

• Instance number: handled by class object

• Public key: allows entire LOID to be used as public key for
object.

• Binding: LOIDs have meaning only at Legion level.  Need to
be bound to names that have meaning at underlying protocol
levels.

Binding

• Need physical Object Address to communicate with another object.

Address Semantics
Number of addresses

Address Type
Address Type
Address Type
Address Type

Address
Address
Address
Address

Object
Address

Object
Address
Elements

• Binding: (LOID, Object Address, invalidation time); first class entities.

• Binding Agents: derived from LegionBindingAgent .
– binding get_binding(LOID); binding get_binding(binding)

– invalidate_binding(LOID); invalidate_binding(binding)

– add_binding(binding)



CPSC-662 Distributed Computing Object-Oriented Distributed Technology

5

Object States

• Active objects are running as process on Legion Host and can
be accessed via an Object Address.

• Inert  objects exist in persistent storage
– Controlled by Legion Vault
– Described by Object Persistent Representation (OPR)

– Located using Object Persistent Address (OPA)

• Object Persistent Representation:
– Every object exports save_state()  and restore_state()

methods.

– Objects can carry state when they migrate between hosts.

• Object Persistent Address:
– Analogous to Object Address of active object.

– Typically file name, meaningful to Legion Vault.

Class Objects

• Class objects export class-mandatory member functions to
– create new instances: create()

– create new subclasses: derive()

– delete instances: delete()

– find instances and subclasses: get_binding()

• Assigns LOID to instances and subclasses
– For new instance:

• assign Class Identifier to match own

• assign Instance Number as it sees fit

– For new subclass:
• Contact LegionClass  to obtain new Class Identifier

• Logically maintain table for objects:
– LOID, Object Address, Placement Mapper, Current Vault Set,

Candidate Vault Set.



CPSC-662 Distributed Computing Object-Oriented Distributed Technology

6

Mechanisms: Binding

• Model:
– Ultimatively, responsibility for providing bindings lays with class.

– To support scalability, other objects may be involved as well.

Binding Agent  BA

Binding
Cache

BA

Class C

Logical Table

C.get_binding(B)

BA.get_binding(B)

Object BObject A

Binding
Cache

LOID for B

– How to find responsible class object?

Scalability

• Scalable Architecture:
“As the number of processors increases, the granularity of
computation does not need to increase to keep the machine
balanced.”
– e.g. hypercubes, meshes, tori, rings.

– Problem: Scalability of architecture must be claimed with respect to
particular application

• Distributed Systems Principle:
“The number of requests to any particular system component
must not be an increasing function of the number of hosts or
objects in the system.”


