

 1

Distributed File Systems:
An Overview of Peer-to-Peer

Architectures

Distributed File Systems

• Data is distributed among many sources
– Ex. Distributed database systems
– Frequently utilize a centralized lookup server for addressing

• Completely distributed approach
– No centralized services or information

 2

Peer-to-peer Systems

• What is a P2P System?
– Network of nodes with equivalent capabilities and

responsibilities

• Common Examples
– Gnutella
– Freenet

Peer-to-Peer Systems

• P2P is a convenient paradigm which can be
 used to serve various applications (including
 the popular use of file sharing).

• Problem with P2P systems: locating the
 particular node which stores the requested
 data

 3

Node Location: Napster

• Napster uses a central index to search for
 nodes with desired file.

• If central server goes down, service is lost
 for all users.

• NOT true P2P.

Node Location: Gnutella

• Search Algorithm: Random

• Gnutella broadcasts file requests to nodes

• Solution scales extremely poorly, therefore
 requests cannot be broadcast to all nodes.

• With Gnutella, search may fail even though
 the file exists in the system

 4

Node Location: Freenet

• Search Algorithm: Random

• In the Freenet system, no particular node
 is responsible for a file. Instead searches
 look for cached copies of the file.

• Problems with Freenet: once again existing
 files are not guaranteed to be retrieved; no
 bound on cost.

Problems

• Random Search Algorithms:
– Work poorly for uncommon data
– No theoretical bound on the overhead required

• How to introduce determinism without centralized mechanisms?
– Ans: Hash functions

 5

Hash Functions

• A hash function is (usually) a one way function which will
produce the same “key” given the same input

• Hash functions we consider will have follow a uniform distribution
in keyspace

Hash Based P2P Systems

• Chord (Pastry is very similar)
– Utilizes a ring based overlay

• CAN
– Utilizes a hyper-space overlay model

 6

What Chord Can Contribute

• Chord is truly distributed: No node is more
 important than another.

• If requested object exists in the system, it will
 definitely be found.

• Chord gives performance bounds.

Consistent Hashing

• Using a consistent hashing function (SHA-1
 function), Chord maps a given key to a
 particular node.

• Requests for object with a particular key
 are easily forwarded to the correct
 node.

• Consistent hashing helps to provide natural
 load balancing.

 7

Mapping of Objects

0

2

35

6

• Node identifiers are established in a circle.
 Keys are assigned to the node with the next
 highest value.

Routing

• If every node has knowledge of its successor
 node, requests can be propagated along the
 ring.

• Problem: it may require traversing all N nodes
 in order to find the object.

• Solution: use finger tables to optimize routing.

 8

Finger Tables

• Given m bits in the key/node identifiers, every
 node keeps a routing table with m entries
 (entries hold node identifier, IP address, and
 port numbers).

• The ith entry in the table at node n contains
 the identity of the node that succeeds n by
 at least 2i-1.

• If s is the ith finger of the node, then
 s=successor(n+ 2i-1), and is denoted by
 n.finger[i].node.

Finger Tables (cont.)

• The first entry of the finger table is the
successor of n.

• Subsequent entries are spaced out more
and more.

• If a node doesn’t know the successor of
a key k, it passes the request on to a
node whose ID is closer. Thus the
request is passed at least half the
distance to the responsible node.

 9

Finding Successors

• In order to find the successor of a key, the
predecessor of the key is found, and the
successor of that node is taken from its
finger table.

n.find_successor(key)
 n’=find_predecessor(key);
 return n’.successor;

Finding Predecessors (1)

• In order to find the predecessor of a key,
 request is passed along to next closest node
 until key falls within appropriate interval.

n.find_predecessor(key)
 n’=n;
 while(id (n’,n’.successor])
 n’=n’.closest_preceding_finger(key);
 return n’;

!

 10

Finding Predecessors (2)

n.closest_preceding_finger(key)
 for i=m downto 1
 if (finger[i].node (n, key))
 return finger[i].node;
 return n;

!

Performance

• Since the distance to the successor of a key
 is halved with each step, the bound for
 number of steps required for lookups is
 O(log N).

 11

Node Joins: Invariants

• Every node maintains the correct successor.

• For every key k, node successor(k) is
 responsible for k.

Node Joins: Process

• Initialize the predecessor and fingers of new
 node n (to simplify joins and leaves, every
 node is also responsible for keeping a pointer
 to their predecessor).

• Update the fingers and predecessors of existing
 nodes.

• Notify the higher layer software so that state of
 keys is transferred appropriately (note that n is
 the only node to which any transfers occur).

 12

Concurrent Operations

• Aggressively maintaining finger tables of
 all nodes difficult to maintain with concurrent
 joins.

• When a single node joins, very few finger table
 entries need to be modified.

• To adjust for concurrent joins, use a stabilization
 protocol instead of the aggressive correctness
 protocol.

Stabilization Pseudocode

n.join(n’)
 predecessor = nil;
 successor = n’.find_successor(n);

• Node n knows of some other node n’ when
 joining.

 13

Pseudocode (cont.)

n.stabilize()
 x=successor.predecessor;
 if(x (n, successor))
 successor = x;
 successor.notify(n);
n.notify(n’)
 if(predecessor is nil or n’ (predecessor,n))
 predecessor = n’;

• Successor’s are verified periodically.

!

!

n.fix_fingers()
 i=random index > 1 into finger[];
 finger[i].node =
 find_successor(finger[i].start);

• Finger tables are refreshed periodically.

Pseudocode (cont.)

 14

Node Failures

• In order for failure recovery, queries must
 still succeed until system stabilizes.

• In order for successful queries, nodes must
 have correct knowledge of their successors.

• Every node keeps a list of its r nearest
 successors.

Quick Note on Pastry

• The Chord and Pastry designs are similar
 for the most part. The notable difference
 between the two is that Pastry provides
 locality while Chord does not.

 15

CAN

• Use an d-dimensional hyperspace to distribute
files

• A node is assigned to a point in the
hyperspace using d hash functions

• The hyperspace is divided into partitions
according to node placement (should be
uniformly distributed due to hash functions)

CAN

(4,0)

4)

(0, 0)

(0, (4, 4)

7

