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Distributed File Systems:
An Overview of Peer-to-Peer

Architectures

Distributed File Systems

• Data is distributed among many sources
– Ex. Distributed database systems
– Frequently utilize a centralized lookup server for addressing

• Completely distributed approach
– No centralized services or information
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Peer-to-peer Systems

• What is a P2P System?
– Network of nodes with equivalent capabilities and

responsibilities

• Common Examples
– Gnutella
– Freenet

Peer-to-Peer Systems

• P2P is a convenient paradigm which can be
   used to serve various applications (including
   the popular use of file sharing).

• Problem with P2P systems:  locating the 
   particular node which stores the requested
   data 
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Node Location: Napster

• Napster uses a central index to search for
   nodes with desired file.

• If central server goes down, service is lost 
   for all users.

• NOT true P2P. 

Node Location: Gnutella

• Search Algorithm: Random

• Gnutella broadcasts file requests to nodes

• Solution scales extremely poorly, therefore
   requests cannot be broadcast to all nodes.

• With Gnutella, search may fail even though
   the file exists in the system
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Node Location: Freenet

• Search Algorithm: Random
 
• In the Freenet system, no particular node
   is responsible for a file.  Instead searches
   look for cached copies of the file.

• Problems with Freenet: once again existing
   files are not guaranteed to be retrieved; no 
   bound on cost.  

Problems

• Random Search Algorithms:
– Work poorly for uncommon data
– No theoretical bound on the overhead required

• How to introduce determinism without centralized mechanisms?
– Ans: Hash functions
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Hash Functions

• A hash function is (usually) a one way function which will
produce the same “key” given the same input

• Hash functions we consider will have follow a uniform distribution
in keyspace

Hash Based P2P Systems

• Chord (Pastry is very similar)
– Utilizes a ring based overlay

• CAN
– Utilizes a hyper-space overlay model
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What Chord Can Contribute

•  Chord is truly distributed: No node is more
   important than another.

•  If requested object exists in the system, it will
   definitely be found.

•  Chord gives performance bounds.

Consistent Hashing

• Using a consistent hashing function (SHA-1
   function), Chord maps a given key to a 
   particular node.

• Requests for object with a particular key
   are easily forwarded to the correct 
   node.

• Consistent hashing helps to provide natural
   load balancing.
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Mapping of Objects
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• Node identifiers are established in a circle.  
   Keys are assigned to the node with the next 
   highest value.  

Routing

• If every node has knowledge of its successor
   node, requests can be propagated along the
   ring.

• Problem: it may require traversing all N nodes
   in order to find the object.

• Solution: use finger tables to optimize routing.
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Finger Tables

• Given m bits in the key/node identifiers, every
   node keeps a routing table with m entries 
   (entries hold node identifier, IP address, and
   port numbers).

• The ith entry in the table at node n contains
   the identity of the node that succeeds n by
   at least 2i-1. 

• If s is the ith finger of the node, then 
   s=successor(n+ 2i-1), and is denoted by
   n.finger[i].node.  

Finger Tables (cont.)

• The first entry of the finger table is the
successor of n.

• Subsequent entries are spaced out more
and more.

• If a node doesn’t know the successor of
a key k, it passes the request on to a
node whose ID is closer.  Thus the
request is passed at least half the
distance to the responsible node.
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Finding Successors

• In order to find the successor of a key, the
predecessor of the key is found, and the
successor of that node is taken from its
finger table.

n.find_successor(key)
  n’=find_predecessor(key);
  return n’.successor;

Finding Predecessors (1)

• In order to find the predecessor of a key,
   request is passed along to next closest node
   until key falls within appropriate interval.

n.find_predecessor(key)
  n’=n;
  while(id  (n’,n’.successor])
   n’=n’.closest_preceding_finger(key);
  return n’;  

!
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Finding Predecessors (2)

n.closest_preceding_finger(key)
  for i=m downto 1
    if (finger[i].node  (n, key))
      return finger[i].node;
  return n;

!

Performance

• Since the distance to the successor of a key
   is halved with each step, the bound for 
   number of steps required for lookups is 
   O(log N).  
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Node Joins: Invariants

• Every node maintains the correct successor.  

• For every key k, node successor(k) is 
   responsible for k.  

Node Joins: Process

• Initialize the predecessor and fingers of new
   node n (to simplify joins and leaves, every
   node is also responsible for keeping a pointer
   to their predecessor).

• Update the fingers and predecessors of existing
   nodes.

• Notify the higher layer software so that state of
   keys is transferred appropriately (note that n is
   the only node to which any transfers occur).
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Concurrent Operations

• Aggressively maintaining finger tables of 
   all nodes difficult to maintain with concurrent
   joins.

• When a single node joins, very few finger table
   entries need to be modified.

• To adjust for concurrent joins, use a stabilization
   protocol instead of the aggressive correctness
   protocol. 

Stabilization Pseudocode

n.join(n’)
  predecessor = nil;
  successor = n’.find_successor(n);

• Node n knows of some other node n’ when 
   joining.
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Pseudocode (cont.)

n.stabilize()
  x=successor.predecessor;
  if(x  (n, successor))
    successor = x;
  successor.notify(n);
n.notify(n’)
  if(predecessor is nil or n’  (predecessor,n))
    predecessor = n’;

• Successor’s are verified periodically.

!

!

n.fix_fingers()
  i=random index > 1 into finger[];
  finger[i].node =
            find_successor(finger[i].start);

• Finger tables are refreshed periodically.

Pseudocode (cont.)
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Node Failures

• In order for failure recovery, queries must 
   still succeed until system stabilizes.   

• In order for successful queries, nodes must
   have correct knowledge of their successors.

• Every node keeps a list of its r nearest 
   successors.  

Quick Note on Pastry

• The Chord and Pastry designs are similar
   for the most part.  The notable difference
   between the two is that Pastry provides
   locality while Chord does not.
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CAN

• Use an d-dimensional hyperspace to distribute
files

• A node is assigned to a point in the
hyperspace using d hash functions

• The hyperspace is divided into partitions
according to node placement (should be
uniformly distributed due to hash functions)

CAN
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