CPSC-662 Distributed Computing

Remote Procedure Call (RPC)

e Paradigms in building distributed applications
e The RPC model

® Primitives

e Issues

e Case study: Sun RPC

® Reading: Coulouris, Chapter 5

Building Distributed Programs: Two Paradigms

Paradigms:
e Communication-Oriented Design » Application-Oriented Design
- Start with communication — Start with application
protocol

— Design, build, test conventional

- Design message format and implementation

syntax .

- Design client and server — Partition program
components by specifying how
they react to incoming

messages
Problems:
e Protocol-design problems » Concurrency
e Application components as finite-state
machines !?

e Focus on communication instead of
application!

CPSC-662 Distributed Computing

Model of Execution for RPCs

e Procedure-call structure of a program

i A/A/ \A*é\‘ i machine 2
machine 1 i | | | | | | Ei [proc A | i

{ Y F-'-'-'-'-'-'-'-'L-'-'-'-'-'-":

: |:| ' i machine 3

* Model of execution with remote procedure call

main program
on machine 1

procedure A
on machine 2

_—
1
|

v
call remote

proc A

......

s
)

|
v
call remote

proc B /

procedure B
on machine 3

!
!

B B

¥ exit R y respond

........... v____l.____¥ respond
to caller

to caller

RPC Properties

e Uniform call structure

e Type checking

e Full parameter functionality
e Distributed binding

e Recovery of orphan computations

CPSC-662 Distributed Computing

RPC Primitives

e Invocation at caller side
call service (value args; result args);

e Definition at server side
- declaration
remote procedure service (in value pars;
out result pars);
begin body end;

- rendezvous statement
accept service (in value pars;

out result pars) -> body;

Structure of an RPC Call

client server
A
® © ®
client stubs server-stubs
A
©) O] @ @
RPC library RPC library
! |

CPSC-662 Distributed Computing

RPCs: Issues

e Parameter passing
- value parameters
- reference parameters?
® Marshalling
- simple data types
- complex data structures
e Exception handling
- language dependent
- need to deal with asynchronous events

Locating Servers

e Broadcast requests

- broadcast call and process incoming replies
e Name servers

- server registers with name server

name server register
client
I ey / s &
» Combination: publish/subscribe
subscribe name Server publish
client
\A Stllb _________ v Stllb /
AO— e
\ "\n:ﬁ

CPSC-662 Distributed Computing

Communication Protocols for RPC

® Reliable protocols: e.g. TCP
e Unreliable datagram protocols: e.g. UDP
e Specifically designed protocols: Example

Simple Call

(id,request)
—

I
(id,reply,ack)
(id,request)
—

I e
(id,reply,ack)

Client times out and retransmits request.
Three cases:

* request lost

* server still executing

 ack lost

Complicated Call

* long gaps between requests
* acknowledge each message
transmission separately
or
* periodically send “I-am-
alive” message and use
simple-call scheme.
* long messages (don’t fit into
packet)
* segment message
* segment-relative seq #’s
* retransmission scheme for
segments

RPC in Heterogeneous

Environments

Compile-time support
Binding protocol
Transport protocol
Control protocol

Data representation

CPSC-662 Distributed Computing

Case Study: SUN RPC

Defines format for messages, arguments, and results.
Uses UDP or TCP.

Uses XDR (eXternal Data Representation) to represent procedure
arguments and header data.

e Compiler system to automatically generate distributed programs.

Remote execution environment: remote program.

remote program

| proc A | | proc B | | proc C |
\; # /
| shared data |

* Mutually exclusive execution of procedure in remote program.

Identifying Remote Programs and Procedures

e Conceptually, each procedure on a computer is identified by pair

(prog, proc)
- prog: 32-bit integer identifying remote program
- proc: integer identifying procedure
e Set of program numbers partitioned into 8 sets.

0x00000000 - Ox1fffffff assigned by SUN

0x20000000 - Ox3fffffff assigned by local system manager
0x40000000 - Ox5Fffffff temporary

0x60000000 - OxFffffff reserved

e Multiple remote program versions can be identified:
(prog, version, proc)

CPSC-662 Distributed Computing

Example RPC Program Numbers

name assigned no description
portmap 100000 port mapper

rstatd 100001 rstat, rup, perfmeter
rusersd 100002 remote users

nfs 100003 network file system
ypserv 100004 yp (NIS)

mountd 100005 mount, showmount
dbxd 100006 DBXprog (debug)
ypbind 100007 NIS binder

walld 100008 rwall, shutdown
yppasswdd 100009 yppasswd

Communication Semantics

e TCP or UDP ?

e Sun RPC semantics defined as function of underlying transport
protocol.

- RPC on UDP: calls can be lost or duplicated.
e at-least-once semantics if caller receives reply.
e zero-or-more semantics if caller does not receive reply.

e Programming with zero-or-more semantics: idempotent procedure
calls.

® Sun RPC retransmission mechanism:
- non-adaptive timeouts
- fixed number of retransmissions

CPSC-662 Distributed Computing

Remote Programs and Protocol Ports

port
caller |—— [|remote program

program id vs. port_id
(32 bit) (16 bit)
e Dynamic port mapping: RPC port mapper
RPC program
program) -8 (" por
xx (xx, p) mapper
111
| S— | S—)
port currently used well-known port
by this RPC program for port manager

Sun RPC Message Format: XDR Specification

case CALL : call body

enum msg_type { /* RPC message type constants */
CALL = 0;
REPLY = 1;
}i
struct rpc msg { /* format of a RPC message */

unsigned int mesgid; /* used to match reply to call */
union switch (msg type mesgt) {

cbody;

case REPLY: reply body rbody;

} body;
}i
struct call body { /*
u_int rpcvers; /*
u int rprog; /*
u_int rprogvers; /*
u_int rproc; /*

opaque auth cred; /*
opaque_auth verf; /*
/* ARGS */

format of RPC CALL

which version of RPC?

remote program number

version number of remote prog
number of remote procedure
credentials for called auth.
authentication verifier

*/
*/
*/
*/
*/
*/
*/

CPSC-662 Distributed Computing

Message Dispatch for Remote Programs

{ Proc Al ‘ Proc A2 (2222223 dispatcher
[client stub) server stub) server stub)
forB2 [T 7 | forBL | | forB2 |
s I A I T .
for B1 proc Bl proc B2

Creating Distributed Application

s with Sun RPC

e Procedure call structure:

Example: Remote Dictionary Using rpcgen

dictl.c

nextin

I init_dic

insertw deletew

dict2.c

Procedures should execute on the same machines as their resources are located.

CPSC-662 Distributed Computing

Specification for rpcgen

/* rdict.x */

/* RPC declarations for dictionary program */

const MAXWORD = 50;

const DICTSIZ = 100;

struct example { /* unused; rpcgen would */
int exfieldl; /* generate XDR routines */
char exfield2; /* to convert this structure.*/

}i

Specify:
e constants
e data types

e remote programs,
their procedures,
types of parameters

/* RDICTPROG: remote program that provides
insert, delete, and lookup */

program RDICTPROG { /* name (not used) */
version RDICTVERS ({ /* version declarat.*/
int INITW (void) = 1;/* first procedure */
int INSERTW (string)= 2;/* second proc.... */

int DELETEW (string)= 3;

int LOOKUP (string) = 4;
} = 1; /* version definit.*/
} = 0x30090949; /* program no */

/* (must be unique)*/

Program Generation

rdict.h

* constants, datatypes

* definitions for remote procedures
» rdict_xdr.c

* XDR conversion routines
» rdict clnt.c

* client code: client-side

communication stub.
rdict_svc.c

* server code: server-side
communication stub.

I rdict_cif.c I I rdictl.c I
N o«
/',
<
A

rdlct xdr.c

rdlct sif.c I rd1ct2 c

rpcgen rdict.x

10

