CPSC-663: Real-Time Systems

Deterministic Cache Analysis

Introduction to Cache Analysis
for Real-Time Systems

Schedulability
Analysis

—

5

WCET

WCMP

(memory performance)

® Q: How to appropriately account for cache?

[C. Ferdinand and R. Wilhelm, “Efficient and Precise Cache Behavior Prediction for
Real-Time Systems”, Real-Time Systems, 17, 131-181, (1999)]

—

—

e Ignoring cache leads to significant resource under-utilization.

Simple
Platforms

eg.
no caches

© R. Bettati

Worst-Case Execution Time (WCET)

e WCET depends on:
- execution path (in program)
- cache behavior (depends on execution history)

e WCET analysis must be safe

e WCET analysis must be tight

- pipelining (depends on very recent execution history)

CPSC-663: Real-Time Systems Deterministic Cache Analysis

Problems with Cache Memories

Two fundamental problems with cache analysis:

1. Large differences in cache behavior (and execution time!) result
from minor changes

e in program code
e in input data

2. Inter-task cache interference

WOCET analysis for single tasks remains prerequisite for multi-task
analysis!

Cache Memories

Major parameters of caches:
1. Capacity: how many bytes in the cache?

2. Line size (block size): number of contiguous bytes that
are transferred from memory on cache miss.

Cache contains n = capacity / line_size blocks

3. Associativity: In how many cache locations can a
particular block reside?

A=1 => “direct mapped”
A=n = *fully associative”

CPSC-663: Real-Time Systems Deterministic Cache Analysis

Cache Semantics

e A-way associative cache can be considered as a
sequence of n/A fully associative sets

F=c<f, .., f >
e Each set f;is a sequence of lines
L = </1, ooy /A>
e The store is a set of memory blocks
M={m, ... m}

e The function adr : M -> integers gives address of each
block.

e The function set : M -> F denotes where block gets
stored:

set(m) = f, where i = adr(m) % (n/A) + 1
e No memory in a set line: M’ =M u {I}

Cache Semantics (II)

Cache semantics separates two aspects:

1. Set, where memory block is stored. Can be statically determined,
as it depends only on address of the memory block. Dynamic
allocation of memory blocks to sets is modeled by the cache
states.

2. Replacement strategy within one set of the cache: History of
memory references if relevant here. Modeled by set states.

o Def: set state is a function s: L -> M’, “what memory block in in
given line?”
- Note: In fully associative cache a memory block occurs only
once.

e Def: Set S of all set states.

e Def: cache state is a function ¢: F -> S, “what ‘lines’ does set
contain?”

CPSC-663: Real-Time Systems

Deterministic Cache Analysis

LRU Replacement Policy

e The side effects of referencing memory on the set/cache is
represented by an update function. We note that

- behavior of sets is independent of each other
- order of blocks within a set indicates relative age of block.

e We number cache lines according to relative age of their memory
block: s(/,) = m, m != I describes the relative age of block m
according to LRU, nof its physical position in the set.

e Def: set update function Us: S x M -> S describes new set state
for given set state and referenced memory block.

e Def: cache update function U, C x M -> C describes new cache
state for a given cache state and a referenced memory block.

LRU Replacement Policy (II)

Definition 5 (set update).

state for a given set state and a referenced memory block.

Definition 6 (cache update). A cache update function Uc: C x M — C describes the new
cache state for a given cache state and a referenced memory block.

A set update function Us: S x M — S describes the new set

Updates of fully associative sets with LRU replacement strategy are modeled in the
following way (see Figure 3):

[ly > m,
L s [i=2...h,
Us(s,m) = i sU) |i=h+1.. AL if3l: s(y) =m

b m,
liv> s(li—y) fori =2... A]; otherwise

[s]

Figure 3. Update of a concrete fully associative set.

— T T
Z \ s “young
[e
t E— X ol
s
2] ———— S
LS | z
X X
t t

The most recently referenced memory block is put in the first position /; of the set. If
the referenced memory block m is in the set already, then all memory blocks in the set
that have been more recently used than m are shifted by one position to the next set
line, i.e., they increase their relative age by one. If the memory block m is not yet in
the set, then all memory blocks in the set are shifted and, if the set is full, the ‘oldest’,
i.e., least recently used memory block is removed from the set.

Updates of A-way set associative caches are modeled in the following way:

Ue (e, m) = c[set(m) — Us(c(set(m)), m)]

CPSC-663: Real-Time Systems Deterministic Cache Analysis

Control Flow Representation

e Program represented as Control Flow Graph (CFG):
- Nodes are Basic Blocks.

- Basic block is “a sequence of instructions in which control flow
enters at the beginning and leaves at the end without halt or
possibility of branching except at the end.”

- For each basic block the sequence of memory references is
known.

e We can map control flow nodes to sequences of memory blocks (at
least for instruction caches) and represent this as function

L:V -> M*
e We can extend U, to sequences of memory references:
Ude, <my, ..., mp) = UL... Udlem) ..., m)

e Extend UC to path <k, ..., k> in control flow graph:
Ude, <Ky, .., k3) = Ude, L(K}),..., L(k,)

Must Analysis vs. May Analysis

e Must Analysis determines set of memory blocks
definitely in the cache whenever control reaches a
given program point.

e May Analysis determines all memory blocks that may
be in the cache at a given program point.

e May analysis is used to guarantee absence of a memory
block in the cache.

® Analysis for basic blocks and paths of basic blocks is
simple.
e What about when paths merge?!

CPSC-663: Real-Time Systems Deterministic Cache Analysis

Abstract Cache States

Def: abstract set state is a function s™: L -> 2V, maps set lines to sets
of memory blocks.

Def: Set S” of all abstract set states.
“An abstract set state s” describes a set of concrete set states s

Def: abstract cache state is a function ¢”: F -> S”, maps sets to
abstract set states.

Def: Set C” of all abstract cache states.

“An abstract cache state ¢” describes a set of concrete cache states ¢

MUST Analysis

e ma € s°(l) for some x means that the memory block ma is in the
cache.

e Observation 1: The position (relative age) of a memory block ma in
a set can only be changed by memory references that go into the
same set.

- i.e. by references to memory blocks mb with sef{ma) = se{mb).

e Observation 2: The position is not changed by references to
memory blocks mb € s‘(ly) where y < x, i.e., memory blocks that
are already in the cache and are “younger” or the same age as
ma.

e Observation 3: ma will stay in the cache at least for the next A —
x references that go to the same set and are not yet in the cache
or are older than ma.

CPSC-663: Real-Time Systems Deterministic Cache Analysis

MUST Analysis: Update Function

X} S "young"
} X
5,1} t Age
¥} Yy “old"
[s]
Figure 4. Update of an abstract fully associative set for the Must analysis.
[li = {m},

L §U)li=2...h—1,
Iy = $Up—1) U Gy) — {m}),

UG m =1 53U li=h+1.. AL if3y: m e 5y
[li = {m},
L5850y |i=2...A] otherwise

jgn(fl, §) = §, where:

S(y) = {m | 3l,, 1, withm € §;(l,), m € 55(I;) and x = max(a, b)}

MUST Analysis and Control Flow

e Recall: control flow node k issues sequence of memory blocks
L(k) = <m,, ==-, m>

e Simple case: node k has only one direct predecessor, say k’.
¢ Then there is an equation :

= UTeAc s <my ey mp) = U Ul eyymy) ..., my)
e Solve equation by fixpoint iteration.

e Abstract cache state ¢”, describes all possible cache states when
control reaches node k.

o Let s = c"(set(m)) for some memory block m.

e If m € s°(l,) for some set line [, then m is definitely in the cache
every time control reaches k.

e Therefore, reference to mis classified as ALWAYS HIT.

CPSC-663: Real-Time Systems Deterministic Cache Analysis

Multiple Predecessors: Join Function

Definition 9 (join function). A join function J: € x C > C combines two abstract cache
states.

{a} {c)

} {e}

c,f} {a}

d} {d} On control flow nodes with at

least two predecessors,
join functions are used to

{ combine the abstract cache
{ states.
a,c}
d}
Figure 5. Join for the Must analysis. jgn (S1, 52) = §, where:

Sy ={m | A, I, withm € §1(l,), m € $;(lp) and x = max(a, b)}

MUST Analysis with multiple Predecessors

e Simple case: node k has more than one predecessor, say k; to k..
® Then there is an equation :
= UTAc s <myy oy mp) = U UTACTyym)) .., my)
where
=T ATy oo T e 7)))

e Rest of classification of memory reference stays the same.

CPSC-663: Real-Time Systems Deterministic Cache Analysis

MAY Analysis

Q: How do we know if a memory reference is an ALWAYS
MISS?

A: We determine the set of memory blocks that MAY be
in the cache.

MAY Analysis

e ma € s°(l) for some x means that the memory block ma may be
in the cache.

e Observation 1: The position (relative age) of a memory block ma in
a set can only be changed by memory references that go into the
same set.

- i.e. by references to memory blocks mb with sef{ma) = se{mb).

e Observation 2: The position is not changed by references to
memory blocks mb € s‘(ly) where y < x, i.e., memory blocks that
are already in the cache and are “younger” or the same age as
ma.

e Observation 3: ma will stay in the cache at least for the next A —
x + 1 references that go to the same set and are not yet in the
cache or are older than or have the same age as ma.

CPSC-663: Real-Time Systems

Deterministic Cache Analysis

Figure 6. Update of an abstract fully associative set for the May analysis.

MAY Analysis: Update Function
/\
{X} rS “young"
{} X
(s, 1}] IAQ"
y} {y,t} “old"
[s]

[l = {m},

li = §(li—l) | i =2h,
It = 8Upp) U G(y) — {m)),
L §U) |i=h+2... Al

[l1 = {m},
L §(is) |i=2... Al;

U _
Z/l§ (§,m) =

otherwise

it 30, m e §(ly)

Figure 7. Join for the May analysis.

Join Function for MAY Analysis
L {a} {c}
c,f} | {e}
} {a}
d} {d}
\ / “union
+ minimal age"

a,cl

e,f}

}

d}

jsu(il, §») = §, where:

S(y) = {m |3, I, withm € §(l,), m € $2(l;) and x = min(a, b)}
U {m | m € § () and Zl, withm € §,(l,)}
U {m | m € 8 () and Zl, withm € §;(L,)}

10

CPSC-663: Real-Time Systems Deterministic Cache Analysis

MAY Analysis and Control Flow

o Let s” = ¢\ (set(m)) for some memory block m.

e If mis notin s”(/y) for at least one line /, then m is definitely
NOT in the cache whenever control reaches k.

e Therefore, reference to mis classified as ALWAYS MISS.

11

