
CPSC-663: Real-Time Systems Deterministic Cache Analysis

1

Introduction to Cache Analysis �
for Real-Time Systems

[C. Ferdinand and R. Wilhelm, “Efficient and Precise Cache Behavior Prediction for
Real-Time Systems”, Real-Time Systems, 17, 131-181, (1999)]

•  Ignoring cache leads to significant resource under-utilization.

•  Q: How to appropriately account for cache?

Schedulability
Analysis WCET Simple

Platforms

WCMP
(memory performance)

e.g.
no caches

© R. Bettati

Worst-Case Execution Time (WCET)

•  WCET analysis must be safe

•  WCET analysis must be tight

•  WCET depends on:

–  execution path (in program)

–  cache behavior (depends on execution history)

–  pipelining (depends on very recent execution history)

CPSC-663: Real-Time Systems Deterministic Cache Analysis

2

Problems with Cache Memories

Two fundamental problems with cache analysis:

1.  Large differences in cache behavior (and execution time!) result

from minor changes

•  in program code

•  in input data

2.  Inter-task cache interference

WCET analysis for single tasks remains prerequisite for multi-task
analysis!

Cache Memories

Major parameters of caches:

1.   Capacity: how many bytes in the cache?

2.   Line size (block size): number of contiguous bytes that
are transferred from memory on cache miss.

Cache contains n = capacity / line_size blocks

3.   Associativity: In how many cache locations can a
particular block reside?

A = 1
=>
“direct mapped”

A = n
=>
“fully associative”

CPSC-663: Real-Time Systems Deterministic Cache Analysis

3

Cache Semantics

•  A-way associative cache can be considered as a
sequence of n/A fully associative sets

F = <f1, …, fn/A>

•  Each set fi is a sequence of lines

L = <l1, …, lA>

•  The store is a set of memory blocks

M = {m1, ..., ms}

•  The function adr : M -> integers gives address of each

block.

•  The function set : M -> F denotes where block gets

stored:

set(m) = fi, where i = adr(m) % (n/A) + 1

•  No memory in a set line: M’ = M u {I}

Cache Semantics (II)

Cache semantics separates two aspects:

1.  Set, where memory block is stored. Can be statically determined,

as it depends only on address of the memory block. Dynamic
allocation of memory blocks to sets is modeled by the cache
states.

2.  Replacement strategy within one set of the cache: History of
memory references if relevant here. Modeled by set states.

•  Def: set state is a function s: L -> M’, “what memory block in in
given line?”

–  Note: In fully associative cache a memory block occurs only

once.

•  Def: Set S of all set states.

•  Def: cache state is a function c: F -> S, “what ‘lines’ does set
contain?”

CPSC-663: Real-Time Systems Deterministic Cache Analysis

4

LRU Replacement Policy

•  The side effects of referencing memory on the set/cache is
represented by an update function. We note that

–  behavior of sets is independent of each other

–  order of blocks within a set indicates relative age of block.

•  We number cache lines according to relative age of their memory
block: s(lx) = m, m != I describes the relative age of block m
according to LRU, not its physical position in the set.

•  Def: set update function US: S x M -> S describes new set state
for given set state and referenced memory block.

•  Def: cache update function UC: C x M -> C describes new cache
state for a given cache state and a referenced memory block.

LRU Replacement Policy (II)

EFFICIENT AND PRECISE CACHE BEHAVIOR PREDICTION 141

Figure 3. Update of a concrete fully associative set.

The most recently referenced memory block is put in the first position l1 of the set. If
the referenced memory block m is in the set already, then all memory blocks in the set
that have been more recently used than m are shifted by one position to the next set
line, i.e., they increase their relative age by one. If the memory block m is not yet in
the set, then all memory blocks in the set are shifted and, if the set is full, the ‘oldest’,
i.e., least recently used memory block is removed from the set.

Definition 5 (set update). A set update function US: S × M → S describes the new set
state for a given set state and a referenced memory block.

Definition 6 (cache update). A cache update function UC : C ×M → C describes the new
cache state for a given cache state and a referenced memory block.

Updates of fully associative sets with LRU replacement strategy are modeled in the
following way (see Figure 3):

US(s,m) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[l1 #→ m ,

li #→ s(li−1) | i = 2 . . . h,
li #→ s(li) | i = h + 1 . . . A]; if ∃lh : s(lh) = m

[l1 #→ m ,

li #→ s(li−1) for i = 2 . . . A]; otherwise

Notation: [y #→ z] denotes a function that maps y to z. f [y #→ z] denotes a function that
maps y to z and all x ̸= y to f (x).
Updates of A-way set associative caches are modeled in the following way:

UC(c,m) = c[set(m) #→ US(c(set(m)),m)]

EFFICIENT AND PRECISE CACHE BEHAVIOR PREDICTION 141

Figure 3. Update of a concrete fully associative set.

The most recently referenced memory block is put in the first position l1 of the set. If
the referenced memory block m is in the set already, then all memory blocks in the set
that have been more recently used than m are shifted by one position to the next set
line, i.e., they increase their relative age by one. If the memory block m is not yet in
the set, then all memory blocks in the set are shifted and, if the set is full, the ‘oldest’,
i.e., least recently used memory block is removed from the set.

Definition 5 (set update). A set update function US: S × M → S describes the new set
state for a given set state and a referenced memory block.

Definition 6 (cache update). A cache update function UC : C ×M → C describes the new
cache state for a given cache state and a referenced memory block.

Updates of fully associative sets with LRU replacement strategy are modeled in the
following way (see Figure 3):

US(s,m) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[l1 #→ m ,

li #→ s(li−1) | i = 2 . . . h,
li #→ s(li) | i = h + 1 . . . A]; if ∃lh : s(lh) = m

[l1 #→ m ,

li #→ s(li−1) for i = 2 . . . A]; otherwise

Notation: [y #→ z] denotes a function that maps y to z. f [y #→ z] denotes a function that
maps y to z and all x ̸= y to f (x).
Updates of A-way set associative caches are modeled in the following way:

UC(c,m) = c[set(m) #→ US(c(set(m)),m)]

EFFICIENT AND PRECISE CACHE BEHAVIOR PREDICTION 141

Figure 3. Update of a concrete fully associative set.

The most recently referenced memory block is put in the first position l1 of the set. If
the referenced memory block m is in the set already, then all memory blocks in the set
that have been more recently used than m are shifted by one position to the next set
line, i.e., they increase their relative age by one. If the memory block m is not yet in
the set, then all memory blocks in the set are shifted and, if the set is full, the ‘oldest’,
i.e., least recently used memory block is removed from the set.

Definition 5 (set update). A set update function US: S × M → S describes the new set
state for a given set state and a referenced memory block.

Definition 6 (cache update). A cache update function UC : C ×M → C describes the new
cache state for a given cache state and a referenced memory block.

Updates of fully associative sets with LRU replacement strategy are modeled in the
following way (see Figure 3):

US(s,m) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[l1 #→ m ,

li #→ s(li−1) | i = 2 . . . h,
li #→ s(li) | i = h + 1 . . . A]; if ∃lh : s(lh) = m

[l1 #→ m ,

li #→ s(li−1) for i = 2 . . . A]; otherwise

Notation: [y #→ z] denotes a function that maps y to z. f [y #→ z] denotes a function that
maps y to z and all x ̸= y to f (x).
Updates of A-way set associative caches are modeled in the following way:

UC(c,m) = c[set(m) #→ US(c(set(m)),m)]

EFFICIENT AND PRECISE CACHE BEHAVIOR PREDICTION 141

Figure 3. Update of a concrete fully associative set.

The most recently referenced memory block is put in the first position l1 of the set. If
the referenced memory block m is in the set already, then all memory blocks in the set
that have been more recently used than m are shifted by one position to the next set
line, i.e., they increase their relative age by one. If the memory block m is not yet in
the set, then all memory blocks in the set are shifted and, if the set is full, the ‘oldest’,
i.e., least recently used memory block is removed from the set.

Definition 5 (set update). A set update function US: S × M → S describes the new set
state for a given set state and a referenced memory block.

Definition 6 (cache update). A cache update function UC : C ×M → C describes the new
cache state for a given cache state and a referenced memory block.

Updates of fully associative sets with LRU replacement strategy are modeled in the
following way (see Figure 3):

US(s,m) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[l1 #→ m ,

li #→ s(li−1) | i = 2 . . . h,
li #→ s(li) | i = h + 1 . . . A]; if ∃lh : s(lh) = m

[l1 #→ m ,

li #→ s(li−1) for i = 2 . . . A]; otherwise

Notation: [y #→ z] denotes a function that maps y to z. f [y #→ z] denotes a function that
maps y to z and all x ̸= y to f (x).
Updates of A-way set associative caches are modeled in the following way:

UC(c,m) = c[set(m) #→ US(c(set(m)),m)]

CPSC-663: Real-Time Systems Deterministic Cache Analysis

5

Control Flow Representation

•  Program represented as Control Flow Graph (CFG):

–  Nodes are Basic Blocks.

–  Basic block is “a sequence of instructions in which control flow

enters at the beginning and leaves at the end without halt or
possibility of branching except at the end.”

–  For each basic block the sequence of memory references is
known.

•  We can map control flow nodes to sequences of memory blocks (at
least for instruction caches) and represent this as function

L: V -> M*

•  We can extend UC to sequences of memory references:

UC(c, <m1, …, my>) = UC(... UC(c,m1) ..., my)

•  Extend UC to path <k1, ..., kp> in control flow graph:

UC(c, <k1, …, kp>) = UC(c, L(k1),…, L(kp))

Must Analysis vs. May Analysis

•  Must Analysis determines set of memory blocks
definitely in the cache whenever control reaches a
given program point.

•  May Analysis determines all memory blocks that may
be in the cache at a given program point.

•  May analysis is used to guarantee absence of a memory
block in the cache.

•  Analysis for basic blocks and paths of basic blocks is
simple.

•  What about when paths merge?!

CPSC-663: Real-Time Systems Deterministic Cache Analysis

6

Abstract Cache States

Def: abstract set state is a function s^: L -> 2M, maps set lines to sets
of memory blocks.

Def: Set S^ of all abstract set states.

“An abstract set state sˆ describes a set of concrete set states s.”

Def: abstract cache state is a function c^: F -> S^, maps sets to
abstract set states.

Def: Set C^ of all abstract cache states.

“An abstract cache state cˆ describes a set of concrete cache states c.”

MUST Analysis

•  ma ∈ sˆ(lx) for some x means that the memory block ma is in the
cache.

•  Observation 1: The position (relative age) of a memory block ma in
a set can only be changed by memory references that go into the
same set.

–  i.e. by references to memory blocks mb with set(ma) = set(mb).

•  Observation 2: The position is not changed by references to
memory blocks mb ∈ sˆ(ly) where y ≤ x, i.e., memory blocks that
are already in the cache and are “younger” or the same age as
ma.

•  Observation 3: ma will stay in the cache at least for the next A −
x references that go to the same set and are not yet in the cache
or are older than ma.

CPSC-663: Real-Time Systems Deterministic Cache Analysis

7

MUST Analysis: Update Function

144 FERDINAND AND WILHELM

Figure 4. Update of an abstract fully associative set for the Must analysis.

The meaning of an abstract cache state is given by a concretization function concĈ : Ĉ →
2C , or, worded otherwise, conc∩

Ĉ
(ĉ) describes the set of concrete cache states that are

represented by ĉ. The concretization function for the must analysis conc∩
Ĉ
is given by:

conc∩
Ĉ
(ĉ) = {c | ∀1 ≤ i ≤ n/A: c(fi) ∈ conc∩

Ŝ
(ĉ(fi))}

conc∩
Ŝ
(ŝ) = {s | ∀1 ≤ a ≤ A: ∀m ∈ ŝ(la): ∃b: s(lb) = m and b ≤ a}

A concrete cache state c is in conc∩
Ĉ
(ĉ), if all its concrete set states are described accord-

ingly by the abstract set states of ĉ. A concrete set state s is in conc∩
Ŝ
(ŝ), if all memory

blocks that are in ŝ are also in s and the position (relative age) is less or equal than in the
abstract set.
We use the following abstract set update function (see Figure 4 for an example):

Û∩
Ŝ
(ŝ,m) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[l1 '→ {m},
li '→ ŝ(li−1) | i = 2 . . . h − 1,
lh '→ ŝ(lh−1) ∪ (ŝ(lh) − {m}),
li '→ ŝ(li) | i = h + 1 . . . A]; if ∃lh : m ∈ ŝ(lh)

[l1 '→ {m},
li '→ ŝ(li−1) | i = 2 . . . A]; otherwise

Note: The proof of local consistency of Û∩
Ŝ
and US can be found in Ferdinand (1997).

Û∩
Ŝ
preserves condition (4) on abstract set states.

The address of a memory block determines the set in which it is stored. The abstract
cache update function has exactly the same structure as concrete cache update function:

Û∩
Ĉ
(ĉ,m) = ĉ[set(m) '→ Û∩

Ŝ
(ĉ(set(m)),m)]

Û∩
Ĉ
preserves condition (5) on abstract cache states.

The join function for abstract set states has similarities to set intersection. A memory
block only stays in the abstract set state, if it is in both operand abstract set states. It gets

144 FERDINAND AND WILHELM

Figure 4. Update of an abstract fully associative set for the Must analysis.

The meaning of an abstract cache state is given by a concretization function concĈ : Ĉ →
2C , or, worded otherwise, conc∩

Ĉ
(ĉ) describes the set of concrete cache states that are

represented by ĉ. The concretization function for the must analysis conc∩
Ĉ
is given by:

conc∩
Ĉ
(ĉ) = {c | ∀1 ≤ i ≤ n/A: c(fi) ∈ conc∩

Ŝ
(ĉ(fi))}

conc∩
Ŝ
(ŝ) = {s | ∀1 ≤ a ≤ A: ∀m ∈ ŝ(la): ∃b: s(lb) = m and b ≤ a}

A concrete cache state c is in conc∩
Ĉ
(ĉ), if all its concrete set states are described accord-

ingly by the abstract set states of ĉ. A concrete set state s is in conc∩
Ŝ
(ŝ), if all memory

blocks that are in ŝ are also in s and the position (relative age) is less or equal than in the
abstract set.
We use the following abstract set update function (see Figure 4 for an example):

Û∩
Ŝ
(ŝ,m) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[l1 '→ {m},
li '→ ŝ(li−1) | i = 2 . . . h − 1,
lh '→ ŝ(lh−1) ∪ (ŝ(lh) − {m}),
li '→ ŝ(li) | i = h + 1 . . . A]; if ∃lh : m ∈ ŝ(lh)

[l1 '→ {m},
li '→ ŝ(li−1) | i = 2 . . . A]; otherwise

Note: The proof of local consistency of Û∩
Ŝ
and US can be found in Ferdinand (1997).

Û∩
Ŝ
preserves condition (4) on abstract set states.

The address of a memory block determines the set in which it is stored. The abstract
cache update function has exactly the same structure as concrete cache update function:

Û∩
Ĉ
(ĉ,m) = ĉ[set(m) '→ Û∩

Ŝ
(ĉ(set(m)),m)]

Û∩
Ĉ
preserves condition (5) on abstract cache states.

The join function for abstract set states has similarities to set intersection. A memory
block only stays in the abstract set state, if it is in both operand abstract set states. It gets

EFFICIENT AND PRECISE CACHE BEHAVIOR PREDICTION 145

Figure 5. Join for the Must analysis.

the oldest age, if it has two different ages (see Figure 5).

Ĵ ∩
Ŝ

(ŝ1, ŝ2) = ŝ, where:

ŝ(lx) = {m | ∃la, lb with m ∈ ŝ1(la),m ∈ ŝ2(lb) and x = max(a, b)}

The join function for abstract cache states applies the join function for abstract set states
to all its abstract set states:

Ĵ ∩
Ĉ

(ĉ1, ĉ2) = [fi $→ Ĵ ∩
Ŝ

(ĉ1(fi), ĉ2(fi)) | for all 1 ≤ i ≤ n/A]

In order to use Theorem 1 to solve the must analysis for a program the abstract values
have to form a complete join semi lattice. The order is imposed by the set inclusion order of
the underlying concrete domain (sets of concrete cache states). Additionally, a (artificial)
least element ⊥ is used. (In practice the ⊥ element is used for initialization purposes for
the fixpoint iteration, see below.)
For the domain of the must analysis we define the following orders:

ŝ1 ⊑∩
Ŝ ŝ2 ⇔ conc∩Ŝ (ŝ1) ⊆ conc∩Ŝ (ŝ2)

ĉ1 ⊑∩
Ĉ ĉ2 ⇔ conc∩Ĉ(ĉ1) ⊆ conc∩Ĉ(ĉ2)

We extend Ŝ by a least element ⊥Ŝ , where:

∀ŝ ∈ Ŝ: Ĵ ∩
Ŝ

(⊥Ŝ, ŝ) = Ĵ ∩
Ŝ

(ŝ, ⊥Ŝ) = ŝ
∀ŝ ∈ Ŝ: ⊥Ŝ ⊑∩

Ŝ
ŝ

∀m ∈ M ′: Û∩
Ŝ
(⊥Ŝ,m) = ⊥Ŝ

MUST Analysis and Control Flow

•  Recall: control flow node k issues sequence of memory blocks

L(k) = <m1, …, my>

•  Simple case: node k has only one direct predecessor, say k’.

•  Then there is an equation :

c^k = U^C^(c^k’, <m1, …, my>) = U^C^(... U^C^(ck’,m1) ..., my)

•  Solve equation by fixpoint iteration.

•  Abstract cache state c^k describes all possible cache states when
control reaches node k.

•  Let s^ = c^k(set(m)) for some memory block m.

•  If m ∈ sˆ(ly) for some set line ly, then m is definitely in the cache

every time control reaches k.

•  Therefore, reference to m is classified as ALWAYS HIT.

CPSC-663: Real-Time Systems Deterministic Cache Analysis

8

Multiple Predecessors: Join Function

EFFICIENT AND PRECISE CACHE BEHAVIOR PREDICTION 143

Table 1. Categorizations of memory references.

Category Abb. Meaning

always hit ah The memory reference will always result in a cache hit.

always miss am The memory reference will always result in a cache miss.

not classified nc The memory reference could neither be classified as ah nor am.

Condition (5) ensures that amemory blockm is always stored in the correct set determined
by its address.
We will present two analyses. The must analysis determines a set of memory blocks

that are definitely in the cache whenever control reaches a given program point. The may
analysis determines all memory blocks that may be in the cache at a given program point.
The latter analysis is used to guarantee the absence of a memory block in the cache.
The analyses are used to compute a categorization for each memory reference that de-

scribes its cache behavior. The categories are described in Table 1.
The abstract semantic functions describe the effect of a memory reference on an element

of the abstract domain. The abstract set (cache) update function Û for abstract set (cache)
states is an extension of the set (cache) update function U to abstract set (cache) states.
These functions will be defined in the following subsections.
On control flow nodes with at least two predecessors, join-functions are used to combine

the abstract cache states. Our join functions are associative. On nodes with more than two
predecessors, the join function is used iteratively.

Definition 9 (join function). A join function Ĵ : Ĉ × Ĉ "→ Ĉ combines two abstract cache
states.

4.3. Must Analysis

An abstract cache state ĉ describes a set of concrete cache states c, and an abstract set state
ŝ describes a set of concrete set states s.
To determine if a memory block is definitely in the cache we use abstract set states where

the position (the relative age) of a memory block in the abstract set state ŝ is an upper bound
of the positions (the relative ages) of the memory block in the concrete set states that ŝ
represents.
ma ∈ ŝ(lx)means that the memory blockma is in the cache. The position (relative age) of

a memory block ma in a set can only be changed by references to memory blocks mb with
set(ma) = set(mb), i.e., by memory references that go into the same set. Other memory
references do not change the position ofma . The position is also not changed by references
to memory blocks mb ∈ ŝ(ly) where y ≤ x , i.e., memory blocks that are already in the
cache and are “younger” or the same age as ma .
ma will stay in the cache at least for the next A− x references that go to the same set and

are not yet in the cache or are older than ma .

EFFICIENT AND PRECISE CACHE BEHAVIOR PREDICTION 145

Figure 5. Join for the Must analysis.

the oldest age, if it has two different ages (see Figure 5).

Ĵ ∩
Ŝ

(ŝ1, ŝ2) = ŝ, where:

ŝ(lx) = {m | ∃la, lb with m ∈ ŝ1(la),m ∈ ŝ2(lb) and x = max(a, b)}

The join function for abstract cache states applies the join function for abstract set states
to all its abstract set states:

Ĵ ∩
Ĉ

(ĉ1, ĉ2) = [fi $→ Ĵ ∩
Ŝ

(ĉ1(fi), ĉ2(fi)) | for all 1 ≤ i ≤ n/A]

In order to use Theorem 1 to solve the must analysis for a program the abstract values
have to form a complete join semi lattice. The order is imposed by the set inclusion order of
the underlying concrete domain (sets of concrete cache states). Additionally, a (artificial)
least element ⊥ is used. (In practice the ⊥ element is used for initialization purposes for
the fixpoint iteration, see below.)
For the domain of the must analysis we define the following orders:

ŝ1 ⊑∩
Ŝ ŝ2 ⇔ conc∩Ŝ (ŝ1) ⊆ conc∩Ŝ (ŝ2)

ĉ1 ⊑∩
Ĉ ĉ2 ⇔ conc∩Ĉ(ĉ1) ⊆ conc∩Ĉ(ĉ2)

We extend Ŝ by a least element ⊥Ŝ , where:

∀ŝ ∈ Ŝ: Ĵ ∩
Ŝ

(⊥Ŝ, ŝ) = Ĵ ∩
Ŝ

(ŝ, ⊥Ŝ) = ŝ
∀ŝ ∈ Ŝ: ⊥Ŝ ⊑∩

Ŝ
ŝ

∀m ∈ M ′: Û∩
Ŝ
(⊥Ŝ,m) = ⊥Ŝ

EFFICIENT AND PRECISE CACHE BEHAVIOR PREDICTION 145

Figure 5. Join for the Must analysis.

the oldest age, if it has two different ages (see Figure 5).

Ĵ ∩
Ŝ

(ŝ1, ŝ2) = ŝ, where:

ŝ(lx) = {m | ∃la, lb with m ∈ ŝ1(la),m ∈ ŝ2(lb) and x = max(a, b)}

The join function for abstract cache states applies the join function for abstract set states
to all its abstract set states:

Ĵ ∩
Ĉ

(ĉ1, ĉ2) = [fi $→ Ĵ ∩
Ŝ

(ĉ1(fi), ĉ2(fi)) | for all 1 ≤ i ≤ n/A]

In order to use Theorem 1 to solve the must analysis for a program the abstract values
have to form a complete join semi lattice. The order is imposed by the set inclusion order of
the underlying concrete domain (sets of concrete cache states). Additionally, a (artificial)
least element ⊥ is used. (In practice the ⊥ element is used for initialization purposes for
the fixpoint iteration, see below.)
For the domain of the must analysis we define the following orders:

ŝ1 ⊑∩
Ŝ ŝ2 ⇔ conc∩Ŝ (ŝ1) ⊆ conc∩Ŝ (ŝ2)

ĉ1 ⊑∩
Ĉ ĉ2 ⇔ conc∩Ĉ(ĉ1) ⊆ conc∩Ĉ(ĉ2)

We extend Ŝ by a least element ⊥Ŝ , where:

∀ŝ ∈ Ŝ: Ĵ ∩
Ŝ

(⊥Ŝ, ŝ) = Ĵ ∩
Ŝ

(ŝ, ⊥Ŝ) = ŝ
∀ŝ ∈ Ŝ: ⊥Ŝ ⊑∩

Ŝ
ŝ

∀m ∈ M ′: Û∩
Ŝ
(⊥Ŝ,m) = ⊥Ŝ

On control flow nodes with at
least two predecessors, �
join functions are used to
combine the abstract cache
states.

MUST Analysis with multiple Predecessors

•  Simple case: node k has more than one predecessor, say k1 to kx.

•  Then there is an equation :

c^k = U^C^(c^k’, <m1, …, my>) = U^C^(... U^C^(c^k’,m1) ..., my)

where

c^k’ = J^C^(c^k1, ... J^C^(c^x-1,c^x) ...)

•  Rest of classification of memory reference stays the same.

CPSC-663: Real-Time Systems Deterministic Cache Analysis

9

MAY Analysis

Q: How do we know if a memory reference is an ALWAYS
MISS?

A: We determine the set of memory blocks that MAY be
in the cache.

MAY Analysis

•  ma ∈ sˆ(lx) for some x means that the memory block ma may be
in the cache.

•  Observation 1: The position (relative age) of a memory block ma in
a set can only be changed by memory references that go into the
same set.

–  i.e. by references to memory blocks mb with set(ma) = set(mb).

•  Observation 2: The position is not changed by references to
memory blocks mb ∈ sˆ(ly) where y ≤ x, i.e., memory blocks that
are already in the cache and are “younger” or the same age as
ma.

•  Observation 3: ma will stay in the cache at least for the next A −
x + 1 references that go to the same set and are not yet in the
cache or are older than or have the same age as ma.

CPSC-663: Real-Time Systems Deterministic Cache Analysis

10

MAY Analysis: Update Function
EFFICIENT AND PRECISE CACHE BEHAVIOR PREDICTION 147

Figure 6. Update of an abstract fully associative set for the May analysis.

The concretization function for the may analysis conc∪
Ĉ
is given by:

conc∪
Ĉ(ĉ) = {c | ∀1 ≤ i ≤ n/A: c(fi) ∈ conc∪Ŝ (ĉ(fi))}

conc∪
Ŝ (ŝ) = {s | ∀1 ≤ a ≤ A, s(la) ̸= I : ∃b: s(la) ∈ ŝ(lb) and b ≤ a}

A concrete cache state c is in conc∪
Ĉ
(ĉ), if all its concrete set states are described accord-

ingly by the abstract set states of ĉ. A concrete set state s is in conc∪
Ŝ
(ŝ), if all memory

blocks that are in s are also in ŝ and the position (relative age) is greater or equal than in
the abstract set.
We use the following abstract set update function (see Figure 6 for an example):

Û∪
Ŝ
(ŝ,m) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[l1 '→ {m},
li '→ ŝ(li−1) | i = 2 . . . h,
lh+1 '→ ŝ(lh+1) ∪ (ŝ(lh) − {m}),
li '→ ŝ(li) | i = h + 2 . . . A]; if ∃lh : m ∈ ŝ(lh)

[l1 '→ {m},
li '→ ŝ(li−1) | i = 2 . . . A]; otherwise

Note: The proof of local consistency of Û∪
Ŝ
and US can be found in Ferdinand (1997).

Û∪
Ŝ
preserves condition (4) on abstract set states.

The abstract cache update function for the may analysis has the same structure as the one
for the must analysis:

Û∪
Ĉ
(ĉ,m) = ĉ[set(m) '→ Û∪

Ŝ
(ĉ(set(m)),m)]

Û∪
Ĉ
preserves condition (4) on abstract set states.

The join function has similarities to set union. A memory block is in the abstract set state,
if it is in at least one operand abstract set states. If a memory block s has two different ages

EFFICIENT AND PRECISE CACHE BEHAVIOR PREDICTION 147

Figure 6. Update of an abstract fully associative set for the May analysis.

The concretization function for the may analysis conc∪
Ĉ
is given by:

conc∪
Ĉ(ĉ) = {c | ∀1 ≤ i ≤ n/A: c(fi) ∈ conc∪Ŝ (ĉ(fi))}

conc∪
Ŝ (ŝ) = {s | ∀1 ≤ a ≤ A, s(la) ̸= I : ∃b: s(la) ∈ ŝ(lb) and b ≤ a}

A concrete cache state c is in conc∪
Ĉ
(ĉ), if all its concrete set states are described accord-

ingly by the abstract set states of ĉ. A concrete set state s is in conc∪
Ŝ
(ŝ), if all memory

blocks that are in s are also in ŝ and the position (relative age) is greater or equal than in
the abstract set.
We use the following abstract set update function (see Figure 6 for an example):

Û∪
Ŝ
(ŝ,m) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[l1 '→ {m},
li '→ ŝ(li−1) | i = 2 . . . h,
lh+1 '→ ŝ(lh+1) ∪ (ŝ(lh) − {m}),
li '→ ŝ(li) | i = h + 2 . . . A]; if ∃lh : m ∈ ŝ(lh)

[l1 '→ {m},
li '→ ŝ(li−1) | i = 2 . . . A]; otherwise

Note: The proof of local consistency of Û∪
Ŝ
and US can be found in Ferdinand (1997).

Û∪
Ŝ
preserves condition (4) on abstract set states.

The abstract cache update function for the may analysis has the same structure as the one
for the must analysis:

Û∪
Ĉ
(ĉ,m) = ĉ[set(m) '→ Û∪

Ŝ
(ĉ(set(m)),m)]

Û∪
Ĉ
preserves condition (4) on abstract set states.

The join function has similarities to set union. A memory block is in the abstract set state,
if it is in at least one operand abstract set states. If a memory block s has two different ages

Join Function for MAY Analysis

148 FERDINAND AND WILHELM

Figure 7. Join for the May analysis.

in two abstract cache states then the join function takes the youngest age (see Figure 7).

Ĵ ∪
Ŝ

(ŝ1, ŝ2) = ŝ, where:

ŝ(lx) = {m | ∃la, lb with m ∈ ŝ1(la),m ∈ ŝ2(lb) and x = min(a, b)}

∪ {m | m ∈ ŝ1(lx) and ̸ ∃la with m ∈ ŝ2(la)}

∪ {m | m ∈ ŝ2(lx) and ̸ ∃la with m ∈ ŝ1(la)}
The join function for abstract cache states for the may analysis has the same structure as

for the must analysis:

Ĵ ∪
Ĉ

(ĉ1, ĉ2) = [fi %→ Ĵ ∪
Ŝ

(ĉ1(fi), ĉ2(fi)) | for all 1 ≤ i ≤ n/A]

As for the must analysis, we define the following orders for the domain of the may
analysis:

ŝ1 ⊑∪
Ŝ ŝ2 ⇔ conc∪Ŝ (ŝ1) ⊆ conc∪Ŝ (ŝ2)

ĉ1 ⊑∪
Ĉ ĉ2 ⇔ conc∪Ĉ(ĉ1) ⊆ conc∪Ĉ(ĉ2)

We extend Ŝ by a least element ⊥Ŝ , where:

∀ŝ ∈ Ŝ: Ĵ ∪
Ŝ

(⊥Ŝ, ŝ) = Ĵ ∪
Ŝ

(ŝ, ⊥Ŝ) = ŝ
∀ŝ ∈ Ŝ: ⊥Ŝ ⊑∪

Ŝ
ŝ

∀m ∈ M ′: Û∪
Ŝ
(⊥Ŝ,m) = ⊥Ŝ

We extend Ĉ by a least element ⊥Ĉ , ∀1 ≤ i ≤ n/A: ⊥Ĉ(fi) = ⊥Ŝ , where:

∀ĉ ∈ Ĉ : Ĵ ∪
Ĉ

(⊥Ĉ , ĉ) = Ĵ ∪
Ĉ

(ĉ, ⊥Ĉ) = ĉ
∀ĉ ∈ Ĉ : ⊥Ĉ ⊑∪

Ĉ
ĉ

∀m ∈ M ′: Û∪
Ĉ
(⊥Ĉ ,m) = ⊥Ĉ

148 FERDINAND AND WILHELM

Figure 7. Join for the May analysis.

in two abstract cache states then the join function takes the youngest age (see Figure 7).

Ĵ ∪
Ŝ

(ŝ1, ŝ2) = ŝ, where:

ŝ(lx) = {m | ∃la, lb with m ∈ ŝ1(la),m ∈ ŝ2(lb) and x = min(a, b)}

∪ {m | m ∈ ŝ1(lx) and ̸ ∃la with m ∈ ŝ2(la)}

∪ {m | m ∈ ŝ2(lx) and ̸ ∃la with m ∈ ŝ1(la)}
The join function for abstract cache states for the may analysis has the same structure as

for the must analysis:

Ĵ ∪
Ĉ

(ĉ1, ĉ2) = [fi %→ Ĵ ∪
Ŝ

(ĉ1(fi), ĉ2(fi)) | for all 1 ≤ i ≤ n/A]

As for the must analysis, we define the following orders for the domain of the may
analysis:

ŝ1 ⊑∪
Ŝ ŝ2 ⇔ conc∪Ŝ (ŝ1) ⊆ conc∪Ŝ (ŝ2)

ĉ1 ⊑∪
Ĉ ĉ2 ⇔ conc∪Ĉ(ĉ1) ⊆ conc∪Ĉ(ĉ2)

We extend Ŝ by a least element ⊥Ŝ , where:

∀ŝ ∈ Ŝ: Ĵ ∪
Ŝ

(⊥Ŝ, ŝ) = Ĵ ∪
Ŝ

(ŝ, ⊥Ŝ) = ŝ
∀ŝ ∈ Ŝ: ⊥Ŝ ⊑∪

Ŝ
ŝ

∀m ∈ M ′: Û∪
Ŝ
(⊥Ŝ,m) = ⊥Ŝ

We extend Ĉ by a least element ⊥Ĉ , ∀1 ≤ i ≤ n/A: ⊥Ĉ(fi) = ⊥Ŝ , where:

∀ĉ ∈ Ĉ : Ĵ ∪
Ĉ

(⊥Ĉ , ĉ) = Ĵ ∪
Ĉ

(ĉ, ⊥Ĉ) = ĉ
∀ĉ ∈ Ĉ : ⊥Ĉ ⊑∪

Ĉ
ĉ

∀m ∈ M ′: Û∪
Ĉ
(⊥Ĉ ,m) = ⊥Ĉ

CPSC-663: Real-Time Systems Deterministic Cache Analysis

11

MAY Analysis and Control Flow

•  Let s^ = c^k(set(m)) for some memory block m.

•  If m is not in sˆ(ly) for at least one line ly, then m is definitely
NOT in the cache whenever control reaches k.

•  Therefore, reference to m is classified as ALWAYS MISS.

