
CPSC-663: Real-Time Systems Cache Partitioning and Locking

1

Caches in Real-Time Systems

[Xavier Vera, Bjorn Lisper, Jingling Xue, “Data Caches in Multitasking Hard Real-
Time Systems”, RTSS 2003.]

•  Ignoring cache leads to significant resource under-utilization.

•  Q: How to appropriately account for cache?

Schedulability
Analysis WCET Simple

Platforms

WCMP
(memory performance)

e.g.
no caches

© R. Bettati

Instruction Cache vs. Data Cache

•  Computation of WCET with Instruction Cache for non-preemptive
systems (e.g. Static Cache Simulation)

•  Extension: Computation of WCET with instruction cache in
preemptive systems.

•  Analysis of Data Cache harder

–  Single instruction can refer to multiple memory locations.

–  Locality of reference harder to capture for data access.

CPSC-663: Real-Time Systems Cache Partitioning and Locking

2

WCET Analysis in the Presence of Data Caches (I)

•  Static Analysis

–  Attempts to classify statically the different memory accesses

as hits or misses.

–  Typically does not consider preemptive systems

–  Limited to codes free of data-dependent constructs

•  Cache Preemption Delay

–  Incorporate cache preemption cost as context switch overhead

into schedulability analysis.

–  Cold-started cache after preemption?

•  Might be unsafe on processors with out-of-order instruction
scheduling, where a cache hit under some circumstances
may be more expensive than a miss.

Program Model

•  Programs consist of

–  subroutines, calls,

–  arbitrarily nested but well-structured loops,

–  assignments, possibly guided by IF conditionals.

•  Extensions possible to unstructured code.

•  In this paper, all programs are in C. Thus, all arrays

are assumed to be in row major.

•  Static analysis possible with additional constraints

–  Calls are non-recursive.

–  Bounds of all loops are known and affine.

–  The IF conditionals are analyzable at compile time.

CPSC-663: Real-Time Systems Cache Partitioning and Locking

3

How can Caches help?

•  Cache Locking

–  Available on many microprocessors (e.g. PowerPC 604e, 405 and

440 families, Intel-960, some Intel x86, Motorola MPC7400)

–  Static Locking

•  cache is loaded and locked at system start

–  Dynamic Locking

•  state of the cache is allowed to change during the system
execution

•  Cache Partitioning.

–  Eliminate inter-task conflicts by giving reserved portions of

cache to certain tasks.

–  May give raise to fragmentation, and translate to a loss of

performance.

Cache Model

•  Uniprocessor with two-level memory hierarchy

–  virtually-indexed K-way set-associative data cache using LRU

replacement

–  main memory.

•  K-way set-associative cache

–  Cache set contains K cache lines.

–  Let C (L) be the cache (line) size in bytes. The total number of cache

sets is thus C/(L × K).

–  A cache is called direct-mapped when K=1

–  A cache is called fully-associative when K=C/L.

•  Cache locking

–  Cache locking mechanism allows a single cache line to be locked.

•  Pre-fetch / Invalidate

–  Processors can load and invalidate cache lines selectively. (This can be

emulated in software.)

•  Cache partitioning

–  Implemented either in hardware or software.

–  Partition unit is a cache set.

CPSC-663: Real-Time Systems Cache Partitioning and Locking

4

Approach (Overview)

•  Summary: Need method that allows obtaining an exact and safe
WCMPs of tasks for multitasking systems with data caches, so
that current schedulability analyses can be applied without
modifications.

•  Use Cache partitioning to eliminate inter-tasks conflicts.

–  This allows us to compute the WCMP of each task in isolation.

•  Compensate performance loss through use of compiler cache
optimizations (such as tiling and padding).

•  Use Static Analysis to compute WCMP of a task.

–  Transform the program issuing lock/unlock instructions to

ensure a tight WCMP estimate at static time.

–  Cache pre-fetching added when necessary to improve

performance

Cache Partitioning

•  Inter-task interference occurs when cache lines from different tasks
conflict in cache, which causes unpredictability.

•  Partitioning:

–  Divide the cache into disjoint partitions, which are assigned to tasks

in such a way that inter-conflicts are removed.

–  Create n + 1 partitions, one for each real-time task and another one

which is shared among non-real-time tasks.

–  Each task is only allowed to access its own partition, thus removing

inter-task conflicts.

•  Tasks with same priority can share the same partition

–  Only preempted by tasks with higher priority, and thus the
predictability of cache behavior is not affected. (Therefore, p
partitions are sufficient, where p is the number of different priorities).

•  Partition-size:

–  Size of the partitions impacts performance.

–  Optimal partitioning depends on the priorities and the reuse patterns

of tasks. Equally-sized partitions give significant improvement.

CPSC-663: Real-Time Systems Cache Partitioning and Locking

5

Predictable Cache Behavior

•  Unpredictability caused by path merging and data dependent
memory access.

•  Path Merging:

–  Reduce overhead of analyzing loop constructs with multiple

paths inside (data-dependent conditionals, loops with unknown
loop bounds).

–  Cache state at the end of the merged path is unknown.

•  Data Dependent Memory Access:

–  Indirection arrays (e.g., a[b[i]], where b[i] is not statically
known)

–  Variables allocated dynamically (e.g., mallocs) and pointer
accesses that cannot be determined statically.

–  Nonlinear array references that are not handled by static
analyzer (e.g., a[i*j])

–  Library and operating system calls.

•  Solution: Cache locking during unpredictable regions of code.

Cache Locking: Example

int a[100], b[100];
int c[100], k=0;
for (i=0;i<100;i++)
 a[i]=random(i);
for (i=0;i<100;i++)
 c[i]=b[a[i]]+c[i];

N=random(i)*100;

for (i=0;i<N;i++){
 if (c[i]>15)
 k++;
 c[i]=0;
}

int a[100], b[100];
int c[100], k=0;
for (i=0;i<100;i++)
 a[i]=random(i);
for (i=0;i<100;i++) {
 lock(); /*Region 1*/
 c[i]=b[a[i]]+c[i];
 unlock();
}

Original Code
 Lock/Unlock Placement

Data-
dependent

access

Merging
construct

Merging
construct

N=random(i)*100;
lock(); /*Region 2*/
for (i=0;i<N;i++){

 c[i]=0;
}
unlock();

register int temp=(c[i]>15);
lock();/*Region 2.1*/
if (temp)
 k++;
unlock();

CPSC-663: Real-Time Systems Cache Partitioning and Locking

6

Optimizing Lock Placement

•  Rule 1. Lock/unlock instructions that lock the whole loop body
(including the test) are placed outside the loop.

loop;lock;S;unlock;endloop →
lock;loop;S;endloop;unlock

•  Rule 2. Remove nested lock regions.

lock;lock;S;unlock;unlock → lock;S;unlock

•  Rule 3. Fuse two consecutive locked regions.

lock;S1;unlock;lock;S2;unlock → lock;S1;S2;unlock

•  Rule 4*. Move a statement past a lock instruction.

S1;lock;S2;unlock → lock;S1;S2;unlock

•  Rule 5*. Move an unlock instruction past a statement.

lock;S1;unlock;S2 → lock;S1;S2;unlock

(*) May affect cache behavior.

Optimizing Lock Placement: Example

int a[100], b[100];
int c[100], k=0;
for (i=0;i<100;i++)
 a[i]=random(i);
for (i=0;i<100;i++) {
 lock(); /*Region 1*/
 c[i]=b[a[i]]+c[i];
 unlock();
}
N=random(i)*100;
lock(); /*Region 2*/
for (i=0;i<N;i++){
 register int temp=(c[i]>15);
 lock();/*Region 2.1*/
 if (temp)
 k++;
 unlock();
 c[i]=0;
}
unlock();

Lock/Unlock Placement

int a[100], b[100];
int c[100], k=0;

for (i=0;i<100;i++)

 a[i]=random(i);

IssueLoads(c);
IssueLoads(b);
lock(); /*Region 1*/
for (i=0;i<100;i++)

 c[i]=b[a[i]]+c[i];

unlock();
N=random(i)*100;

lock(); /*Region 2*/
for (i=0;i<N;i++){

 register int temp=(c[i]>15);

 if (temp)

 k++;

 c[i]=0;

}

unlock();

Final Version

CPSC-663: Real-Time Systems Cache Partitioning and Locking

7

Overview of System

Test Workload

!"#$%&

'(#)
*"+

!"#$%
&"'()()*+)+,

,(-+.+.&/001
'(#)01

,(-+.+.&/00!
'(#)0!

-("()#./+"012)2 -#$%340"5)0)(1
/+"012)2

61+"7)#.8*#9)+, :!;&
/+"012)2 :!;&

61+"7)#.8*#9)+, :!;&
/+"012)2 :!;&

2(34"

Figure 3. A framework for worst-case performance computation.

Workload WCMP Period Period
Name Description (bytes) (no cache) (Normal) (HP)

Large Task Set
MM Multiplication of two 100x100 Int matrices 120000 153140000 117800000 102093333
SRT Bubblesort of 1000 double array 8000 113925998 159496397 227851996
FIB Computation of the 30 first Fibonacci numbers 16 7790 155800000 3895
FFT Fast Fourier transformation of 512 complex numbers 8192 1655808 152334336 3311616

Medium Task Set
CNT Counting and sum of values in a 100x100 Int matrix 40000 1140000 570000 285000
SQRT Computation of the square root of 1384 16 5360 241200 2680

ST Computation of Sum, Mean, Var (1000 doubles) 16000 532000 266000 266000
NDES Encryption and decryption of 64 bits 960 220938 331407 110469

Table 1. Benchmarks used.

Unlike loop tiling, padding [36] modifies the data lay-
out to eliminate conflict misses. Some arrays may interfere
severely for pathological alignments, which translates to a
severe performance degradation. Padding changes the data
layout in two different ways. Inter-padding modifies the
base addresses of the arrays, whereas intra-padding changes
the size of array dimensions. We use Vera et al’s [40] algo-
rithm to select tile and pad sizes in concert.

5. Experimental Framework

We have conducted experiments for data caches com-
monly used in real-time systems. We have chosen 16KB
and 32KB caches with 32B lines. For each cache, we have
considered a direct-mapped cache, 2-way and 4-way set
associative caches.2 The timing model considered is very
simple: we only consider memory and lock/unlock instruc-
tions. We chose the hit and miss access times after the Pow-
erPC 604e [33], where each hit takes 1 cycle and each miss
38 cycles. Lock and unlock instructions take 1 cycle each.

2 Caches with larger associativity usually use random or FIFO replace-
ment policies.

Each instruction to load the cache is treated as a normal
memory access. Writes and reads are modeled identically.
Thus, we present results in terms of WCMP.

Figure 3 depicts the framework used to compute the
worst-case performance and study the schedulability of a
task set. The compiler passes (issuing lock/unlock instruc-
tions, inserting loads and applying tiling and padding) are
written using the SUIF2 internal representation, which can
be generated from different front-ends. We use SUIF2 to
collect all information about memory accesses and control
flow (it basically applies abstract inlining [44] and detects
loops and IF statements). The paths that are used to obtain
the path corresponding to the worst-case scenario are cur-
rently manually fed to our system.

The central component is the static analyzer. We have
implemented the CMEs [15] following the techniques out-
lined in the literature [4, 41, 43, 44], and extended them to
deal with locked regions [42].

We present the performance of our approach for two real
task sets. We set up a large task set in order to evaluate the
efficiency of cache partitioning and compiler optimizations.
The medium task set is used to show that even for smaller
workloads, our approach performs better than static cache

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE

CPSC-663: Real-Time Systems Cache Partitioning and Locking

8

Performance: Effect of Partitioned Cache

Performance: Static vs. Dynamic Locking

CPSC-663: Real-Time Systems Cache Partitioning and Locking

9

Worst-Case Performance

Compares utilization levels.

