
CPSC-663: Real-Time Systems Operating-System Issues

1

© R. Bettati

Operating Systems Issues for Real-Time

•  Timing, Scheduling Latencies, and Preemption (example: Linux)

•  Scheduling Policies (example: Solaris)

•  Device Driver Architectures for Real-Time (example: Windows)

•  Integration of Hard Real-Time and General-Purpose OS

Architectures (example: Windows / Linux)

© R. Bettati

Operating Systems Issues for Real-Time

•  Timing, Scheduling Latencies, and Preemption (example: Linux)

•  Scheduling Policies (example: Solaris)

•  Device Driver Architectures for Real-Time (example: Windows)

•  Integration of Hard Real-Time and General-Purpose OS

Architectures (example: Windows / Linux)

CPSC-663: Real-Time Systems Operating-System Issues

2

© R. Bettati

Timing, Scheduling Latency, and Preemption �
(Real-Time Performance of Linux)

•  Among others: “A Measurement-Based Analysis of the Real-
Time Performance of Linux” (L. Abeni , A. Goel, C. Krasic, J.
Snow, J. Walpole) [RTAS 2002]

© R. Bettati

OS Latency

Definition [OS Latency] �
�
Let T be a task belonging to a time-sensitive application
that requires execution at time t, and let t’ be the time at
which T is actually scheduled; we define the OS latency
experienced by T as L= t’ – t.

CPSC-663: Real-Time Systems Operating-System Issues

3

© R. Bettati

Sources of OS Latency

•  Timer Resolution (Ltimer)

–  Timer are generally implemented using a periodic tick interrupt.

A task that sleeps for an arbitrary amount of time can
experience some timer resolution latency if its expected
activation time is not on a tick boundary.

•  Scheduling Jitter (LSJ)

–  Task is not highest in scheduling queue.

•  Non-Preemptable Portions (LNP)

–  Latency can be caused by non-preemptable sections in kernel

and in drivers. (e.g. ISRs, bottom halves, tasklets).

© R. Bettati

Timer Resolution

•  Standard Linux timers are triggered by a periodic tick interrupt.

•  On x86 machines it is generated by the Programmable Interval

Timer (PIT) with period Ttick = 10ms.

•  How about decreasing Ttick?

•  High-resolution timers using aperiodic interrupt capabilities in
modern APICs (Advanced Programmable Interrupt Controller).

•  Timer resolution possible in range of 4-6musec.

CPSC-663: Real-Time Systems Operating-System Issues

4

© R. Bettati

Non-Preemptable Section Latency

•  Standard Linux:

–  monolithic structure of kernel.

–  Allows execution of at most one thread in kernel. This is achieved by

disabling preemption when an execution flow enters the kernel, i.e.,
when an interrupt fires or when a system call is invoked.

–  Latency can be as large as 28ms.

•  Low-Latency Linux:

–  Insert explicit preemption points (re-scheduling points) inside the
kernel.

–  Implemented in RED Linux and Andrew Morton’s low-latency patch.

•  Preemptable Linux:

–  To support full kernel preemptability, kernel data must be explicitly
protected using mutexes or spinlocks.

–  Linux preemptable-kernel patch disables preemption only when
spinlock is held.

–  Latency determined by max. amound of time for which a spinlock is
held plus maximum time taken by ISRs, bottom halves, and tasklets.

•  Preemptable Lock-Breaking Linux:

–  Spinlocks are broken by releasing spinlocks at strategic points.

© R. Bettati

Preemptable Lock Breaking: Example

•  This function reclaims cached dentry structures in fs/
dchache.c

•  High-latency point.

•  Why count iterations at all?

CPSC-663: Real-Time Systems Operating-System Issues

5

© R. Bettati

Test Programs

•  Measuring Ltimer:

–  Run test task on lightly loaded system, to avoid Lnp.

–  Set up a periodic signal (using itimer())

•  Measuring Lnp:

–  Run test task against background tasks

–  Test Task:

•  Read current time t1

•  Sleep for a time T

•  Read time t2, and compute Lnp = t2 - (t1 + T)

–  How to read t1 and t2 ? (gettimeofday() ?)

© R. Bettati

Timer Latency

CPSC-663: Real-Time Systems Operating-System Issues

6

© R. Bettati

Test Programs

•  Measuring Ltimer:

–  Run test task on lightly loaded system, to avoid Lnp.

–  Set up a periodic signal (using itimer())

•  Measuring Lnp:

–  Run test task against background tasks

–  Test Task:

•  Read current time t1

•  Sleep for a time T

•  Read time t2, and compute Lnp = t2 - (t1 + T)

–  How to read t1 and t2 ? (gettimeofday() ?)

© R. Bettati

Measuring Lnp

•  Memory Stress:

–  Page fault handler invoked repeatedly.

•  Console-Switch Stress:

–  Console driver contains long non-preemptable paths.

•  I/O Stress:

–  Systems calls that move large amounts of data between user and

kernel space, or from kernel memory to hardware peripherals.

•  Procfs Stress:

–  Concurrent access to /proc file system must be protected by non-
preemptable sections.

•  Fork Stress:

–  New processes created inside non-preemptable section and requires

copying of large amounts of data.

–  Overhead of scheduler increases as number of active processes

increases.

CPSC-663: Real-Time Systems Operating-System Issues

7

© R. Bettati

OS Non-Preemptable Section Latency

© R. Bettati

Background Load Tests

Standard Linux

CPSC-663: Real-Time Systems Operating-System Issues

8

© R. Bettati

Background Load Tests

Low-Latency Kernel

© R. Bettati

Background Load Tests

Preemptable Kernel

CPSC-663: Real-Time Systems Operating-System Issues

9

© R. Bettati

Background Load Tests

Lock-Breaking Preemptable Kernel

© R. Bettati

OS Non-Preemptable Portion Latency

CPSC-663: Real-Time Systems Operating-System Issues

10

© R. Bettati

Non-Preemptable Portion Latency

© R. Bettati

Latencies

CPSC-663: Real-Time Systems Operating-System Issues

11

© R. Bettati

Inter Frame Times

© R. Bettati

Operating Systems Issues for Real-Time

•  Timing, Scheduling Latencies, and Preemption (example: Linux)

•  Scheduling Policies (example: Solaris)

•  Device Driver Architectures for Real-Time (example: Windows)

•  Integration of Hard Real-Time and General-Purpose OS

Architectures (example: Windows / Linux)

CPSC-663: Real-Time Systems Operating-System Issues

12

© R. Bettati

(Some) Real-Time Operating Systems Issues

•  (Some, random) Issues with Real-Time OSs

•  Problems with the design of general-purpose real-time capable OS:
Solaris

J.Nieh, J.G.Hanko, J.D. Northcutt, G.A.Wall.

“SVR4 UNIX Scheduler Unacceptable for Multimedia
Applications.” NOSSDAV ‘93.

URL: http://www.cs.columbia.edu/~nieh/#publications

© R. Bettati

So, You want to make your OS Real-Time?!

•  Making general-purpose OS real-time capable:

–  Scheduling of tasks in kernel should be deterministic.

Kernel should be free from unbounded priority
inversion.

–  Deterministic dispatch latency.

–  Allow for mixed-mode applications: real-time and

non-real-time components.

–  Appropriate for multiprocessor machines.

–  Provide standard interface to user, such as POSIX.

CPSC-663: Real-Time Systems Operating-System Issues

13

© R. Bettati

Kernel Dispatch Latency

•  Historically: unbounded dispatch latency caused by non-
preemptible kernel.

–  Solution 1: Well-defined preemption points. (?)

–  Solution 2: Fully synchronize access by kernel code

to kernel data structures.

• Reduces set of non-preemptible portions in kernel.

• Kernel is multithreaded.

more about this later…

© R. Bettati

Scheduling Classes

•  Time-Sharing class:

–  round robin scheduling.

•  Sys class:

–  fixed priority scheduling,

–  not accessible by the user.

•  Real-Time class:

–  fixed priority scheduling.

•  priocntl(2)

–  Change scheduling class or other

scheduling parameters.

interrupt

RT

sys

TS TS

+20

-20
0

59

99

159

RT

0

59

CPSC-663: Real-Time Systems Operating-System Issues

14

© R. Bettati

Priority Inversion

•  Priority inversion happens due to

–  non-preemptable portions

–  access to synchronization objects

–  “hidden scheduling”

•  Synchronization Objects (mutex, r/w locks)

–  Solution: basic priority-inheritance protocol

•  Hidden Scheduling

–  Work done asynchronously in kernel on behalf of threads

without regard to their priority.

–  Example: streams processing

–  Example: timeouts done at lowest interrupt level

–  Solution: Move this code into kernel threads running at sys

priority level.

process
user

kernel
check pending
streams requests

© R. Bettati

Priority Inheritance

•  Primitives:

–  pi_willto(thread)
impose priority of argument thread onto all

threads that block it, directly or indirectly

–  pi_waive()

release priority inheritance

•  The function pi_willto() is called after the thread has been put to sleep in the
queue associated with the synchronization object. The information about the
synchronization object can therefore be recovered.

CPSC-663: Real-Time Systems Operating-System Issues

15

© R. Bettati

Priority Inheritance and R/W Locks

•  Priority inheritance for readers/writers locks:

– when writer owns the lock: no problem

– when readers own the lock:

•  potentially many “owners”; not practical to keep
pointer from resource to every thread that owns
it

• Solution: define a single “owner-of-record”, which
is only thread that inherits priority.

© R. Bettati

J.Nieh, J.G.Hanko, J.D. Northcutt, G.A.Wall.

“SVR4 UNIX Scheduler Unacceptable for Multimedia Applications.” NOSSDAV ‘93.

URL: http://www.cs.columbia.edu/~nieh/#publications

Applicability of SunOS 5.0 for Multimedia Applications

•  Objectives of real-time OS for general-purpose workstations

–  Provide real-time guarantees without reducing general
capabilities of workstations

–  Manage resources so that other applications can operate
correctly.

–  SunOS 5.0 (SVR4) provides real-time static-priority scheduler.

•  Question: How well are resources managed?

CPSC-663: Real-Time Systems Operating-System Issues

16

© R. Bettati

Experimental Evaluation: Overview

•  Platform

–  Sun Sparc10

–  Solaris 2.2

–  Scheduling classes (RT class, TS class, SYS class)

•  Experiment (measurement) criteria:

–  Interactive:

•  minimize average and variance between user input and response

•  Typing, cursor motion, mouse selection <= 50 - 150 ms.

–  Continuous media:

•  Minimize difference between average display rate and desired display rate.

•  Minimize variance of display rate.

–  Batch:

•  “Minimize difference between actual time of completion and minimum time

of completion when whole machine is dedicated.”

© R. Bettati

Experiment: Workload

•  3 classes of workload

•  Interactive: (editors, GUIs)

–  TYPING: Emulate a user typing, and display characters on the screen.

•  Continuous media: (television, teleconference)

–  VIDEO:
Capture data from digitizer board and display through x-

windows server.

•  Batch: (compilations, scientific computation)

–  make:
Repeatedly fork and wait for small processes to complete.

•  Instrumentation of application and system software components does not
measurably change the performance.

CPSC-663: Real-Time Systems Operating-System Issues

17

© R. Bettati

Experiment: The Baseline

•  What is a well-behaved system?

–  Concurrent applications should make some progress

–  No case where system fails to respond to operator input

–  User should exercise wide range of influence over system

behavior.

Application Measurement Mean Std. Dev.
Typing Latency between character arrival 38.5 ms 15.7 ms

 and rendering to frame buffer
Video Time between display of successive 112 ms 9.75 ms

frames
Compute Time to execute one loop iteration 149 ms 6.79 ms

Table: Application Baseline Values

© R. Bettati

Experiment 1: Run all tasks in TS class

•  Window system is no longer accepting input
events from mouse or keyboard.

•  Command interpreter not permitted to run.

•  System blocked by batch-job

–  Identified as I/O intensive interactive job.
Gets priority boosts for sleeping.

•  Window server develops backlog of service
requests. As it works down its queue, it gets
identified as compute bound.

•  Table entries are relative to baseline (tall is
better)

•  T: TYPING character latency

•  V: time between display of successive frames for

VIDEO.

•  C: time for one iteration in COMPUTE.

CPSC-663: Real-Time Systems Operating-System Issues

18

© R. Bettati

What can the System Administrator do?

Increase priority of X-Server,
decrease priority of batch task

In addition, decrease
priority of VIDEO a
bit

Decrease priority of VIDEO a
little bit more.

© R. Bettati

Play with RT Class

CPSC-663: Real-Time Systems Operating-System Issues

19

© R. Bettati

Result: New TS Class

•  Removes anomalies of identifying batch jobs
as interactive and vice versa.

•  Ensures that each process makes steady
progress.

•  Reduces feedback interval

•  Included in Solaris 2.3.

© R. Bettati

Operating Systems Issues for Real-Time

•  Timing, Scheduling Latencies, and Preemption (example: Linux)

•  Scheduling Policies (example: Solaris)

•  Device Driver Architectures for Real-Time (example: Windows)

•  Integration of Hard Real-Time and General-Purpose OS

Architectures (example: Windows / Linux)

CPSC-663: Real-Time Systems Operating-System Issues

20

© R. Bettati

Windows NT Family and Real-Time?

•  Reading: “Inside Microsoft Windows 7”, (Solomon, Russinovich,
Microsoft Programming Series)

•  “Real-Time Systems and Microsoft Windows NT” (MSDN Library)

•  “Windows XP with RTX - The off-the-shelf platform for
Integrated Communication Equipment” (www.venturcom.com)

© R. Bettati

Priorities in Windows NT/2000/XP/7/8/…

CPSC-663: Real-Time Systems Operating-System Issues

21

© R. Bettati

Priority Levels vs. Interrupt Levels

31: High

30: Power Fail

29: Inter-Processor Interrupt

28: Clock

27: Profile

26: Device n

3: Device 1

2: DPC/dispatch

1: APC

0: Passive

Hardware �
Interrupts

Software �
Interrupts
Thread �

Priorities 0-31

•  The HAL maps hardware-
interrupt numbers to IRQLs.

•  IRQLs are not the same as
IRQs in x86.

•  Scheduling priority is
attribute of thread, while
IRQL is attribute of an
interrupt source.

•  Lazy IRQL management for
slow PICs.

•  Code running at DPC/dispatch
level or above can’t wait on
object if so would necessitate
scheduler to invoke another
thread.

© R. Bettati

IO System Components (Windows 2k)

user mode

kernel mode

HAL

WDM WMI
routines

PnP
manager

Power
manager

I/O
manager

I/O system

drivers

...

setup
components

user-mode
PnP

manager

WMI
service

Applications Win32
services

.inf files

.cat files
registry

CPSC-663: Real-Time Systems Operating-System Issues

22

© R. Bettati

Device Driver Layering

© R. Bettati

Device Driver Layering (2)

CPSC-663: Real-Time Systems Operating-System Issues

23

© R. Bettati

dispatch
routines

Primary Device Driver Routines

IO
system

interrupt
service routine

DPC routine initialization
routine

add-device
routine

dispatch
routines dispatch

routines
start I/O
routine

•  Initialization routine This routine
initializes hardware and sets up data
structures used by the driver at
startup time.

•  Interrupt service routine (ISR) This
routine handles an interrupt on the
device that the device driver
controls.

•  Deferred processing call (DPC) One or
more DPCs handle non–time-critical
processing for the driver.

•  System thread Some, but not all,
drivers will have a system thread for
very low- priority work.

•  NT/2000 device drivers run entirely within the system process and have access
to all hardware through the HAL. A typical device driver will have several
components:

© R. Bettati

Control Flow for an IO Operation

Call ReadFile()

Call NTReadFile()
return to caller

INT 2E
return to caller

Call NTReadFile()
dismiss interrupt

Invoke driver
dismiss interrupt

Initiate I/O operation
dismiss interrupt

User mode

Kernel mode

Whether to wait depends
on “overlapped” flag

ReadFile

NtReadFile

KiSystemService

NtReadFile

Application

Kernel32.dll

Ntdll.dll

Ntoskrnl.exe

Ntoskrnl.exe

Driver.sys

CPSC-663: Real-Time Systems Operating-System Issues

24

© R. Bettati

Queueing and Completing a Synchronous Request

© R. Bettati

Servicing a Device Interrupt (only Phase I)

CPSC-663: Real-Time Systems Operating-System Issues

25

© R. Bettati

Servicing a Device Interrupt (Phase II)

© R. Bettati

Completing an I/O Request (Phase I)

CPSC-663: Real-Time Systems Operating-System Issues

26

© R. Bettati

Completing an I/O Request (Phase II)

© R. Bettati

Memory Management

•  Paging I/O occurs at a lower priority level than the real-time
priority process levels. Paging within the real-time process is still
free to occur, but this really ensures that background virtual
memory management won't interfere with processing at real-time
priorities.

•  Windows NT permits an application to lock itself into memory so
that it is not affected by paging within its own process. This
allows even very large processes (such as raster image processing,
where some processes are over 100MB) to lock all their memory
down into physical memory and avoid the overhead of paging, while
allowing the rest of the system to function normally.

•  Windows NT memory management allows for memory mapping,
which permits multiple processes—even device drivers and user
applications—to share the same physical memory. This results in
very fast data transfers between cooperating processes or
between a driver and an application. Memory mapping can be used
to dramatically enhance real-time performance.

CPSC-663: Real-Time Systems Operating-System Issues

27

© R. Bettati

Windows NT/2000/XP/… and Real-Time Processing

•  Windows NT/2000/XP/… does not prioritize device IRQs in
controllable way.

•  User-level applications execute only when a processor’s IRQL is at
passive level.

•  System’s devices and device drivers – not the OS – ultimately
determine the worst-case delay.

•  This is a problem with off-the-shelf hardware and drivers.

•  System designer must bound the length of device’s ISR and DPC in

the worst case.

•  Embedded versions of Windows NT/2000/XP… provide control over

memory footprint etc, but are not real-time capable.

•  Extensions of real-time kernels can be provided through custom

extensions of the HAL.

© R. Bettati

Operating Systems Issues for Real-Time

•  Timing, Scheduling Latencies, and Preemption (example: Linux)

•  Scheduling Policies (example: Solaris)

•  Device Driver Architectures for Real-Time (example: Windows)

•  Integration of Hard Real-Time and General-Purpose OS

Architectures (example: Windows / Linux)

CPSC-663: Real-Time Systems Operating-System Issues

28

© R. Bettati

Real-Time Executives - Example: �
VenturCom RTX Architecture

