

Polled Execution: Polling Server
Polling Server (p_s, e_s):scheduled as periodic task.p_s:Poller ready for execution every p_s time units.e_s:Upper bound on execution time.
 Terminology: (Execution) budget: e_s Replenishment: set budget to e_s at beginning of period. Poller consumes budget at rate 1 while executing aperiodic jobs. Poller exhausts budget whenever poller finds aperiodic queue empty. Whenever the budget is exhausted, the scheduler removes the poller from periodic queue until replenished.
© R. Bettati

Polling Server vs. Bandwidth-Preserving Servers
Polling Server (p_s, e_s):scheduled as periodic task.p_s:Poller ready for execution every p_s time units.e_s:Upper bound on execution time.
 Terminology: (Execution) budget: e_s Replenishment: set budget to e_s at beginning of period. Poller consumes budget at rate 1 while executing aperiodic jobs. Poller exhausts budget whenever poller finds aperiodic queue empty. Whenever the budget is exhausted, the scheduler removes the poller from periodic queue until replenished.
 Bandwidth-preserving server algorithms: Improve upon polling approach Use periodic servers Are defined by consumption and replenishment rules. "Bandwidth-preserving": preserve execution budget of poller
© R. Bettati

Schedul	ability for Static-Priority Systems (DS has highest priority)
• Lemma:	In a static-priority periodic system with $D_i \le p_i$, with a deferrable server $T_{DS}(p_{s'}, e_s)$ with highest priority, a critical instant for T_i happens when: (1) $r_{i,c} = t_0$ for some job $J_{i,c}$ in T_i . (2) jobs of higher-priority tasks are released at time t_0 . (3) budget of (backlogged) server is e_s at time t_0 . (4) next replenishment time is $t_0 + e_s$.
• Intuitively:	Low-priority tasks suffer from a "back-to-back" hit by the deferrable server.

•	Scheduling Rule: Assign priorities in order of increasing finish number.
•	Consumption Rule: pWFQ server consumes budget only when it executes.
•	Initialization Rules: II: When system is idle, $FN = 0$, $U_{L} = 0$, $t_{c} = 0$. Budgets of all servers are
	12: When first job arrives at time t with execution time e at some server FQ_k when system is idle:
	(a) $t_{-1} := t$, and $U_b := U_b + u_k$, and
	(b) set budget e_k of FQ_k to e and finish number $fn_k := e/u_k$.
•	Rules for updating Finish Times during System Busy Interval:
	R1 : When job arrives at queue FQ_k while FQ_k is idle
	(a) increment system finish number <i>FN := FN + (t-t)/U_b</i>
	(b) $t_{-1} := t$, and $U_b := U_b + u_k$, and
	(c) set budget e _k of FQ _k to e and its finish number fn _k := FN + e/u _k , enqueue server
	R2: Whenever FQ _k completes job
	(a) if server remains backlogged, set server budget e_k to e and increment its finish number: $fn_k := fn_k + e/u_k$.
	(b) if server becomes idle, update U_{b} and FN as follows:
	$FN := FN + (t - t_{-1})/U_{b_{1}}$ $t_{-1} := t_{1}$ and $U_{b_{1}} := U_{b_{1}} - u_{b_{2}}$

