
CPSC-663: Real-Time Systems Aperiodic and Sporadic Jobs

1

© R. Bettati

Scheduling Aperiodic and Sporadic Jobs

•  Definitions

•  Polling Server

•  Deferrable Server

•  Sporadic Server

•  Generalized Processor Sharing

•  Constant Utilization Server

•  Total Bandwidth Server

•  Preemptive Weighted Fair Queuing

© R. Bettati

Scheduling Aperiodic and (strictly) Sporadic Jobs

When variations in inter-release times and execution times are small:

–  can treat task as periodic task T=(ps, es), and schedule it

accordingly.

What about (strictly) sporadic jobs?

–  can arrive at any time

–  execution times vary widely

–  deadlines are unknown a priori?

CPSC-663: Real-Time Systems Aperiodic and Sporadic Jobs

2

© R. Bettati

Scheduling Aperiodic and Sporadic Jobs

Given:

–  n periodic tasks (“periodics”) T1, … , Ti = (pi, ei), … , Tn

–  priority-driven scheduling algorithm

We want to determine when to execute aperiodic and sporadic jobs,
i.e.,

–  (strictly) sporadic job:

acceptance test �

scheduling of accepted job

–  aperiodic job:
schedule job to complete ASAP.

© R. Bettati

Priority Queues for Periodic/Sporadic/Aperiodic Jobs

Processor

Acceptance

Test

Sporadic

Jobs

Periodic

Jobs

Aperiodic

Jobs

reject

CPSC-663: Real-Time Systems Aperiodic and Sporadic Jobs

3

© R. Bettati

Background/Interrupt-Driven vs. Slack Stealing

Background:

–  Aperiodic job queue has always lowest priority among all queues.

–  Periodic tasks and accepted jobs always meet deadlines.

–  Simple to implement.

–  Execution of aperiodic jobs may be unduly delayed.

Interrupt-Driven:

–  Response time as short as possible.

–  Periodic tasks may miss some deadlines.

Slack Stealing:

–  Postpone execution of periodic tasks only when it is safe to do so:

•  Well-suited for clock-driven environments.

•  What about priority-driven environments? (quite complicated)

© R. Bettati

Examples

A : r = 0.1 , e = 2.1

Background:

Interrupt-Driven:

Slack Stealing:

T

T

1

2

3
 1

10
 4

=

=

(
 ,
)

(
 ,
)

CPSC-663: Real-Time Systems Aperiodic and Sporadic Jobs

4

© R. Bettati

Polled Execution: Polling Server

Polling Server (ps, es):
scheduled as periodic task.

ps
:
Poller ready for execution every ps time units.

es
:
Upper bound on execution time.

Terminology:

–  (Execution) budget:
es

–  Replenishment:

set budget to es at beginning of period.

–  Poller consumes budget at rate 1 while executing aperiodic jobs.

–  Poller exhausts budget whenever poller finds aperiodic queue empty.

–  Whenever the budget is exhausted, the scheduler removes the poller

from periodic queue until replenished.

© R. Bettati

Example: Polling Server

Rate-Monotonic:

PS=(3, 1)

T1=(φ=2, 3.5, 1.5)

T2=(φ =0, 6.5, 0.5)

A : r = 2.8, e = 1.7

budget

?!

CPSC-663: Real-Time Systems Aperiodic and Sporadic Jobs

5

© R. Bettati

Polling Server vs. Bandwidth-Preserving Servers

Polling Server (ps, es):
scheduled as periodic task.

ps
:
Poller ready for execution every ps time units.

es
:
Upper bound on execution time.

Terminology:

–  (Execution) budget:
es

–  Replenishment:

set budget to es at beginning of period.

–  Poller consumes budget at rate 1 while executing aperiodic jobs.

–  Poller exhausts budget whenever poller finds aperiodic queue empty.

–  Whenever the budget is exhausted, the scheduler removes the poller

from periodic queue until replenished.

Bandwidth-preserving server algorithms:

–  Improve upon polling approach

–  Use periodic servers

–  Are defined by consumption and replenishment rules.

–  “Bandwidth-preserving”: preserve execution budget of poller

© R. Bettati

BW-Preserving Servers: Deferrable Servers

Deferrable Server - Rules:

–  Consumption:
Execution budget consumed only when server�

executes.

–  Replenishment:
Execution budget of server is set to es at

each multiple of ps.

•  Preserves budget when no aperiodic job is ready.

•  Any budget held prior to replenishment is lost (no carry-over).

CPSC-663: Real-Time Systems Aperiodic and Sporadic Jobs

6

© R. Bettati

Example: Deferrable Server with RM

Rate-Monotonic:

DS=(3, 1)

T1=(φ=2, 3.5, 1.5)

T2=(φ=0, 6.5, 0.5)

A : r = 2.8, e = 1.7

budget

© R. Bettati

Example: Deferrable Server with EDF

EDF:

DS=(3, 1)

T1=(φ=2, 3.5, 1.5)

T2=(φ=0, 6.5, 0.5)

A : r = 2.8, e = 1.7

budget

CPSC-663: Real-Time Systems Aperiodic and Sporadic Jobs

7

© R. Bettati

idle!

Combination of DS with Background Server

Rate-Monotonic:

DS=(3, 1)

T1=(φ=2, 3.5, 1.5)

T2=(φ=0, 6.5, 0.5)

A : r = 2.8, e = 1.7

budget

serve in
background!

© R. Bettati

DS: Why not Increase the Budget?

Problem 1:

–  The increased budget takes bandwidth away from periodics.

Can’t we just increase the execution budget eDS instead of running a
background server?

Problem 2:

–  Blocking of periodics gets exacerbated by “back-to-back hits”.

CPSC-663: Real-Time Systems Aperiodic and Sporadic Jobs

8

© R. Bettati

Back-to-Back hits in Deferrable Servers

DS = (3, 1)

T1 = (3.5, 1.5)

T2 = (6.5, 0.5)

© R. Bettati

Schedulability for Static-Priority Systems�
(DS has highest priority)

•  Lemma:
In a static-priority periodic system with Di <= pi,

with a deferrable server TDS(ps, es) with highest �

priority, a critical instant for Ti happens when: �

(1)
ri,c = t0 for some job Ji,c in Ti.�

(2)
jobs of higher-priority tasks are released at

time t0.�

(3)
budget of (backlogged) server is es at time t0.�

(4)
next replenishment time is t0 + es.�

•  Intuitively:
Low-priority tasks suffer from a “back-to-back” hit

by the deferrable server.

CPSC-663: Real-Time Systems Aperiodic and Sporadic Jobs

9

© R. Bettati

Time-Demand Analysis with DS

© R. Bettati

Schedulable Utilization with DS

•  Schedulable Utilization:

–  Generally, no known schedulable utilization.

–  Only exception:

•  ps < p1 < p2 < … < pn < 2ps

•  pi = Di

•  rate-monotonic scheduling

•  pn > ps + es

–  For this case, the schedulable utilization is

CPSC-663: Real-Time Systems Aperiodic and Sporadic Jobs

10

© R. Bettati

Deferrable Servers and Arbitrary Static Priority

•  Problem:
Any budget that is not consumed at end of server

period is lost.

•  Maximum amount of time DS can consume depends on

–  Release time of all periodic jobs (with respect to replenishment

times)

–  Execution times of all tasks.

•  Upper bound on time demand for tasks with lower priority than
DS :

•  Multiple deferrable servers:

–  Time demand for task with priority lower than m DS’s:

© R. Bettati

Using the Schedulable Utilization:

•  Assume that Ti has lower priority than server.

•  TDS(ps, es) behaves like a periodic task (ps, es), except that it may execute

for at most es additional time units during the interval (ri,c, ri,c+Di).

•  Example:

•  T1:

•  T2:

•  T3:

not affected by TDS

scheduling algorithm

no!) 4 . 1 , 7 (
) 5 . 0 , 5 (
) 8 . 0 , 4 (
) 6 . 0 , 3 (

3
2

1

T
T
T
T

DS

CPSC-663: Real-Time Systems Aperiodic and Sporadic Jobs

11

© R. Bettati

Schedulability for Deadline-Driven Systems

•  Lemma:
A periodic task Ti in a system of n independent,

preemptive periodic tasks is schedulable with a DS

with period ps, execution time es, and utilization us,

according to the EDF algorithm if

© R. Bettati

Proof

Proof:

•  Let t be the deadline of some Job Ji,c.

•  Let t-1 be the last point in time before t where either processor idle, �

or was executing a lower-priority task (deadline after t).

... es
 es
 es
 es

t-1
 t
ps

t-1+es

If Jic misses deadline at time t, total amount of processor time
consumed by Deferrable Server during interval (t-1, t] is bounded by :

Jic misses
deadline

here!

CPSC-663: Real-Time Systems Aperiodic and Sporadic Jobs

12

© R. Bettati

Proof (II)

Proof:

•  Time consumed by deferrable server:

•  Time consumed by Task Tk:

•  We used “floor” instead of “ceiling” because last invocation has
deadline after t.

•  We miss deadline if we don’t have enough time to finish by
time t:

•  Divide by (t – t-1) and go from there (since: Di = t – t-1)

© R. Bettati

Sporadic Servers

•  Problem with Deferrable Server: TDS(ps, es) may delay lower-
priority jobs longer than periodic task T(ps, es).

•  Sporadic Server (SS):
 Never use more time than the

periodic task T(ps, es)
with same

parameters.

•  If so, we can treat TSS just as a periodic task.

CPSC-663: Real-Time Systems Aperiodic and Sporadic Jobs

13

© R. Bettati

Sporadic Servers in Static-Priority Systems

•  Notation:

–  T :
Task system with n tasks.

–  TSS :
Sporadic server, arbitrary priority.

–  TH :
Subset of T with higher priority than TSS.

–  tr :
Latest replenishment time.

–  tf :
First instant after tr at which server begins to

execute.

–  te :
Effective replenishment time.

•  The scheduler determines te based on history and sets next
replenishment time to te + ps.

© R. Bettati

Simple Sporadic Server

•  Consumption Rules: The server’s execution budget is consumed at the rate of one

at any time t after tr until the budget is exhausted whenever the following two
conditions are true. When these conditions are not true, the server holds its
budget:

–  C1: The server is executing.

–  C2: The server has executed since tr and is suspended at the time t, and TH is idle.

•  Replenishment Rules:

•  R1:
The execution budget is set to es and the current time tr is recorded

initially
when the system begins execution and each time when the budget

is replenished.

•  R2:
The next budget replenishment time is determined at time tf when the

server first begins to execute since tr. At time tf, te is set to the latest

time instant at which a lower-priority task executes in (tr, tf), and set to

tr if TH is busy throughout this interval. The next replenishment time is
set

at te + ps.

•  R3:
The next replenishment occurs at the next replenishment time, except

under the following conditions when the replenishment may be done sooner

or later.

–  (a)
If the next replenishment time te + ps is earlier than tf, the budget is

replenished as soon as it is exhausted.

–  (b)
The budget is replenished at time t whenever the system T has been idle before t

and a periodic job is released at t.

CPSC-663: Real-Time Systems Aperiodic and Sporadic Jobs

14

© R. Bettati

Simple Sporadic Server: Example

A1(r=3, e=1)
 A2(r=7, e=2)
 A3(r=15.5, e=2)

Budget

1.5

1.0

0.5

T1

T2

TS

T3

T1 = (3, 0.5) T2 = (4, 1.0) T3 = (19, 4.5) TS = (5, 1.5)

© R. Bettati

A Situation where Rule 3a Applies

TH

server

TL

ta ta+ps tf

CPSC-663: Real-Time Systems Aperiodic and Sporadic Jobs

15

© R. Bettati

Informal Proof of Correctness

•  “Correctness”: The server never demands more time in any interval than
corresponding periodic task Ts = (ps, es).

•  For now: T has not been idle, and Rule R3(b) has never applied.

•  We show that server “emulates” Task Ts=(ps,es).

•  For this, we view replenishment time as nominal “release time” of server

job.

Each server job only
executes at times when a
job of Ts would.

•  Rule C1: Each server job never executes
for more than its budget es..

•  Rule C2: Budget of idle sporadic server
decreases as if server was executing.

•  On the other hand: C2 means that server holds on to budget when

–  Job in TH is executing. (obviously correct)

–  Server has not executed since tr. (Actual release time can be later

than nominal release time.)

© R. Bettati

Informal Proof of Correctness (cont.)

•  Rules R2 and R3(a) make sure that next replenishment time
always set ps time units later than effective release time te. The
next effective release time is never earlier than next
replenishment time.

•  R2: Make effective release time as early as possible.

•  R3(a): Emulates situation where job in Ts takes more time to
complete than one period.

•  R3(b): Applicable only when busy interval of periodic task system
ends, and a new one starts.�
Behavior of tasks in old busy period does not affect new busy
period.�
This condition is already accounted for in schedulability analysis of
T and Ts.

CPSC-663: Real-Time Systems Aperiodic and Sporadic Jobs

16

© R. Bettati

Emulating Generalized Processor Sharing

•  Generalized Processor Sharing (bit-by-bit Round Robin):

•  Timing isolation.

•  Emulate GPS by (for example)

–  Constant Utilization Servers

–  Total Bandwidth Servers

–  Weighted-Fair-Queuing

•  Structure: Run server algorithm on top of EDF scheduler.

© R. Bettati

Scheduling Sporadic Jobs with EDF

•  Definition: Density of sporadic job Ji with release time ri, maximum
execution time ei and deadline di:

densityi = ei/(di - ri).

•  Theorem: A system of independent, preemptable sporadic jobs is
schedulable according to EDF if the total density of all active jobs
in the system is no greater than 1 at all times.

CPSC-663: Real-Time Systems Aperiodic and Sporadic Jobs

17

© R. Bettati

Scheduling Sporadic Jobs with EDF (cont)

•  Theorem is not “necessary”!

•  Example:

density

0.5

1.0

1.5

© R. Bettati

Scheduling Sporadic Jobs with EDF (cont)

•  Sporadic task Si as stream of sporadic jobs Si1, Si2, Si3, ...

•  Execution time of Sij is eij.

•  “Period” pij is time between invocation of Sij and Si(j+1) .

•  Instantaneous utilization of sporadic job Sij : eij/pij .

•  Instantaneous utilization of sporadic task Si : ui = maxj(eij/pij) .

•  Corollary: A system of n independent, preemptable sporadic tasks,
which is such that the relative deadline of every job is equal to its
period, is schedulable on a processor according to the EDF
algorithm if the total instantaneous utilization is equal or less to
1.

CPSC-663: Real-Time Systems Aperiodic and Sporadic Jobs

18

© R. Bettati

Constant Utilization Server Algorithm

•  A Constant Utilization Server emulates a sporadic task with a
constant instantaneous utilization.

•  Consumption rule:

–  A server consumes its budget only when it executes.

•  Replenishment rules (assume: server is allocated utilization us):

R1
Initially, set es := 0 and d := 0.

R2
When an aperiodic job with execution time e arrives at time t to

an empty aperiodic job queue,

(a) if t < d, do nothing.

(b) if t >= d, set es := e and d := t + es/us .

R3
At the deadline d of the server,

(a) if the server is backlogged, set es := e and d := d + e/us

(b) if the server is idle, do nothing.

© R. Bettati

Constant Utilization Server: Example

Budget

2.0

1.0

T1

T2

A1(r=3, e=1)
 A2(r=6.9, e=2)
 A3(r=15.5, e=2)

TCU (us=25%)

T3

T1 = (3, 0.5) T2 = (4, 1.0) T3 = (19, 4.5)

CPSC-663: Real-Time Systems Aperiodic and Sporadic Jobs

19

© R. Bettati

What about Unknown Execution Times?

•  Assumption for constant utilization server: execution times of
aperiodic jobs are known upon arrival.

 ⇒ Restrictive.

•  Possible solution: Assign fixed bandwidth to server:

–  fixed budget es

–  fixed period es/us

•  Upon job completion of job with execution time e < es, reduce
current deadline of server by (es-e)/us before replenishing again.

•  For execution time e > es, use more than one server period.

© R. Bettati

Problems with Constant Utilization Server: Unused Capacity

Budget

2.0

1.0

T1

T2

A1(r=3, e=1) A2(r=6.9, e=2) A3(r=14, e=2)

TS

T3

T1 = (3, 0.5) T2 = (4, 1.0) T3 = (19, 4.5)

d=15

!

CPSC-663: Real-Time Systems Aperiodic and Sporadic Jobs

20

© R. Bettati

Total Bandwidth Server

•  Allow server to use background time.

•  Consumption rule:

–  A server consumes its budget only when it executes.

•  Replenishment rules:

R1:
Initially, set es := 0 and d := 0.

R2: When an aperiodic job with execution time e arrives at time

t to an empty aperiodic job queue, set d := max(d,t) + e/us, and
es := e.

R3: Upon completion of the current aperiodic job, remove job
from queue.

(a) if the server is backlogged, set d := d + e/us and es := e

(b) if the server is idle, do nothing.

© R. Bettati

Unused Capacity Eliminated with �
Total Bandwidth Server

Budget

2.0

1.0

T1

T2

A1(r=3, e=1)
 A2(r=6.9, e=2)
 A3(r=14, e=2)

TS

T3

T1 = (3, 0.5) T2 = (4, 1.0) T3 = (19, 4.5)

d = 15
TTU (us=25%)

CPSC-663: Real-Time Systems Aperiodic and Sporadic Jobs

21

© R. Bettati

Correctness of Total Bandwidth Server

•  Starting point: Constant Utilization Server is correct.

•  How does Total Bandwidth Server affect periodic tasks differently?

•  Only interesting case:

–  Budget of Total Bandwidth Server replenished at time t before its
deadline.

–  New deadline is d’ = d + e/us.

•  How does this affect the execution of periodic tasks?

–  Case 1: Current periodic job Ji,c has deadline before d’ ⇒ execution of
periodic job is not affected.

–  Case 2: Current periodic job Ji,c has deadline after d’

•  Case 2.1: Current periodic job Ji,c is ready at time t ⇒ execution

time demanded by Total Bandwidth Server from ri,k to di,k is same
as for Constant Utilization Server.

•  Case 2.2: Current periodic job Ji,c is ready after time t ⇒
execution time demanded by Total Bandwidth Server from ri,k to d’
is less than that of Constant Utilization Server. (This is because
TB server may have executed earlier and now has less budget.)

© R. Bettati

Non-Preemptable Portions

Non-preemptable portions either reduce schedulable utilization or
introduce tardiness.

Definitions:

–  bmax(np) is maximum execution time of non-preemptable portions of

periodic tasks and jobs executed by servers.

–  effective execution time of job executed by server: ratio of job

execution time and server size.

–  Dmin is minimum of all relative deadlines of periodic tasks and effective

execution times of jobs executed by all servers in the system.

Corollary: When a system of periodic tasks is scheduled with one or
more total bandwidth and constant utilization server on the EDF basis,
every periodic task and every server meets its deadline if the sum of
the total density of the periodic tasks and the total size of all
servers is no greater than 1-bmax(np)/Dmin .

CPSC-663: Real-Time Systems Aperiodic and Sporadic Jobs

22

© R. Bettati

Fairness & Starvation

Definition (Fairness):

wi(t1,t2)
=
total attained processor time for Server i

during time interval (t1, t2).

wi(t1,t2)/ui
=
normalized service.�

Scheduler is fair during interval (t1,t2) if normalized service attained by all
servers does not differ by more than a fairness threshold FR.

Ideally, FR is zero:

© R. Bettati

Fairness and Starvation

•  Total Bandwidth Server is not fair.

•  Example: TB1 and TB2 each of size 0.5

–  If both servers never idle, service is approximately equally
shared among servers.

–  With idling servers, this is not always the case.

–  Processor time is allocated fairly during (0, 2t), but not during
(t, 2t)

0

t

2t

TB1 backlogged

TB2 idle

deadline for TB1 is ≥ 2t

lots of short jobs arrive for TB2

CPSC-663: Real-Time Systems Aperiodic and Sporadic Jobs

23

© R. Bettati

Eliminating Starvation

•  Problem with Total Bandwidth server: When processing time
available, allows to indefinitely put deadlines into the future.

•  Constant Utilization server keeps deadlines “close”:

d - t <= ei,max / ui,
where ei,max is max. execution

time of jobs served by Server i.

•  Replenishment rules for starvation-free Constant Utilization /

Background server:

–  R1 - R3
: Same as Constant Utilization server.

–  R4
: Whenever busy interval ends, replenish budget of

 all backlogged servers.

•  Note: Background time is not distributed to backlogged servers
according to their size => starvation is eliminated, but not
unfairness.

© R. Bettati

Processor Sharing

•  Process a single atomic unit at a time per backlogged queue in
round-robin fashion.

•  If there are N backlogged servers, then each server receives
exactly 1/N of the available capacity.

•  Some terms:

–  R(t)
= number of rounds in the PS service discipline that have

occurred up to time t

–  N(t)
= number of nonempty queues at time t

–  Pij
= job length of Job i in Server j

–  rij
= arrival time of Job i in Server j

–  Sij
= value of R(t) when Job i in Server j arrives

–  Fij
= value of R(t) when Job i in Server j terminates

•  Think of R(t) as virtual time, which records the rate of service
seen by job at head of queue in Server.

R’(t) = 1 / max[1,N(t)]

CPSC-663: Real-Time Systems Aperiodic and Sporadic Jobs

24

© R. Bettati

Preemptive Weighted Fair-Queuing Algorithm

•  Replenishment rules similar to Total Bandwidth server; except for
computation of deadline at each replenishment time.

•  pWFQ algorithm bounds fairness.

•  Replenishment rules of pWFQ server make it emulate GPS server with

same size.

1

1

3

3

18

•  Virtual Time: Enqueue jobs in order of Finish Number: number of rounds
for GPS server to exhaust budgets.

u1=1/4

u2=1/8

u3=1/4

u4=3/8

5
 10
 15
 21.2

25.2

© R. Bettati

Rules for pWFQ

•  Scheduling Rule: Assign priorities in order of increasing finish number.

•  Consumption Rule: pWFQ server consumes budget only when it executes.

•  Initialization Rules:

I1: When system is idle, FN = 0, Ub = 0, t-1 = 0. Budgets of all servers are
zero.

I2: When first job arrives at time t with execution time e at some server
FQk when system is idle:

(a) t-1 := t, and Ub := Ub + uk, and

(b) set budget ek of FQk to e and finish number fnk := e/uk.

•  Rules for updating Finish Times during System Busy Interval:

R1: When job arrives at queue FQk while FQk is idle

(a) increment system finish number FN := FN + (t-t-1)/Ub

(b) t-1 := t, and Ub := Ub + uk, and

(c) set budget ek of FQk to e and its finish number fnk := FN + e/uk, enqueue

server

R2: Whenever FQk completes job

(a) if server remains backlogged, set server budget ek to e and increment its
finish number: fnk := fnk + e/uk.

(b) if server becomes idle, update Ub and FN as follows:

FN := FN + (t-t-1)/Ub, t-1 := t, and Ub := Ub - uk.

CPSC-663: Real-Time Systems Aperiodic and Sporadic Jobs

25

© R. Bettati

Scheduling Sporadic Tasks in EDF Systems

•  Assume: Total density of periodic tasks is Δ .

•  Then, as long as total density of sporadic jobs does not exceed 1-

Δ , all deadlines can be maintained by EDF.

t

density of new job

t

•  Acceptance Test:

–  Maintain list of time intervals and their densities:

–  Acceptance test then adds new density:

