CPSC-663: Real-Time Systems Handling Overloads

Handling Overload
(G. Buttazzo, Hard Real-Time Systems, Ch. 9)
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Causes for Overload

e Bad system design
- e.g. poor estimation of worst-case execution times
e Simultaneous arrival of unexpected events
e Malfunctioning of input devices
- “babbling idiot” problem
e Unpredicted variations of environmental conditions
e Operating system exceptions
- Caused by anomalous combination of data

- exceptions handlers may starve real-time workload
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Definitions of “Load”
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Instantaneous Load
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Instantaneous Load: Example
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Overload vs. Overrun

Definition (Overload):
A computing system experiences Overload when the
computation time demanded by task set in an interval exceeds
the available processing fime.

Definition (Overrun):

A task (job) experiences Overrun when it exceeds its expected
utilization.

Overruns may occur because of:
Activation Overrun: job is activated before expected arrival
time.
Execution Overrun: job computation time exceeds expected
value.
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Transient vs. Permanent Overload

Definition (Transient Overload):

Overload condition occurs for a limited duration in a system
with average load less than schedulable utilization (*), e.g.,

'Oavg<=1
O max > 1

Definition (Permanent Overload):

Overload condition occurs for a unpredictable duration in a
system with average load higher than schedulable utilization,

(*). eq.,
P> 1

© R. Bettati

Types of Overload Conditions

Transient overloads due fo aperiodic jobs:
- can happen in event-triggered systems.

Transient overloads due to task overruns:
- tasks execute (or are actived) more than expected.
- can happen in event-triggered and time-triggered systems.

Permanent overloads due in periodic task systems:
- total utilization factor is larger than schedulable utilization. (*)
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Performance Metric

e V(f) = Value of task as function of finish time f;
- reflects importance of task

e Cumulative Value of Algorithm A:

e Maximum achievable cumulative value [ *:
T := maxa(p)
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Dynamic (On-Line) vs. Clayrvoyant Schedulers
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Competitive Factor

Question: What is the minimum cumulative value that can be
achieved by an algorithm on any task set?

Definition (Competitive Factor):
A scheduling algorithm A has a competitive factor @, iff it can
guarantee a cumulative value I, >= ¢, *, where I * is the
cumulative value achieved by the optimal clairvoyant scheduler.
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EDF has Competitive Factor Zero (¢ .y = 0)
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Figure 9.8 Situation in which EDF has an arbitrarily small competitive factor.
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What is the Cost of no Clairvoyance?

Theorem (Baruah et al.):

In a system where the loading factor is greater
than 2 (0>2) and tasks’ values are proportional to
their computation times (V; = C), no on-line
algorithm can guarantee a competitive factor
greater than 25%.

Proof by adversarial argument:
e Scheduler is player, clairvoyant scheduler is adversary
e Adversary generates sequence of tasks to minimize [,/ *

e At the end of game, compare I, and T*
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Adversarial Argument: Task Generation

e Major tasks, of length C, and associated tasks, of length &
arbitrarily small.

e All tasks have zero laxity.

e After releasing a major tasks J, adversary releases next major

task J,, at time before the deadline of J, thatis, r;,, =d-¢&

e For each major task J, adversary may also create a sequence of
associated tasks, [r;,d], such that each subsequent associated task
is released at the deadline of the previous one in the sequence.

- Resulting load is o= 2.
- Any algorithm that schedules an assoc. tasks cannot schedule J;
within its deadline.

e If player schedules assoc. task, adversary stops sequence of assoc.
tasks.

e If player schedules J, sequence of tasks stops with release of J,,,

e Sequence has finite length, i.e., until J, for some value for m.
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Task Generation Strategy (II)

~ c,
Major
Tasks Ci
- el
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Associated
Tasks <

e Player will never abandon major task for associated task. (value
would be negligible)

e However, values of major tasks are chosen by adversary.

e LetJ,J, -, J, ---, T, be worst-case sequence of tasks,
WLOG C, = I
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Three Cases

Case 1: Player decides to schedule J;
- sequence terminates with J,.
- cumulative value obtained by player is C,

- cumulative value obtained by adversary is C, + C, - €

ratio is

Co 1 1

SOO:G{)JrCl:lJrCl_k?'

(We let ¢, = k-1)
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Three Cases (II)

Case 2: Player decides to schedule J;
- sequence ferminates with J,.
- cumulative value obtained by player is C,
- cumulative value obtained by adversary is C, + C;, + C,
- ratio is oy b1
Co+C1+Co  k+0Cy

@1

(remember: C, = k-1)
- Observation 1: @; <= @,, otherwise adversary would have
“stopped earlier”: (k-1)/(k+C,) <= 1/k
- Observation 2: ; >= ,, otherwise player would “stuck with”
Ty (k-1)/(k+C),) >= 1/k
- Therefore: @, = @, => (k-1)/(k+C,) = 1/k
- And: C, = k% - 2k
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Three Cases (I1I)

Case i: Player decides to schedule J;

sequence fterminates with J,,,.

cumulative value obtained by player is C

cumulative value obtained by adversary is C, + C; + ... + C

i+l

ratio is C;
Yi T S A A
22i=0Ci+Cip

- Observation: @, =@, ; =... =@, =1/k

- Thus, Ci

Worst-case computation fimes:
PYi = 7
> j=0Cj + Cita

1
k?
@y 1 |

Cin1 = kCi—Y' ,C;.

- and

Civ1 = kCi =) _Cj.
j=0
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So, what about the Bound?!
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The Bound (II)

Recall:

Cm Cm —1

S70C;  kCmoi

1
§E<:>Cm§0m—1

We can rewrite: Ciro =

Cita

Cm—l . l
S Ci+Cr K

m—1
= kCpno1= Y _ Ci+C,
=0
m—1

— C,, = kCp_q1 — Z C;

i+1
kCiy1 — > Cj
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kC; — Z cy,
j=0

Cit+1 = k(Cit1 — C;) — Cigr;

k(Cip1 — Cy).

=0

1
k-1
k(Ciy1 — Ci).
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The Bound (III)

Co = 1
Cy = k-1

e Recurrence Relation:
{Ci+2 = k(Ciy1 —C;).

ratio 1/k such that recurrence relation satisfies
Cm <= Cm_]

The tightest bound on the competitive factor is given by the smallest

e All we need to do is solve the recurrence relation. (Standard
Discrete Math)

o We get 3 cases (k> 4,k =4;k<4)
e Only Case k < 4 has solution.
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