



































So, what about the Bound?!		
• $\frac{C_{m-1}}{\sum_{j=0}^{m-1} C_i + C_m} = \frac{1}{k} J_{\mu} \qquad \varphi_i = \frac{C_i}{\sum_{j=0}^i C_j + C_{i+1}} =$ • $\Leftrightarrow kC_{m-1} = \sum_{j=0}^{m-1} C_i + C_m \qquad \qquad$	$\frac{1}{k}$.	
$\frac{C_m}{\sum_{j=0}^m C_j} = \frac{C_m}{\sum_{j=0}^{m-1} C_j + C_m} = \frac{C_m}{\sum_{j=0}^{m-1} C_j + kC_{m-1} - \sum_{j=0}^{m-1} C_j} =$ • Therefore: $\frac{C_m}{\sum_{j=0}^m C_j} = \frac{C_{m-1}}{kC_{m-1}} \le \frac{1}{k} \iff C_m \le C_{m-1}$	$=\frac{C_m}{kC_{m-1}}.$	
	© R. Bettati	

The Bound (II)		
• Recall: $\frac{C_m}{\sum_{j=0}^m C_j} = \frac{C_{m-1}}{kC_{m-1}} \le \frac{1}{k} \iff C_m \le C_{m-1}$		
• We can rewrite: $C_{i+2} = kC_{i+1} - \sum_{j=0}^{i+1} C_j$		
• $\frac{C_{m-1}}{\sum_{j=0}^{m-1} C_i + C_m} = \frac{1}{k} C_{i+1} = k(C_{i+1} - C_i) - C_{i+1};$		
• $\iff kC_{m-1} = \sum_{j=0}^{m} C_i + C_m \cdot k(C_{i+1} - C_i).$ • $\iff C_m = kC_{m-1} - \sum_{j=0}^{m-1} C_i = k - 1 = k(C_{i+1} - C_i).$		
	© R. Bettati	

