
CPSC-663: Real-Time Systems Handling Overloads

1

© R. Bettati

Handling Overload�
(G. Buttazzo, Hard Real-Time Systems, Ch. 9)

© R. Bettati

Causes for Overload

•  Bad system design

–  e.g. poor estimation of worst-case execution times

•  Simultaneous arrival of unexpected events

•  Malfunctioning of input devices

–  “babbling idiot” problem

•  Unpredicted variations of environmental conditions

•  Operating system exceptions

–  Caused by anomalous combination of data

–  exceptions handlers may starve real-time workload

CPSC-663: Real-Time Systems Handling Overloads

2

© R. Bettati

Definitions of “Load”

In standard queueing theory:

λ = average arrival rate

μ = mean service time

ρ = λμ = average load

For periodic tasks:

ρ = U = ΣCi/Ti

ρ: “system load”

U : “utilization factor”

For generic set of jobs:

g(t1, t2) : processor demand during interval [t1, t2]

288 Chapter 9

9.1.1 LOAD DEFINITIONS

In a real-time system, the definition of computational workload depends on the tempo-
ral characteristics of the computational activities. For non-real-time or soft real-time
tasks, a commonly accepted definition of workload refers to the standard queueing the-
ory, according to which a load ρ, also called traffic intensity, represents the expected
number of job arrivals per mean service time. If C is the mean service time and λ is
the average interarrival rate of the jobs, the average load can be computed as

ρ = λC.

Note that this definition does not take deadlines into account; hence, it is not particu-
larly useful to describe real-time workloads. In a hard real-time environment, a system
is overloaded when, based on worst-case assumptions, there is no feasible schedule for
the current task set, so one or more tasks will miss their deadline.

If the task set consists of n independent preemptable periodic tasks, whose relative
deadlines are equal to their period, then the system load ρ is equivalent to the processor
utilization factor:

ρ = U =
n∑

i=1

Ci

Ti
,

where Ci and Ti are the computation time and the period of task τ i, respectively. In
this case, a load ρ > 1 means that the total computation time requested by the periodic
activities in their hyperperiod exceeds the available time on the processor; therefore,
the task set cannot be scheduled by any algorithm.

For a generic set of real-time jobs that can be dynamically activated, the system load
varies at each job activation and it is a function of the jobs’ deadlines. In general, the
load in a given interval [ta, tb] can be defined as

ρ(ta, tb) = max
t1,t2∈[ta,tb]

g(t1, t2)
t2 − t1

(9.1)

where g(t1, t2) is the processor demand in the generic interval [t1, t2]. Such a def-
inition, however, is of little practical use for load calculation, since the number of
intervals in which the maximum has to be computed can be very high. Moreover, it is
not clear how large the interval [ta, tb] should be to estimate the overall system load.

A more practical definition that can be used to estimate the current load in dynamic
real-time systems is the instantaneous load ρ(t), proposed by Buttazzo and Stankovic
[BS95].

© R. Bettati

Instantaneous Load

Definition (Instantaneous Load):

ρi = “partial load” for job Ji at time t.

ck(t) = remaining execution time of Jk a time t.

Total load at time t:

ρ(t) = maxi ρi(t)

Handling Overload Conditions 289

According to this method, the load is computed in all intervals from the current time
t and each deadline (di) of the active jobs. Hence, the intervals that need to be con-
sidered for the computation are [t, d1], [t, d2], . . . , [t, dn]. In each interval [t, di], the
partial load ρi(t) due to the first i jobs is

ρi(t) =
∑

dk≤di
ck(t)

(di − t)
, (9.2)

where ck(t) refers to the remaining execution time of job Jk with deadline less than
or equal to di. Hence, the total load at time t is

ρ(t) = max
i

ρi(t). (9.3)

Figure 9.1 shows an example of load calculation, at time t = 3, for a set of three
real-time jobs. Then, Figure 9.2 shows how the load varies as a function of time for
the same set of jobs.

0 2 4 6 81 3 5 7 109

J1

J2

J3

ρ1(t) = 2/3

ρ2(t) = 3/4

ρ3(t) = 4/6

ρ(t) = 3/4
t

Figure 9.1 Instantaneous load at time t = 3 for a set of three real-time jobs.

9.1.2 TERMINOLOGY

When dealing with computational load, it is important to distinguish between overload
and overrun.

Definition 9.1 A computing system is said to experience an overload when the compu-
tation time demanded by the task set in a certain interval of time exceeds the available
processing time in the same interval.

Definition 9.2 A task (or a job) is said to experience an overrun when exceeding its
expected utilization. An overrun may occur either because the next job is activated
before its expected arrival time (activation overrun), or because the job computation
time exceeds its expected value (execution overrun).

CPSC-663: Real-Time Systems Handling Overloads

3

© R. Bettati

Instantaneous Load: Example

Handling Overload Conditions 289

According to this method, the load is computed in all intervals from the current time
t and each deadline (di) of the active jobs. Hence, the intervals that need to be con-
sidered for the computation are [t, d1], [t, d2], . . . , [t, dn]. In each interval [t, di], the
partial load ρi(t) due to the first i jobs is

ρi(t) =
∑

dk≤di
ck(t)

(di − t)
, (9.2)

where ck(t) refers to the remaining execution time of job Jk with deadline less than
or equal to di. Hence, the total load at time t is

ρ(t) = max
i

ρi(t). (9.3)

Figure 9.1 shows an example of load calculation, at time t = 3, for a set of three
real-time jobs. Then, Figure 9.2 shows how the load varies as a function of time for
the same set of jobs.

0 2 4 6 81 3 5 7 109

J1

J2

J3

ρ1(t) = 2/3

ρ2(t) = 3/4

ρ3(t) = 4/6

ρ(t) = 3/4
t

Figure 9.1 Instantaneous load at time t = 3 for a set of three real-time jobs.

9.1.2 TERMINOLOGY

When dealing with computational load, it is important to distinguish between overload
and overrun.

Definition 9.1 A computing system is said to experience an overload when the compu-
tation time demanded by the task set in a certain interval of time exceeds the available
processing time in the same interval.

Definition 9.2 A task (or a job) is said to experience an overrun when exceeding its
expected utilization. An overrun may occur either because the next job is activated
before its expected arrival time (activation overrun), or because the job computation
time exceeds its expected value (execution overrun).

290 Chapter 9

t

0 2 4 6 81 3 5 7 109

ρ (t)

0.2

0.4

0.6

0.8

1.0

0.0
0 2 4 6 81 3 5 7 109

J1

J2

J3

Figure 9.2 Instantaneous load as a function of time for a set of three real-time jobs.

Note that while the overload is a condition related to the processor, the overrun is a
condition related to a task (or a single job). A task overrun does not necessarily cause
an overload. However, a large unexpected overrun or a sequence of overruns can cause
very unpredictable effects on the system, if not properly handled. In the following, we
distinguish between two types of overload conditions:

Transient overload: it is an overload condition occurring for a limited duration,
in a system in which the average load is less than or equal to one (ρ ≤ 1), but the
maximum load is greater than one (ρmax > 1).

Permanent overload: it is an overload condition occurring for an unpredictable
duration, in a system in which the average load is higher than one (ρ > 1).

In a real-time computing system, a transient overload can be caused by a sequence of
overruns, or by a bursty arrival of aperiodic requests, whereas a permanent overload
condition typically occurs in periodic task systems when the total processor utilization
exceeds one.

Instantaneous Load

at time t = 3

Instantaneous Load

Function

© R. Bettati

Overload vs. Overrun

Definition (Overload):

A computing system experiences Overload when the
computation time demanded by task set in an interval exceeds
the available processing time.

Definition (Overrun):

A task (job) experiences Overrun when it exceeds its expected
utilization.

Overruns may occur because of:

Activation Overrun: job is activated before expected arrival
time.

Execution Overrun: job computation time exceeds expected
value.

CPSC-663: Real-Time Systems Handling Overloads

4

© R. Bettati

Transient vs. Permanent Overload

Definition (Transient Overload):

Overload condition occurs for a limited duration in a system
with average load less than schedulable utilization (*), e.g.,

ρavg <= 1

ρmax > 1

Definition (Permanent Overload):

Overload condition occurs for a unpredictable duration in a
system with average load higher than schedulable utilization,
(*), e.g.,

ρavg > 1

© R. Bettati

Types of Overload Conditions

Transient overloads due to aperiodic jobs:

–  can happen in event-triggered systems.

Transient overloads due to task overruns:

–  tasks execute (or are actived) more than expected.

–  can happen in event-triggered and time-triggered systems.

Permanent overloads due in periodic task systems:

–  total utilization factor is larger than schedulable utilization. (*)

CPSC-663: Real-Time Systems Handling Overloads

5

© R. Bettati

Performance Metric

•  V(fi) = Value of task as function of finish time fi

–  reflects importance of task

•  Cumulative Value of Algorithm A:

ΓA = Σi v(fi)

•  Maximum achievable cumulative value Γ*:

Γ* := maxA(ΓA)

© R. Bettati

Dynamic (On-Line) vs. Clayrvoyant Schedulers

Example:

296 Chapter 9

1
J 1

J 2

J 3

0 42 6

0

8

(a)

J 1

J 2

J 3

2

14

4 6 8 10 12 14 16

1612

J

10

10 12 14 16

(c)

J 1

2

J 3

0 2 4 6 8

C = 6

2C = 6

C = 101

2C = 6

3

C = 101

2C = 6

3C = 6

3C = 6

C = 10

(b)

Figure 9.7 No optimal online algorithms exist in overload conditions, since the schedule
that maximizes Γ depends on the knowledge of future arrivals: Γmax = 10 in case (a),
Γmax = 12 in case (b), and Γmax = 16 in case (c).

Γmax = 10

Γmax = 12

Γmax = 14

CPSC-663: Real-Time Systems Handling Overloads

6

© R. Bettati

Competitive Factor

Definition (Competitive Factor):

A scheduling algorithm A has a competitive factor φA iff it can
guarantee a cumulative value ΓA >= φAΓ*, where Γ* is the
cumulative value achieved by the optimal clairvoyant scheduler.

Question: What is the minimum cumulative value that can be
achieved by an algorithm on any task set?

© R. Bettati

EDF has Competitive Factor Zero (φEDF = 0)

Handling Overload Conditions 297

9.2.3 COMPETITIVE FACTOR

The cumulative value obtained by a scheduling algorithm on a task set represents a
measure of its performance for that particular task set. To characterize an algorithm
with respect to worst-case conditions, however, the minimum cumulative value that
can be achieved by the algorithm on any task set should be computed. A parameter
that measures the worst-case performance of a scheduling algorithm is the competitive
factor, introduced by Baruah et al. [BKM+92].

Definition 9.3 A scheduling algorithm A has a competitive factor ϕA if and only if it
can guarantee a cumulative value ΓA ≥ ϕAΓ∗, where Γ∗ is the cumulative value
achieved by the optimal clairvoyant scheduler.

From this definition, we note that the competitive factor is a real number ϕA ∈ [0, 1]. If
an algorithm A has a competitive factor ϕA, it means that A can achieve a cumulative
value ΓA at least ϕA times the cumulative value achievable by the optimal clairvoyant
scheduler on any task set.

If the overload has an infinite duration, then no online algorithm can guarantee a com-
petitive factor greater than zero. In real situations, however, overloads are intermittent
and usually have a short duration; hence, it is desirable to use scheduling algorithms
with a high competitive factor.

Unfortunately, without any form of guarantee, the plain EDF algorithm has a zero
competitive factor. To show this result it is sufficient to find an overload situation
in which the cumulative value obtained by EDF can be arbitrarily small with respect
to that one achieved by the clairvoyant scheduler. Consider the example shown in
Figure 9.8, where tasks have a value proportional to their computation time. This is
an overload condition because both tasks cannot be completed within their deadlines.

v = K22J

1J v = K1

ε

Figure 9.8 Situation in which EDF has an arbitrarily small competitive factor.

When task J2 arrives, EDF preempts J1 in favor of J2, which has an earlier deadline,
so it gains a cumulative value of C2. On the other hand, the clairvoyant scheduler
always gains C1 > C2. Since the ratio C2/C1 can be made arbitrarily small, it follows
that the competitive factor of EDF is zero.

CPSC-663: Real-Time Systems Handling Overloads

7

© R. Bettati

What is the Cost of no Clairvoyance?

Theorem (Baruah et al.):

In a system where the loading factor is greater
than 2 (ρ>2) and tasks’ values are proportional to
their computation times (Vi = Ci), no on-line
algorithm can guarantee a competitive factor
greater than 25%.

Proof by adversarial argument:

•  Scheduler is player, clairvoyant scheduler is adversary

•  Adversary generates sequence of tasks to minimize ΓA/Γ*

•  At the end of game, compare ΓA and Γ*

© R. Bettati

Adversarial Argument: Task Generation

•  Major tasks, of length Ci, and associated tasks, of length ε
arbitrarily small.

•  All tasks have zero laxity.

•  After releasing a major tasks Ji, adversary releases next major

task Ji+1 at time before the deadline of Ji, that is, ri+1 = di-ε

•  For each major task Ji, adversary may also create a sequence of

associated tasks, [ri,di], such that each subsequent associated task
is released at the deadline of the previous one in the sequence.

–  Resulting load is ρ= 2.

–  Any algorithm that schedules an assoc. tasks cannot schedule Ji

within its deadline.

•  If player schedules assoc. task, adversary stops sequence of assoc.

tasks.

•  If player schedules Ji, sequence of tasks stops with release of Ji+1

•  Sequence has finite length, i.e., until Jm for some value for m.

CPSC-663: Real-Time Systems Handling Overloads

8

© R. Bettati

Task Generation Strategy (II)

Handling Overload Conditions 299

ε ε ε

ε ε ε

Ci+1

iC

Major
Tasks

Tasks
Associated

ε

Figure 9.9 Task sequence generated by the adversary.

Note that the sequence of tasks generated by the adversary is constructed in such a
way that the player can schedule at most one task within its deadline (either a major
task or an associated task). Clearly, since task values are equal to their computation
times, the player never abandons a major task for an associated task because it would
accumulate a negligible value; that is, ϵ. On the other hand, the values of the major
tasks (that is, their computation times) are chosen by the adversary to minimize the
resulting competitive factor. To find the worst-case sequence of values for the major
tasks, let

J0, J1, J2, . . . , Ji, . . . , Jm

be the longest sequence of major tasks that can be generated by the adversary and,
without loss of generality, assume that the first task has a computation time equal to
C0 = 1. Now, consider the following three cases.

Case 0. If the player decides to schedule J0, the sequence terminates with J1. In this
case, the cumulative value gained by the player is C0, whereas the one obtained by the
adversary is (C0 + C1 − ϵ). Note that this value can be accumulated by the adversary
either by executing all the associated tasks, or by executing J0 and all associated tasks
started after the release of J1. Being ϵ arbitrarily small, it can be neglected in the
cumulative value. Hence, the ratio among the two cumulative values is

ϕ0 =
C0

C0 + C1
=

1
1 + C1

=
1
k

.

If 1/k is the value of this ratio (k > 0), then C1 = k − 1.

Case 1. If the player decides to schedule J1, the sequence terminates with J2. In this
case, the cumulative value gained by the player is C1, whereas the one obtained by the
adversary is (C0 + C1 + C2). Hence, the ratio among the two cumulative values is

ϕ1 =
C1

C0 + C1 + C2
=

k − 1
k + C2

.

•  Player will never abandon major task for associated task. (value
would be negligible)

•  However, values of major tasks are chosen by adversary.

•  Let J0, J1, …, Ji, …, Jm be worst-case sequence of tasks, �

WLOG C0 = 1

© R. Bettati

Three Cases

Case 1: Player decides to schedule J0:

–  sequence terminates with J1.

–  cumulative value obtained by player is C0

–  cumulative value obtained by adversary is C0 + C1 – ε

–  ratio is

Handling Overload Conditions 299

ε ε ε

ε ε ε

Ci+1

iC

Major
Tasks

Tasks
Associated

ε

Figure 9.9 Task sequence generated by the adversary.

Note that the sequence of tasks generated by the adversary is constructed in such a
way that the player can schedule at most one task within its deadline (either a major
task or an associated task). Clearly, since task values are equal to their computation
times, the player never abandons a major task for an associated task because it would
accumulate a negligible value; that is, ϵ. On the other hand, the values of the major
tasks (that is, their computation times) are chosen by the adversary to minimize the
resulting competitive factor. To find the worst-case sequence of values for the major
tasks, let

J0, J1, J2, . . . , Ji, . . . , Jm

be the longest sequence of major tasks that can be generated by the adversary and,
without loss of generality, assume that the first task has a computation time equal to
C0 = 1. Now, consider the following three cases.

Case 0. If the player decides to schedule J0, the sequence terminates with J1. In this
case, the cumulative value gained by the player is C0, whereas the one obtained by the
adversary is (C0 + C1 − ϵ). Note that this value can be accumulated by the adversary
either by executing all the associated tasks, or by executing J0 and all associated tasks
started after the release of J1. Being ϵ arbitrarily small, it can be neglected in the
cumulative value. Hence, the ratio among the two cumulative values is

ϕ0 =
C0

C0 + C1
=

1
1 + C1

=
1
k

.

If 1/k is the value of this ratio (k > 0), then C1 = k − 1.

Case 1. If the player decides to schedule J1, the sequence terminates with J2. In this
case, the cumulative value gained by the player is C1, whereas the one obtained by the
adversary is (C0 + C1 + C2). Hence, the ratio among the two cumulative values is

ϕ1 =
C1

C0 + C1 + C2
=

k − 1
k + C2

.

(We let C1 = k-1)

CPSC-663: Real-Time Systems Handling Overloads

9

© R. Bettati

Three Cases (II)

Case 2: Player decides to schedule J1:

–  sequence terminates with J2.

–  cumulative value obtained by player is C1

–  cumulative value obtained by adversary is C0 + C1 + C2

–  ratio is

–  Observation 1: φ1 <= φ0, otherwise adversary would have

“stopped earlier”: (k-1)/(k+C2) <= 1/k

–  Observation 2: φ1 >= φ0, otherwise player would “stuck with”

J0: (k-1)/(k+C2) >= 1/k

–  Therefore: φ1 = φ0 => (k-1)/(k+C2) = 1/k

–  And: C2 = k2 – 2k

Handling Overload Conditions 299

ε ε ε

ε ε ε

Ci+1

iC

Major
Tasks

Tasks
Associated

ε

Figure 9.9 Task sequence generated by the adversary.

Note that the sequence of tasks generated by the adversary is constructed in such a
way that the player can schedule at most one task within its deadline (either a major
task or an associated task). Clearly, since task values are equal to their computation
times, the player never abandons a major task for an associated task because it would
accumulate a negligible value; that is, ϵ. On the other hand, the values of the major
tasks (that is, their computation times) are chosen by the adversary to minimize the
resulting competitive factor. To find the worst-case sequence of values for the major
tasks, let

J0, J1, J2, . . . , Ji, . . . , Jm

be the longest sequence of major tasks that can be generated by the adversary and,
without loss of generality, assume that the first task has a computation time equal to
C0 = 1. Now, consider the following three cases.

Case 0. If the player decides to schedule J0, the sequence terminates with J1. In this
case, the cumulative value gained by the player is C0, whereas the one obtained by the
adversary is (C0 + C1 − ϵ). Note that this value can be accumulated by the adversary
either by executing all the associated tasks, or by executing J0 and all associated tasks
started after the release of J1. Being ϵ arbitrarily small, it can be neglected in the
cumulative value. Hence, the ratio among the two cumulative values is

ϕ0 =
C0

C0 + C1
=

1
1 + C1

=
1
k

.

If 1/k is the value of this ratio (k > 0), then C1 = k − 1.

Case 1. If the player decides to schedule J1, the sequence terminates with J2. In this
case, the cumulative value gained by the player is C1, whereas the one obtained by the
adversary is (C0 + C1 + C2). Hence, the ratio among the two cumulative values is

ϕ1 =
C1

C0 + C1 + C2
=

k − 1
k + C2

.

(remember: C1 = k-1)

© R. Bettati

Three Cases (III)

Case i: Player decides to schedule Ji:

–  sequence terminates with Ji+1.

–  cumulative value obtained by player is Ci

–  cumulative value obtained by adversary is C0 + C1 + … + Ci+1

–  ratio is

–  Observation: φi = φi-1 = … = φ0 = 1/k
–  Thus,

–  and

300 Chapter 9

In order not to lose with respect to the previous case, the adversary has to choose the
value of C2 so that ϕ1 ≤ ϕ0; that is,

k − 1
k + C2

≤ 1
k
,

which means
C2 ≥ k2 − 2k.

However, observe that, if ϕ1 < ϕ0, the execution of J0 would be more convenient for
the player; thus the adversary decides to make ϕ1 = ϕ0; that is,

C2 = k2 − 2k.

Case i. If the player decides to schedule Ji, the sequence terminates with Ji+1. In this
case, the cumulative value gained by the player is C i, whereas the one obtained by
the adversary is (C0 + C1 + . . . + Ci+1). Hence, the ratio among the two cumulative
values is

ϕi =
Ci∑i

j=0 Cj + Ci+1

.

As in the previous case, to prevent any advantage to the player, the adversary will
choose tasks’ values so that

ϕi = ϕi−1 = . . . = ϕ0 =
1
k
.

Thus,

ϕi =
Ci∑i

j=0 Cj + Ci+1

=
1
k

,

and hence

Ci+1 = kCi −
i∑

j=0

Cj .

Thus, the worst-case sequence for the player occurs when major tasks are generated
with the following computation times:

{
C0 = 1
Ci+1 = kCi −

∑i
j=0 Cj .

300 Chapter 9

In order not to lose with respect to the previous case, the adversary has to choose the
value of C2 so that ϕ1 ≤ ϕ0; that is,

k − 1
k + C2

≤ 1
k
,

which means
C2 ≥ k2 − 2k.

However, observe that, if ϕ1 < ϕ0, the execution of J0 would be more convenient for
the player; thus the adversary decides to make ϕ1 = ϕ0; that is,

C2 = k2 − 2k.

Case i. If the player decides to schedule Ji, the sequence terminates with Ji+1. In this
case, the cumulative value gained by the player is C i, whereas the one obtained by
the adversary is (C0 + C1 + . . . + Ci+1). Hence, the ratio among the two cumulative
values is

ϕi =
Ci∑i

j=0 Cj + Ci+1

.

As in the previous case, to prevent any advantage to the player, the adversary will
choose tasks’ values so that

ϕi = ϕi−1 = . . . = ϕ0 =
1
k
.

Thus,

ϕi =
Ci∑i

j=0 Cj + Ci+1

=
1
k

,

and hence

Ci+1 = kCi −
i∑

j=0

Cj .

Thus, the worst-case sequence for the player occurs when major tasks are generated
with the following computation times:

{
C0 = 1
Ci+1 = kCi −

∑i
j=0 Cj .

300 Chapter 9

In order not to lose with respect to the previous case, the adversary has to choose the
value of C2 so that ϕ1 ≤ ϕ0; that is,

k − 1
k + C2

≤ 1
k
,

which means
C2 ≥ k2 − 2k.

However, observe that, if ϕ1 < ϕ0, the execution of J0 would be more convenient for
the player; thus the adversary decides to make ϕ1 = ϕ0; that is,

C2 = k2 − 2k.

Case i. If the player decides to schedule Ji, the sequence terminates with Ji+1. In this
case, the cumulative value gained by the player is C i, whereas the one obtained by
the adversary is (C0 + C1 + . . . + Ci+1). Hence, the ratio among the two cumulative
values is

ϕi =
Ci∑i

j=0 Cj + Ci+1

.

As in the previous case, to prevent any advantage to the player, the adversary will
choose tasks’ values so that

ϕi = ϕi−1 = . . . = ϕ0 =
1
k
.

Thus,

ϕi =
Ci∑i

j=0 Cj + Ci+1

=
1
k

,

and hence

Ci+1 = kCi −
i∑

j=0

Cj .

Thus, the worst-case sequence for the player occurs when major tasks are generated
with the following computation times:

{
C0 = 1
Ci+1 = kCi −

∑i
j=0 Cj .

Worst-case computation times:

300 Chapter 9

In order not to lose with respect to the previous case, the adversary has to choose the
value of C2 so that ϕ1 ≤ ϕ0; that is,

k − 1
k + C2

≤ 1
k
,

which means
C2 ≥ k2 − 2k.

However, observe that, if ϕ1 < ϕ0, the execution of J0 would be more convenient for
the player; thus the adversary decides to make ϕ1 = ϕ0; that is,

C2 = k2 − 2k.

Case i. If the player decides to schedule Ji, the sequence terminates with Ji+1. In this
case, the cumulative value gained by the player is C i, whereas the one obtained by
the adversary is (C0 + C1 + . . . + Ci+1). Hence, the ratio among the two cumulative
values is

ϕi =
Ci∑i

j=0 Cj + Ci+1

.

As in the previous case, to prevent any advantage to the player, the adversary will
choose tasks’ values so that

ϕi = ϕi−1 = . . . = ϕ0 =
1
k
.

Thus,

ϕi =
Ci∑i

j=0 Cj + Ci+1

=
1
k

,

and hence

Ci+1 = kCi −
i∑

j=0

Cj .

Thus, the worst-case sequence for the player occurs when major tasks are generated
with the following computation times:

{
C0 = 1
Ci+1 = kCi −

∑i
j=0 Cj .

CPSC-663: Real-Time Systems Handling Overloads

10

© R. Bettati

So, what about the Bound?!

•  Recall: when player chooses Ji,
then:

•  However: player can also

choose last job Jm; then:

•  Adversary chooses m and k

such that φm <= 1/k; that is,
•  Note:

•  Therefore:

Handling Overload Conditions 301

PROOF OF THE BOUND

Whenever the player chooses to schedule a task J i, the sequence stops with Ji+1 and
the ratio of the cumulative values is

ϕi =
Ci∑i

j=0 Cj + Ci+1

=
1
k
.

However, if the player chooses to schedule the last task Jm, the ratio of the cumulative
values is

ϕm =
Cm∑m
j=0 Cj

.

Note that if k and m can be chosen such that ϕm ≤ 1/k; that is,

Cm∑m
j=0 Cj

≤ 1
k

, (9.4)

then we can conclude that, in the worst case, a player cannot achieve a cumulative
value greater than 1/k times the adversary’s value. Note that

Cm∑m
j=0 Cj

=
Cm∑m−1

j=0 Cj + Cm

=
Cm∑m−1

j=0 Cj + kCm−1 −
∑m−1

j=0 Cj

=
Cm

kCm−1
.

Hence, if there exists an m that satisfies Equation (9.4), it also satisfies the following
equation:

Cm ≤ Cm−1. (9.5)

Thus, (9.5) is satisfied if and only if (9.4) is satisfied.

From (9.4) we can also write

Ci+2 = kCi+1 −
i+1∑

j=0

Cj

Ci+1 = kCi −
i∑

j=0

Cj ,

and subtracting the second equation from the first one, we obtain

Ci+2 − Ci+1 = k(Ci+1 − Ci)− Ci+1;

that is,
Ci+2 = k(Ci+1 − Ci).

Handling Overload Conditions 301

PROOF OF THE BOUND

Whenever the player chooses to schedule a task J i, the sequence stops with Ji+1 and
the ratio of the cumulative values is

ϕi =
Ci∑i

j=0 Cj + Ci+1

=
1
k
.

However, if the player chooses to schedule the last task Jm, the ratio of the cumulative
values is

ϕm =
Cm∑m
j=0 Cj

.

Note that if k and m can be chosen such that ϕm ≤ 1/k; that is,

Cm∑m
j=0 Cj

≤ 1
k

, (9.4)

then we can conclude that, in the worst case, a player cannot achieve a cumulative
value greater than 1/k times the adversary’s value. Note that

Cm∑m
j=0 Cj

=
Cm∑m−1

j=0 Cj + Cm

=
Cm∑m−1

j=0 Cj + kCm−1 −
∑m−1

j=0 Cj

=
Cm

kCm−1
.

Hence, if there exists an m that satisfies Equation (9.4), it also satisfies the following
equation:

Cm ≤ Cm−1. (9.5)

Thus, (9.5) is satisfied if and only if (9.4) is satisfied.

From (9.4) we can also write

Ci+2 = kCi+1 −
i+1∑

j=0

Cj

Ci+1 = kCi −
i∑

j=0

Cj ,

and subtracting the second equation from the first one, we obtain

Ci+2 − Ci+1 = k(Ci+1 − Ci)− Ci+1;

that is,
Ci+2 = k(Ci+1 − Ci).

Handling Overload Conditions 301

PROOF OF THE BOUND

Whenever the player chooses to schedule a task J i, the sequence stops with Ji+1 and
the ratio of the cumulative values is

ϕi =
Ci∑i

j=0 Cj + Ci+1

=
1
k
.

However, if the player chooses to schedule the last task Jm, the ratio of the cumulative
values is

ϕm =
Cm∑m
j=0 Cj

.

Note that if k and m can be chosen such that ϕm ≤ 1/k; that is,

Cm∑m
j=0 Cj

≤ 1
k

, (9.4)

then we can conclude that, in the worst case, a player cannot achieve a cumulative
value greater than 1/k times the adversary’s value. Note that

Cm∑m
j=0 Cj

=
Cm∑m−1

j=0 Cj + Cm

=
Cm∑m−1

j=0 Cj + kCm−1 −
∑m−1

j=0 Cj

=
Cm

kCm−1
.

Hence, if there exists an m that satisfies Equation (9.4), it also satisfies the following
equation:

Cm ≤ Cm−1. (9.5)

Thus, (9.5) is satisfied if and only if (9.4) is satisfied.

From (9.4) we can also write

Ci+2 = kCi+1 −
i+1∑

j=0

Cj

Ci+1 = kCi −
i∑

j=0

Cj ,

and subtracting the second equation from the first one, we obtain

Ci+2 − Ci+1 = k(Ci+1 − Ci)− Ci+1;

that is,
Ci+2 = k(Ci+1 − Ci).

Cm�1Pm�1
j=0 Ci + Cm

=
1

k

() kCm�1 =
m�1X

j=0

Ci + Cm

() Cm = kCm�1 �
m�1X

j=0

Ci

Handling Overload Conditions 301

PROOF OF THE BOUND

Whenever the player chooses to schedule a task J i, the sequence stops with Ji+1 and
the ratio of the cumulative values is

ϕi =
Ci∑i

j=0 Cj + Ci+1

=
1
k
.

However, if the player chooses to schedule the last task Jm, the ratio of the cumulative
values is

ϕm =
Cm∑m
j=0 Cj

.

Note that if k and m can be chosen such that ϕm ≤ 1/k; that is,

Cm∑m
j=0 Cj

≤ 1
k

, (9.4)

then we can conclude that, in the worst case, a player cannot achieve a cumulative
value greater than 1/k times the adversary’s value. Note that

Cm∑m
j=0 Cj

=
Cm∑m−1

j=0 Cj + Cm

=
Cm∑m−1

j=0 Cj + kCm−1 −
∑m−1

j=0 Cj

=
Cm

kCm−1
.

Hence, if there exists an m that satisfies Equation (9.4), it also satisfies the following
equation:

Cm ≤ Cm−1. (9.5)

Thus, (9.5) is satisfied if and only if (9.4) is satisfied.

From (9.4) we can also write

Ci+2 = kCi+1 −
i+1∑

j=0

Cj

Ci+1 = kCi −
i∑

j=0

Cj ,

and subtracting the second equation from the first one, we obtain

Ci+2 − Ci+1 = k(Ci+1 − Ci)− Ci+1;

that is,
Ci+2 = k(Ci+1 − Ci).

CmPm
j=0 Cj

=
Cm�1

kCm�1
 1

k
() Cm  Cm�1

© R. Bettati

The Bound (II)

•  Recall:

•  We can rewrite:

•  Or differently:

•  Or:

•  Therefore:

CmPm
j=0 Cj

=
Cm�1

kCm�1
 1

k
() Cm  Cm�1

Handling Overload Conditions 301

PROOF OF THE BOUND

Whenever the player chooses to schedule a task J i, the sequence stops with Ji+1 and
the ratio of the cumulative values is

ϕi =
Ci∑i

j=0 Cj + Ci+1

=
1
k
.

However, if the player chooses to schedule the last task Jm, the ratio of the cumulative
values is

ϕm =
Cm∑m
j=0 Cj

.

Note that if k and m can be chosen such that ϕm ≤ 1/k; that is,

Cm∑m
j=0 Cj

≤ 1
k

, (9.4)

then we can conclude that, in the worst case, a player cannot achieve a cumulative
value greater than 1/k times the adversary’s value. Note that

Cm∑m
j=0 Cj

=
Cm∑m−1

j=0 Cj + Cm

=
Cm∑m−1

j=0 Cj + kCm−1 −
∑m−1

j=0 Cj

=
Cm

kCm−1
.

Hence, if there exists an m that satisfies Equation (9.4), it also satisfies the following
equation:

Cm ≤ Cm−1. (9.5)

Thus, (9.5) is satisfied if and only if (9.4) is satisfied.

From (9.4) we can also write

Ci+2 = kCi+1 −
i+1∑

j=0

Cj

Ci+1 = kCi −
i∑

j=0

Cj ,

and subtracting the second equation from the first one, we obtain

Ci+2 − Ci+1 = k(Ci+1 − Ci)− Ci+1;

that is,
Ci+2 = k(Ci+1 − Ci).

Handling Overload Conditions 301

PROOF OF THE BOUND

Whenever the player chooses to schedule a task J i, the sequence stops with Ji+1 and
the ratio of the cumulative values is

ϕi =
Ci∑i

j=0 Cj + Ci+1

=
1
k
.

However, if the player chooses to schedule the last task Jm, the ratio of the cumulative
values is

ϕm =
Cm∑m
j=0 Cj

.

Note that if k and m can be chosen such that ϕm ≤ 1/k; that is,

Cm∑m
j=0 Cj

≤ 1
k

, (9.4)

then we can conclude that, in the worst case, a player cannot achieve a cumulative
value greater than 1/k times the adversary’s value. Note that

Cm∑m
j=0 Cj

=
Cm∑m−1

j=0 Cj + Cm

=
Cm∑m−1

j=0 Cj + kCm−1 −
∑m−1

j=0 Cj

=
Cm

kCm−1
.

Hence, if there exists an m that satisfies Equation (9.4), it also satisfies the following
equation:

Cm ≤ Cm−1. (9.5)

Thus, (9.5) is satisfied if and only if (9.4) is satisfied.

From (9.4) we can also write

Ci+2 = kCi+1 −
i+1∑

j=0

Cj

Ci+1 = kCi −
i∑

j=0

Cj ,

and subtracting the second equation from the first one, we obtain

Ci+2 − Ci+1 = k(Ci+1 − Ci)− Ci+1;

that is,
Ci+2 = k(Ci+1 − Ci).

Handling Overload Conditions 301

PROOF OF THE BOUND

Whenever the player chooses to schedule a task J i, the sequence stops with Ji+1 and
the ratio of the cumulative values is

ϕi =
Ci∑i

j=0 Cj + Ci+1

=
1
k
.

However, if the player chooses to schedule the last task Jm, the ratio of the cumulative
values is

ϕm =
Cm∑m
j=0 Cj

.

Note that if k and m can be chosen such that ϕm ≤ 1/k; that is,

Cm∑m
j=0 Cj

≤ 1
k

, (9.4)

then we can conclude that, in the worst case, a player cannot achieve a cumulative
value greater than 1/k times the adversary’s value. Note that

Cm∑m
j=0 Cj

=
Cm∑m−1

j=0 Cj + Cm

=
Cm∑m−1

j=0 Cj + kCm−1 −
∑m−1

j=0 Cj

=
Cm

kCm−1
.

Hence, if there exists an m that satisfies Equation (9.4), it also satisfies the following
equation:

Cm ≤ Cm−1. (9.5)

Thus, (9.5) is satisfied if and only if (9.4) is satisfied.

From (9.4) we can also write

Ci+2 = kCi+1 −
i+1∑

j=0

Cj

Ci+1 = kCi −
i∑

j=0

Cj ,

and subtracting the second equation from the first one, we obtain

Ci+2 − Ci+1 = k(Ci+1 − Ci)− Ci+1;

that is,
Ci+2 = k(Ci+1 − Ci).

302 Chapter 9

Hence, Equation (9.4) is equivalent to
⎧
⎨

⎩

C0 = 1
C1 = k − 1
Ci+2 = k(Ci+1 − Ci).

(9.6)

From this result, we can say that the tightest bound on the competitive factor of an
online algorithm is given by the smallest ratio 1/k (equivalently, the largest k) such
that (9.6) satisfies (9.5). Equation (9.6) is a recurrence relation that can be solved by
standard techniques [Sha85]. The characteristic equation of (9.6) is

x2 − kx + k = 0,

which has roots

x1 =
k +
√

k2 − 4k

2
and x2 =

k −
√

k2 − 4k

2
.

When k = 4, we have
Ci = d1i2i + d22i, (9.7)

and when k ̸= 4 we have

Ci = d1(x1)i + d2(x2)i, (9.8)

where values for d1 and d2 can be found from the boundary conditions expressed in
(9.6). We now show that for (k = 4) and (k > 4) C i will diverge, so Equation (9.5)
will not be satisfied, whereas for (k < 4) Ci will satisfy (9.5).

Case (k = 4). In this case, Ci = d1i2i + d22i, and from the boundary conditions, we
find d1 = 0.5 and d2 = 1. Thus,

Ci = (
i

2
+ 1)2i,

which clearly diverges. Hence, for k = 4, Equation (9.5) cannot be satisfied.

Case (k > 4). In this case, Ci = d1(x1)i + d2(x2)i, where

x1 =
k +
√

k2 − 4k

2
and x2 =

k −
√

k2 − 4k

2
.

From the boundary conditions we find
{

C0 = d1 + d2 = 1
C1 = d1x1 + d2x2 = k − 1;

Cm�1Pm�1
j=0 Ci + Cm

=
1

k

() kCm�1 =
m�1X

j=0

Ci + Cm

() Cm = kCm�1 �
m�1X

j=0

Ci

CPSC-663: Real-Time Systems Handling Overloads

11

© R. Bettati

The Bound (III)

•  Recurrence Relation:

302 Chapter 9

Hence, Equation (9.4) is equivalent to
⎧
⎨

⎩

C0 = 1
C1 = k − 1
Ci+2 = k(Ci+1 − Ci).

(9.6)

From this result, we can say that the tightest bound on the competitive factor of an
online algorithm is given by the smallest ratio 1/k (equivalently, the largest k) such
that (9.6) satisfies (9.5). Equation (9.6) is a recurrence relation that can be solved by
standard techniques [Sha85]. The characteristic equation of (9.6) is

x2 − kx + k = 0,

which has roots

x1 =
k +
√

k2 − 4k

2
and x2 =

k −
√

k2 − 4k

2
.

When k = 4, we have
Ci = d1i2i + d22i, (9.7)

and when k ̸= 4 we have

Ci = d1(x1)i + d2(x2)i, (9.8)

where values for d1 and d2 can be found from the boundary conditions expressed in
(9.6). We now show that for (k = 4) and (k > 4) C i will diverge, so Equation (9.5)
will not be satisfied, whereas for (k < 4) Ci will satisfy (9.5).

Case (k = 4). In this case, Ci = d1i2i + d22i, and from the boundary conditions, we
find d1 = 0.5 and d2 = 1. Thus,

Ci = (
i

2
+ 1)2i,

which clearly diverges. Hence, for k = 4, Equation (9.5) cannot be satisfied.

Case (k > 4). In this case, Ci = d1(x1)i + d2(x2)i, where

x1 =
k +
√

k2 − 4k

2
and x2 =

k −
√

k2 − 4k

2
.

From the boundary conditions we find
{

C0 = d1 + d2 = 1
C1 = d1x1 + d2x2 = k − 1;

The tightest bound on the competitive factor is given by the smallest
ratio 1/k such that recurrence relation satisfies

Cm <= Cm-1

•  All we need to do is solve the recurrence relation. (Standard
Discrete Math)

•  We get 3 cases (k > 4; k = 4; k < 4)

•  Only Case k < 4 has solution.

