CPSC-663: Real-Time Systems Network Calculus

Network Calculus:

e Reference Material:

J.-Y. LeBoudec and Patrick Thiran: “Network Calculus: A Theory of
Deterministic Queuing Systems for the Internet”, Springer Verlag
Lecture Notes in Computer Science No. 2050.

e Network Calculus as system theory for computer networks.
e Some mathematical background

e Arrival Curves

e Service Curves

o Network Calculus Basics
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Example Simple Electronic Circuit: RC Cell
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e Output y(t) of this circuit is convolution of input x(#) and impulse
response h(t) of circuit.

e Impulse response: A(t) = %e(’”“) +50

e Output: y(t) = (h@x)(t) = f; h(t - s)x(s)ds
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Goal: Apply System Theory to Networks
Example: Greedy Shaper

e A shaper forces an input traffic flow x(I) to have an output y(I)
which adheres to an envelope o.

e The output function y(I) can be derived as follows:

y(I) = (c®x)A) = inf {o(I - 5) + x(s)}

e Other analogies apply as well (commutativity and associativity),
which allow to extend this analysis fo large-scale systems.

e There are significant differences, though!
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Min-Plus Calculus: Infimum vs. Minimum

e Let S be nonempty subset of R.

Definition [Infimum] ‘
inf(S) =M s.t. s=MVY sES)
inf(g) = +x

Definition [Minimum] |

min(S)=(ME Ss.t. s=MV sE S)

e Notation: * denotes infimum (e.g. a * b = min{a,b})
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The Dioid (R U {+x}, ~, +)

e Conventional (“plus-times”) algebra operates on algebraic
structure (R,+,%).

® Min-plus algebra replaces operations:
- addition becomes computation of infimum

- multiplication becomes addition

e Resulting algebraic structure becomes (R U {+x}, ~, +)

e Example:
- Conventional algebra: (3+4) * 5 = (3*%5) + (4*5) =15 + 20
- min-plus algebra: (374) + 5=(3+5) " (445)=8"9=8
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Properties of (R U {+x}, *, +)

e (Closure of *) Forall a,b € RU {+x}, a” b & RU {+x}

e (Associativity of ) For all a,b,c € RU {+x}, (a"b)"c=a"(b"¢)

o (Existence of a zero element of *) There is some e € R U {+x},
such that forall a€ RU {+x}, a " e = a.

e (Idempotency of *) Forall a€ RU {+=}, a " a = a.

e (Commutativity of *) For all a,b € RU {+x}, a " b=b" a.

e (Closure of +) For all a,b € RU {4}, a + b € RU {+x}.

¢ (Zero element of ~ is absorbing for +) For all a € R U {+x},
a+e=e=e+ a.

o (Existence of neutral element for +) There is some u € R U {+x}
such that forall aE RU §+x}, a+ u=a=u+ a.

o (Distributivity of + with respect to °) For all a,b,c € R U {+x},
(@™ b)+c=(a+c) " (b+c)=c+(a” b)

© R. Bettati




CPSC-663: Real-Time Systems

Network Calculus

Wide-Sense Increasing Functions

Definition [wide-sense increasing]

A function is wide-sense increasing iff f(s) < f(t) for all s < t.

e Define G as the set of non-negative wide-sense increasing
functions.

e Define F as the set of non-negative wide-sense increasing functions
with f(t) =0 for < O.

e Operations on functions:
(f + g)t) = f(t) + g(t)
(f " gkt) = f(1) " g(t)
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Wide-Sense Increasing Functions

e Peak rate function Ay

“Rate” R
Rt /'fT > 0
O otherwise

A () {

e Burst delay function 6
“Delay” T

+ oo If'/' > T
0 otherwise

5, () {
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Wide-Sense Increasing Functions (2)

e Rate latency function f 1
“Rate” R, “Delay” T

R(T—T) ifts> T
Bar () = {O otherwise /Z

T

e Affine functions y,,:
“Rate” r, “Burst” b

(1_) rt + b if t > 0
Trsdl)= {O otherwise
b
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Wide-Sense Increasing Functions (3)

e Step function vy

1 ift+s> T
Uy (f) = . 1
0 otherwise
T
e Staircase function u;:
“Interval” T,
“Tolerance”
t+1] .
—| ift>0 _
UT’T(T) = L T “ g z
otherwise ]
T T
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Wide-Sense Increasing Functions (4)

® More general functions in F can be constructed by combining basic
functions.

e Example 1: rpro>...or; and bicb<...<b;

1=isT by

)‘1 =Yq,b1 /\’Y/‘Z,b2 A...AYrI,bI =min r‘,,b,} b,

e Example 2:

fz =}\’R A{ﬁ/e,zr +RT}A{BR,4T +2’QT}/\... 3RT
—inff,,, +RRT} 2RT
i=0

RT

R2iT

T 2T 3T 4T 5T

© R. Bettati

Pseudo-Inverse of Wide-Sense Increasing Functions

’ Definition [Pseudo-inverse] }

Let f be a function of F. The pseudo-inverse of fis the
function

FI(x) = inf{t such that A(t) = x}.

e Examples:

At = Asr
o1 = 8, " T
o7 = ViRt

Vep = Bi/rp

© R. Bettati
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Properties of Pseudo-Inverse

e (Closure)
f'eF and f*(0)=0

e (Pseudo-inversion) We have that

f(t)=x = fi(x)<t
Fix)<t = f(H)=x

e (Equivalent definition)

f (x) = sup{t such that f(t) < x}
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Min-Plus Convolution

e Integral of function f(t)( f(t)=0 for +=< 0 ) in conventional

algebra:
f; f(s)ds
e “Integral” for same function f(#)in min-plus algebra:
inf  {f(s)}

sef suchthat Osss<t
e Convolution of two functions f(t) and g(t) that are zero for t <0 in
conventional algebra:

fFeg)t) =f(jf(f - 5)* g(s)ds

Definition [Min-plus convolution] }

Let fand g be two functions of F. The min-plus convolution of f
and g is the function

(f ® g)(t) = inf (1 - 5)+ g(s)}

© R. Bettati
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Min-Plus Convolution: Example 1

e Casel:0=<t=T

o Case 2: t>T
(Yr,b ®PBer )t)

(v, ®Pes 1)

e Compute (y,,® fr)1

(:.rlfr{{r,b (t-s)+ Ber (5)}
g:@{,m(r -5)+0}=y,,(0)+0=0

- Oagfr{,nb(r - 8) 4B, ()}

_inf {0 ) B () inf L (- 9)4p,, O haint, (- 9)+p,, ()}
= Olzl:‘r{b +r(t-s)+ 0}/\ Ti?';fr{sbl r(t-s)+R(s —T)}A {6 +R(-T)
Br(-THa b ort BT 4 inf R - r)s}h (R(F-T))

b4 r(F-TH alb+r(F-TH ARG -TY

={b+r@-THa{RE-T)}
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Min-Plus Convolution: Example 1 (2)

(7:6® Br1)(1)
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Min-Plus Convolution: Example 2

6r® Ag = ?

(5, ®2,)() = inf $.(F - )+ (5)}

Casel (O<t<T): (5, ®r)1)

Oigf,{ﬁr(f -5)+0,(8)}

inf 0+2,(s)}-0

(n, ®8,)(1)

1 £.0-2)5.(9)

inf §ua(t - )+, ()}

nf e (r =3+ O} fnf (7 =)}
At =T) =B,

Case 2 (t>T): (5, ®h,)(t)

>

© R. Bettati

Models for Data Flow

_— S _—

R R*()

e Consider system S: receives input data, and delivers data after a
variable delay.

e R(t)is cumulative input function at time f.
e R*(t)is cumulative output function at time f.

’ Definition [Backlog] }
The backlog at time #is R()-R*(1).

Definition [Virtual Delay]
The virtual delay at time tis d(t) = inf{r = 0 : R(t) = R*(t + T}

© R. Bettati
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Virtual Delay

d(t) = inf{t = 0 : R(t) = Rt +

R(t
R*@1)

7] )

e If input and output are continuous
R¥(t +d(t) = R(t)  (*)

d(t) is smallest value satisfying (*)

© R. Bettati

Arrival Curves

\

’Deﬁni’rion [Arrival Curve a())] |
Given a wide-sense increasing function a(.) defined for t= O (i.e.
a(.) € F) we say that a flow R is constrained by a(.) iff for all s <
f:

R(t) - R(s) = a(t - s).

e “R has a(.) as arrival curve.”
e “Ris bounded by a(.).”
e “Ris a-smooth.”

e Note:
- af.) is in the interval-domain.
- foralls=0and I=0, R(s+I)-R(s)= a(l)

© R. Bettati
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Arrival Curves (2)

bits

bits

time

time t
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Example: Affine Arrival Curve y,,

a(t) =rt  Flow is peak-rate limited. For example when physical
bit rate is limited.

a(t)=b Maximum number of bits ever sent is at most b.

aoft)=rt+b Leaky bucket with rate r and burst tolerance
b.

A leaky bucket constrains the arrival to the affine arrival curve
Yrp = It + b.

© R. Bettati
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Example: Staircase Function u;,

Definition [Generic Cell Rate Algorithm GCRA(T,z)] }

The Generic Cell Rate Algorithm (GCRA) with parameters (7,7) is used with
fixed size packets, called cells and defines conformant cells as follows: It
takes as input a cell arrival time f and returns result. It has an internal
(static) variable tat (theoretical arrival time).
- initially, tat = 0
- when a cell arrives at time f, then
if (t < tat - tau)
result = NON-CONFORMANT
else {
tat = max(t, tat) + T;
result = CONFORMANT;

e For cells of size k, GCRA(T,t) constrains flows to the staircase arrival
function k u; ().

© R. Bettati

Equivalence of Leaky Bucket and GCRA

For a flow with packets of constant size 9, satisfying the GCRA(T,z) is
equivalent to satisfying a leaky bucket controller with rate r and burst
tolerance b given by:

b=(z/T+1)6 and r=6/T

Applications to ATM and Intserv:
e Constant Bit Rate (CBR) in ATM:

- Single GCRA controller with parameters T (ideal cell interval) and ©
(cell delay variation tolerance).

e Variable Bit Rate (VBR) in ATM:
- Two GCRA controllers.

e Intserv: T-SPEC (pM,r,b) with peak rate p, maximum packet size M,
sustainable rate r, and burst tolerance b.

a(t) = min(M + pt, rt + b)

© R. Bettati
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Sub-Additivity

Definition [Sub-additive function] }

Let f be a function of F. Then fis sub-additive iff
At+s)< AN+ As) foralls, t=0 .

¢ Notes:
- If AO) = O, this is equivalent to imposing that f= f® f .
- Concave functions passing through origin are sub-additive.
- While concavity and convexity are simple to check visually,
sub-additivity is not.

BriW+K"’
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Sub-Additive Closure

Definition [Sub-additive closure] }

Let f be a function of F. Denote A" the function obtained by
repeating (n-1) convolutions of £ with itself. By convention,
f9=5,, so that f(1) = f, f(2) = f ®f, etc. Then the sub-additive
closure of f, denoted by £, is defined by

=06, " f T (FRF " (FRF®F) " ... =inf {f}

¢ The sub-additive closure is the largest sub-additive function
smaller than f and zero in # = 0.

© R. Bettati
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Sub-Additive Closure: Example

Bra+K =(Brr()+K’) ¥

(BraTK"") %

T 2T 3T4T 5T
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Sub-Additivity and Arrival Curves

Theorem: [Reduction of Arrival Curve to a Sub-Additive One]

Saying that a flow is constrained by a wide-sense increasing
funtion a(.) is equivalent to saying that it is constrained by the
sub-additive closure a.”(.).

Lemma: A flow R is constrained by arrival curve a iff R = R ® o.

Lemma: If o, and o, are arrival curves for a flow R,
then so is a; ® a,.

© R. Bettati
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Min-Plus Deconvolution and Traffic Envelopes

’Deﬁni’rion [Min-Plus Deconvolution] }
Let fand g be two functions of F. The min-plus deconvolution of £
by g is the function

(F D g)t) = sup At + u) - glu);.

\

Definition [Minimum Arrival Curve - or Envelope] |
The envelope of a flow R is defined by R & R.

By definition, we have (R & R)(t) = sup,_,{R(t + v) = R(V}}.

© R. Bettati

Envelopes: Examples

6000

100 200 300 200

( Figures from J.-Y. LeBoudec and Patrick Thiran: “Network Calculus: A Theory of Deterministic Queuing Systems for the Internet”,
Springer Verlag Lecture Notes in Computer Science )

© R. Bettati
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Service Curves

Example 1: Generalized Processor Sharing (GPS)

e During any busy period (flow is backlogged) of length 7, flow
receives at least rf amount of service.
e Input flow R(%), output flow R*(1), with t, being the beginning of
busy period for flow.
RX(f) - RXt)) = r(t - 1)
e At time f, the backlog of flow is O:
R(ty) - Rq(t) =0
e Therefore:
RX#) - R(t) = n(t - t,)
* So:
RX(#) = inf,__{R(s) + r(t - )] = R*2R®y,

© R. Bettati

Service Curves

Example 2: Guaranteed-Delay Server

e Maximum delay for the bits of given flow R is bounded by some
fixed value T, with bits of same flow served in FIFO order.

dh=sT < RXt+T7) =R
e Can be re-written
R¥s)=R(s-T7) foralls=T

e R(s - T) can be re-written using “impulse function” &,
(R® (N =R(t-T

e Maximum delay condition can be formulated as
R*=R ® &;

© R. Bettati
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Service Curve: Definition

Springer Verlag Lecture Notes in Computer Science )

~
~ (R® B)(1)

( Figures from J.-Y. LeBoudec and Patrick Thiran: “Network Calculus: A Theory of Deterministic Queuing Systems for the Internet”,

R*(1)
//
()~
data yd
//
/'/V

y time

-
time

»

>

The output R* must be above R ® b, which is the lower envelope
of all curves +— R(t,) + b(t- 1,).

[ Definition [Service Curve] |

Consider a system S and a flow through S with input and
output function R and R*. We say that S offers o the flow a
service curve b iff b€ Fand R*= R® b.

© R. Bettati

Service Curves: Non-Preemptive Priority Node

R,(0)

R,(®)

_—

High-priority traffic:

e By definition of s:

High priority

R*,(1)
Low priority R*,(0)

rate C

e Let s be the beginning of busy period for high-priority traffic.
Let /.. be the maximum low-priority packet size.

e HP traffic can be blocked by a low-priority packet.
RX(H) - RX(s) = ct - 8) = oy
R.*(s) = RA9)
R = Rs) + At = s) = [
R (1) = Rfs) + max{0, At - s) = I ..}

rate-latency function with rate Cand latency *,./C

© R. Bettati
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Service Curves: Non-Preemptive Priority Node (2)

e Low-Priority Traffic:
e HP traffic is constrained by arrival function o,(.).
e Let s’ be beginning of server busy period (note that s < s).
e At time s’, backlogs for both flows are empty:
R (s’)=R[s’) and RX*(s’)=R,(s’)
e Over (s, fl, the output is At - s'):
R*(A) - RX(s™) = At - s7) - [RA(H) - R(s")]
= RX(H) = RX(s") = RJ(H) - RAS') = RAN - RAs") = aft - §)
* RX(H-RMsN=0
= R*(H) - R(s) = R*(H - RAs") = max{0, At - s’) - aft - s')}

© R. Bettati

Network Calculus Basics: Backlog Bound

Theorem [Backlog Bound] }

Assume a flow, constrained by arrival curve «, traverses a system
that offers a service curve . The backlog R(#) - R*(#) for all #
satisfies:

R(1) = R*() = supgofals) = A(s) = (a D B)O) .

© R. Bettati
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Network Calculus Basics: Delay Bound

’Deﬁnifion [Horizontal Deviation] }
Let fand g be two functions of F. The horizontal £ ’
deviation is defined as

h(f,g) = sup;olinf{d = O such that A1) < ¢(t + d)}}. 2(0)

Horizontal deviation can be computed using pseudo inverse:
g(A1) = inf{D such that g(D) = A1}
= inf{d = O such that g(t+ d) = A} + t

= h(f.g) = suprolg'(A(N) - 1} = (g(A 2 1)(0).

’ Theorem [Delay Bound] }

Assume a flow, constrained by arrival curve a, tfraverses a system that
offers a service curve of b. The virtual delay d(7) for all tsatisfies:
d(?) = A(a, b).

© R. Bettati

Network Calculus Basic: Output Flow

Theorem [Output Flow]}
Assume that a flow, constrained by arrival curve ¢, traverses a
system that offers a service curve of . The output flow is
constrained by the arrival curve * = o @ p.

© R. Bettati
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Network Calculus Basics: Concatenation

’Theorem [Concatenation of Nodes] }

Assume a flow traverses systems S, and S, in sequence. Assume that S,
offers a service curve of 8, i = 1,2 to the flow. Then the concatenation of

the two systems offers a service curve of
B, ® B, to the flow.

Proof:
e Call R, the output of node 1. This is also the input to node 2.
R =zR® B
e and at node 2
R2R ®B,2(ROB)® P, =R (B ® B)

Example 1: Brin ® Bra,r2 = Brin(rir2)T1 + T2

Example 2: A rate-latency server can be described as
/3/2,7: (5r ® AR)(*)-
It can therefore be view as a concatenation of a guaranteed-delay node
with delay T followed by a GPS node with rate R.

© R. Bettati
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