CPSC-663: Real-Time Systems Priority Driven Scheduling

Priority-Driven Scheduling of Periodic/Sporadic Tasks

® Priority-driven vs. clock-driven scheduling:

5 . executive rocessor
clock-driven: cyclic schedule P

_>||||II|||_, _>©_'

a priori!

e S
priority-driven: priority queue processor

T ——( —

@

e Assumptions for now:
- tasks are periodic/sporadic
- jobs are ready as soon as they are released
- preemption is allowed
- tasks are independent
- no aperiodic or (strictly) sporad

o We will later:

- integrate aperiodic and (strictly)
sporadic tasks

- integrate resources
- efc
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Why Focus on Uniprocessor Scheduling?

Dynamic Multiprocessor Scheduling :

Static Multiprocessor Scheduling : sk
) as

l assignment

priority queue

processors

local /
priority queues

e Poor worst-case performance of priority-driven algorithms in
dynamic environments.

e Resource access is very complicated fo analyze.
e .. we will re-visit multiprocessor scheduling later.

© R. Bettati
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Static-Priority vs. Dynamic Priority

' Static-Priority: All jobs in task have same priority. |

Example: Rate-Monotonic:
“The shorter the period, the higher the priority.”

| |
T =(535) nll 111 101|
7-2 = ( 31 1I 3 ) T2|_| L |_| L |_| L |_| Il |_| Il |
Dynamic-Priority: May assign different priorities to individual jobs. ‘

Example: Earliest-Deadline-First:
“The nearer the absolute deadline, the higher the priority.”

| I_l | hejﬂ_e brak tie
T | [ 11 |

blnh bl

T, is not preempted
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Example Algorithms

Static-Priority:
- Rate-Monotonic (RM): “The shorter the period, the higher the
priority.” [Liu+Layland * 73]
- Deadline-Monotonic (DM): “The shorter the relative deadline,
the higher the priority.” [Leung+Whitehead ’ 82]

“Trivia”: For arbitrary relative deadlines, DM outperforms RM.

Dynamic-Priority:
- EDF: Earliest-Deadline-First.
- LST: Least-Slack-Time-First.
- FIFO/LIFO
- efc

© R. Bettati
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Considerations about Priority Scheduling

Question: What makes for a good scheduling algorithm?

Ok, a good scheduler meets deadlines...
... but what does this mean?!

Def: [Schedulable Utilization]
Every set of periodic tasks with total utilization less
or equal than the schedulable utilization of an
algorithm can be feasibly scheduled by that algorithm.

Two observations:
1. The higher the schedulable utilization, the better the algorithm.
2. The schedulable utilization cannot exceed 1.0!
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Example: Schedulable Utilization of FIFO

Theorem:  Ug;p, =0

Proof:
Given any utilization level € > 0, we can find a task set, with

utilization £, that may not be feasibly scheduled according to
FIFO.

T : eg=%
Example task set: ! LT

=U=c¢
Ty : p2=2p

€2 = DP1
P

P2

T, e,
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Optimality of EDF for Sporadic/Periodic Systems

Theorem: EDF can feasibly schedule a system of independent
preemptable tasks with relative deadlines equal to their
periods iff their total utilization is less or equal 1 .

e Proof: only-if : obvious
if: show that if EDF fails to find feasible
schedule, then the total utilization must
exceed 1.

¢ Assumptions:
- At some time f, Job J;, of Task T, misses its deadline.
- WLOG: if more than one job have deadline f, break tie for J,..
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Optimality of EDF (cont)

e Case I: Current period of every task begins at or after r; .
e Case 2: Current period of some task may start before r; ..
current period
e (Case l:
T, '
TZ
Fie ¥
T = '
. A\
:’r/',C III;QBCD

deadline !

e Current jobs other than (t—1) .
—bi)e _
T, do not execute t < Tl + Zk;ézl_ pfkjek
before time f. folip g3 ek
Di k#i py
t-U
= U>1

IN
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Optimality of EDF (Case 2)

e (Case 2:
Some current periods start before r;..
e Notation:
T : Set of all tasks.
T' : Set of tasks where current period starts before r; .
T-T': Set of tasks where current period start at or after rie
o
T, A \
T, | |
: |
T, i L Fie v D
1
L |

f t
e f: Last point in time before f when some current job in T is executed.
e No current job is executed immediately after time f,.

o Why? 1. All jobs in T’ are done.
2. Jobs in T-T’ not yet ready.
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Optimality of EDF (Case 2, cont)
¢1’ (phasing now relative to #!)
T, | \
T, |
| |
Ti i lrlL ri,c+Pi
I |
; f
t—t,— ) t—t;—
t—t < (lp—i)el + Zk;«éz’L;}—kd)kJSk
_ ei _ Ck
S (=) S E—t) st
= (t—-t)-U
= U>1
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Priority Driven Scheduling

Optimality of EDF (idle time?!)

Q: What about assumption that processor never idle?

forget this idle time same proof f;

part holds for
this part Q.E.D.
© R. Bettati
What about Static Priority?
e Static-Priority is not optimal!
e Example:
Lo=021 2 U="24 2 1< 100%
T, = (5 25 5) p1 P2
o N O O
Ll |
‘;
J; ; must have lower
priority than J, !
e So: Why bother with static-priority?
- simplicity
- predictability
© R. Bettati
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Unpredictability of EDF Scheduling
e Over-running jobs in EDF hold on to their priorities
e Example
| | | | | |
75w e A e O eI A | e s e RO
neao L0 1 | 1 | [
T;=(28) T| 1 [ ] [ ] | I
Normal Operation
| | | | | | |
72 X e N s s I s I N s s Y s s O
reao L0 | —1 | ]
ey _ 1 0 [
T3 over-runs by a bit more than one time unit
© R. Bettati

Unpredictability of EDF Scheduling (II)
| | | |
S v A s s A s O T T
SR N s B v B i
NP e B | B 2
T3 over-runs for a bit longer....
| | | | | | | |
regp— 1 1 [ [ [ [ [ [ [ | [ [ [,
g [ - -
g 1| 7.
The same situation using Rate-Monotonic Scheduling:
high-priority tasks are protected
© R. Bettati
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Schedulability Bounds for Static-Priority

Definition: A set of tasks is simply periodic if,
for every pair of tasks, one period is multiple
of another period.

Theorem: A system of simply periodic,
independent, preemptable tasks whose relative
deadlines are equal to their periods is
schedulable according to RM iff their total
utilization does not exceed 100%.

Proof: Assume T, misses deadline at time f.
1 is integer multiple of p;.

. A . Utilization due to 7
tis also integer multiple of p;, Vp, < p. highest-priority tasks

=> total time to complete jobs with deadline #:
7 7

t-e e
Z U=ty
k=1 Pk k=11%
If job of T; misses deadline, then U, > 1 = U > 1.
Q.E.D.
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Schedulable Utilization of Tasks with D;=p;
with Rate-Monotonic Algorithm

Theorem: [Liu&Layland ‘73] A system of n independent, preemptable
periodic tasks with D=p; can be feasibly scheduled by the RM
algorithm if its total utilization U is less or equal
to Ugu(n) = n(2'/r-1) .

Why not 1.0? Counterexample: I
T,

o i I |

Proof Outline: First, show that theorem is correct for special case

where longest period p,<2p, (p, = shortest period). We
will remove this restriction later.

(
(

O

1 2 )
25 5 )

© R. Bettati




CPSC-663: Real-Time Systems Priority Driven Scheduling

Proof of Liu&Layland

e General idea:  Find the most-difficult-to-schedule system of n
tasks among all difficult-to-schedule systems of
n tasks.

e Difficult-to-schedule : Fully utilizes processor for some time
interval. Any increase in execution time would
make system unschedulable.

® Most-difficult-to-schedule : system with lowest utilization among
difficult-to-schedule systems.

e Each of the following 4 steps brings us closer to this system.

© R. Bettati

Proof of Liu&Layland (cont)

Step 1: Identify phases of tasks in most-difficult-to-schedule
system.

System must be in-phase. (talk about this later)

© R. Bettati
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Proof of Liu&Layland (cont)

Step 2: Choose relationship between periods and execution times.
Hypothesize that parameters of MDTS system are thus
related.

e Confine attention to first period of each task.
e Tasks Keep processor busy until end of period p,.

A

l P ‘_‘ € = Dk+1— Dk
T, L[ : 25
P2 €n = DPn— €k
A - =
Ps
i —— Il this P A
i Pr-1 call this Propert
T ﬁ Froperty A
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Proof Liu&Layland (cont)

Step 3: Show that any set of D-T-S tasks that are not related
according to Property A has higher utilization.

Q: What happens if we deviate from Property A?

Deviate one way: Increase execution of some high-priority
task by e:
e =e +e=p,-p +¢

Must reduce execution time of some other
task:

e =e -¢

ﬁ+ek er e € €
Pr Pk P11 Pk P1 Pk

U -U-=

© R. Bettati
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Proof Liu&Layland (cont)

Q: What happens if we deviate from Property A?

Deviate the other way:
Reduce execution time of some high-priority
tasks by &:

"
€ ;=€ -€=p,-pP; - ¢

Must increase execution time of some lower-
priority task:

”
e =e + 2t

U =2_°29
Pk P1
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Proof Liu&Layland (cont)

Step 4: Express the total utilization of the M-D-T-S task
system (which has Property A).

e Define gi = Pn—Pi | €& = GiPi~ git1Pi+1
pi €n = n, - 2glp1

n—1

n—1
€;
U= Z i Z{g’ ga+1p1+1}+1—2g1_—1+91g+1 Z 9i — Gi—1 gz 1

i— Pi i=1

e Find least upper bound on utilization: Set first derivative of U with
respect to each of g’s to zero:

o1/ A 9324-29]'_9;—1_ gj+1 -0
/ dg: (g;+1)? gj+1+1
. = 9n=4)/n _1q
forj=1,2,3,...,n-1 | 9i
= U=n(2/"-1) . QE.D.

© R. Bettati

Priority Driven Scheduling
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What about Period Ratios > 2 ?

e We show: 1. Every D-T-S task system T with period ratio > 2
can be transformed into D-T-S task system T~
with period ratio <= 2.
2. The total utilization of the task set decreases
during the transformation step.

e We can therefore confine search to systems with period ratio < 2.

e Transformation T->T :while 37} with [-py <p, < (+Dpe (I >2)
Tr(pr,er) — (- pr,ex)
Tn(pru en) - (pn» én + (l - 1)€k)

end
e Compare ufilizations:
U-U' = g+ ot = oo
- (%M—pi (I — e, >0
Q.E.D.
© R. Bettati

That Little Question about the Phasing...

Definition: [Critical Instant]

[Liu&Layland] If the maximum response time of all jobs in 7, is less
than D, then the job of T, released in the critical instant has the
maximum response time.

[Baker] If the response time of some jobs in T, exceeds D, then
the response time of the job released during the critical instant
exceeds D,

Theorem: In a fixed-priority system where every job completes
before the next job in the same task is released, a critical
instant of a task T, occurs when one of its jobs J,_ is released
at the same time with a job of every higher-priority task.

© R. Bettati

Priority Driven Scheduling
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Proof (informal)

e Assume: Theorem holds for k < i.
e WLOG: Vk <i:¢=0 , and we look at J,
e Observation: The completion time of higher-priority jobs is

independent of the release time of J,,.

e Therefore: The sooner J;, is released, the longer it has
to wait until it is completed.

Q.E.D.

© R. Bettati

Proof 2 (less informal)

e WLOG: min{g, | k=1, .., 3 =0

e Observation: Need only consider time processor is busy executing
jobs in T, T, .., T, before ¢,
If processor idle or executes lower-priority jobs, ignore that portion
of schedule and redefine the ¢, s

e Let R, be the response time for J,,.

e During [¢,, ¢; +R;] a total of [(R,, + ¢, - ¢) / pi] jobs of T, become
ready for execution.

e so (time-demand analysis): R; 1+ ¢; = e; + Z Ria + d)z d)k}

i1
e and: Rii=e; + Z[Wwek — ¢
k=1

© R. Bettati
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Optimal Static-Priority Scheduling

Theorem: If a task set can be feasibly scheduled by some
static-priority algorithm, it can be feasibly scheduled by
DM. (DM is optimal static-priority algorithm.”)

[J.Y.-T.Leung, J. Whitehead, “On the complexity of Fixed-Priority Scheduling of
Periodic, Real-Time Tasks”, Performance Evaluation 2, 1982.]

Proof:
- Assume: A feasible static-priority schedule S exists for a task
set T. The priority assignment is 7, 7,, .., T,.
For some k, we have D, > D,,,.

- We show that we can swap the priority of T, and T,,, and the
resulting schedule - call it S(k) - remains feasible.

© R. Bettati

Optimality of DM: Proof (II)

e So, you want to swap the priority of T, and T,,, ?!

e Observation: Response time for each task other than T, and T,,, is
the same in S and S(k).

e Observation: Response time of T,,; in S(k) must be smaller than in
S, since T, is not delayed by T, in S(k).

e Thus: Must prove that deadline of first invocation of T, is also met
in S(k). (Critical Instant)

e Let x be the amount of work done in S for all tasks in 7,..., T,
during interval [0, d,,].

e Note: Amount of work done in S and S(k) for tasks in T,,..., T, is at
most x during any interval of length d,,,.

e We must have
X+ e+ ey < dy,

© R. Bettati

Priority Driven Scheduling
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Optimality of DM: Proof(I1II)

Observation: Number of invocations of T,,, in Schedule S(k) during
interval [0, /d./d,,, [‘d.] is at most |d,/d,,, ]

Observation: Amount of work for all tasks in T7,...,T,_; in the
interval [0, /d./d,,, | *d,,] is at most [d,/d,,, |*x.

The following condition is sufficient to guarantee that the deadline
of the first request of T, is met in S(k):

[d/di,i] * (x+er,) + e & [di/dy,,]™ di,,

This, however, follows from inequality on previous page. (QED)

© R. Bettati

Why Utilization-Based Tests?

If no parameter ever varies, we could use simulation.
But:

- Execution times may be smaller than g;

- Inter-release times may vary.

Tests are still robust.

Useful as methodology to define execution times or periods.

© R. Bettati

Priority Driven Scheduling
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Time-Demand Analysis

e Compute total demand on processor time of job released at a critical
instant and by higher-priority tasks as function of time from the
critical instant.

e Check whether demand can be met before deadline.
e Determine whether T, is schedulable:
- Focus on a job in T, suppose release time is critical instant of T;:

w(t): Processor-time demand of this job and all higher-
priority jobs released in (7, 1)

i—1
t
wit) =e;+ Y [—]ex
P

e This job in T, meets its deadline if, for some
hsDsp : wt)<t

e If this does not hold, job cannot meet its deadline, and system of
tasks is not schedulable by given static-priority algorithm.

© R. Bettati

Example
7 = (31 ] wof
T, = (5 15 ) I
T, = (7, 125 ) I
T, = (8 05 ) I
w1<t>=(pi11e1

2 4 6 8 10 12 14

© R. Bettati
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Priority Driven Scheduling

~ N~ ~

w)|

2 4 6 8 10 12 14
© R. Bettati
Example
I = (3 1 ) wit)| wi(t)
T, = (5 15 ) I
T, = (7, 125 )
T4 = ( 8, 0.5 )

14

© R. Bettati
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Example

b wy(t)
o= (31 )| W wit)
T, = (5 15 ) I
T, = (7, 125 ) i ot
I, = ( 8 05 )

2 4 6 8 10 12 14

© R. Bettati
Practical Factors
e Non-Preemptable Portions (*)
e Self-Suspension of Jobs (*)
e Context Switches (*)
e Insufficient Priority Resolutions (Limited Number of Distinct
Priorities)
e Time-Driven Implementation of Scheduler (Tick Scheduling)
e Varying Priorities in Fixed-Priority Systems
© R. Bettati

Priority Driven Scheduling

18



CPSC-663: Real-Time Systems

Practical Factors I: Non-Preemptability

e Jobs, or portions thereof, may be non-preemptable.

Definition: [non-preemptable portion] Let’s denote by
p; the largest non-preemptable portion of jobs in T.

Definition: A job is said to be blocked if it is prevented from
executing by lower-priority job. (priority-inversion)

e When testing schedulability of a task T, we must consider
- higher-priority tasks
and

- non-preemptable portions of lower-priority tasks

© R. Bettati

Analysis with Non-Preemptable Portions

Definition: The blocking time b, of Task T, is the longest time
by which any job of T, can be blocked by lower-priority
Jjobs:

b; = max
¢ i+1SkSnpk

e Time-demand function with blocking:
i—1
t
wi(t) = e; +b; + — lex
® >0

e Utilization bounds with blocking:
test one fask at a time:

i b; .
G1 % L& — + = < Upm(3)
P11 P2 pi k

© R. Bettati

Priority Driven Scheduling
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Non-Preemptability: Example

T =41 )
L = (5 15)
LT = (9 2 )
w(t) w;(t)
&P [ wat)
2 r
P w,(t)
£ W(i.e.pgﬂ) .

2 4 6 8 10
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Practical Factors II: Self-Suspension

Definition: Self-suspension of a job occurs when the job waits for
an external operation to complete (RPC, I/0O operation).

Assumption: We know the maximum length of external operation; i.e.,
the duration of self-suspension is bounded.

cxample: Pan-——
|

|
T/:(¢/:(),p]:4,€,:25) 1 1 1 l 1 1 ‘ 1 | 1 1 ‘ 1 | 1 1 ‘ 1

T,=(¢,=3p,=7,e,=2.0) 1 I Lo I I EZ L ﬁ
Analysis: b : Blocking time of T; due to self-suspension.
b?% = max. self-suspension time of T}

+ 22;11 min(ex, max. self-suspension time of T})

© R. Bettati

Priority Driven Scheduling
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Self-Suspension with Non-Preemptable Portions

e Whenever job self-suspends, it loses the processor.

e When tries to re-acquire processor, it may be blocked by tasks in
non-preemptable portions.

e Analysis: b¥?:  Blocking time due to non-preemptable
portions
K: Max. number of self-suspensions
b; Total blocking time

b, = b5, + (K; + 1) b,

© R. Bettati

Practical Factors III: Context Switches

Definition: [Job-level fixed priority assignment]
In a job-level fixed priority assignment, each job is given a
fixed priority for its entire execution.

e Case I: No self-suspension

- In a job-level fixed-priority system, each job preempts at most
one other job.

- Each job therefore causes at most two context switches
- Therefore: Add the context switch time twice to the execution
time of job: e=¢e+2CS
e Case II: Self-suspensions can occur

- Each job suffers two more context switches each time it self-
suspends

- Therefore: Add more context switch times appropriately:
e=e+2(K +1)CS

© R. Bettati
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Practical Factors IV: Limited Priority Levels

e Examples: IEEE 802.5 has 8 priority levels, many real-time OS’s
have at most 256 priority levels, EIA-600 has 3 priorities.

e Jobs of same priority are scheduled either in FIFO or in Round-
Robin fashion.

Definition: Let T.(i) denote the subset of tasks, other than T,
that have the same priority as T; .

e Time-demand function:

wit)=ei+bi+ Y. e+ > ek

Tk€TE (1) Tr€TH (i) Pk

© R. Bettati

Schedulability Loss due to Limited Priority Levels
in Fixed-Priority Systems

e Uniform Mapping: task priorities are uniformly mapped to available
priorities.

e Example: 9 tasks and 3 priority levels. Each priority levels is
assigned 3 tasks.

e Problem: Highest-priority contains 3 tasks, which are scheduled
according fo FIFO.

e This results in low schedulability.

e Constant-Ratio Mapping: Keep ratio between partition levels
constant.

e This assigns fewer tasks to high priorities, and thus increases
schedulability level.

e Schedulability bounds exist that take partition ratios into account.

© R. Bettati
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