
CPSC-663: Real-Time Systems Priority Driven Scheduling

1

© R. Bettati

tasks

cyclic schedule

executive
 processor

a priori!

clock-driven:

tasks

priority queue

processor
priority-driven:

Priority-Driven Scheduling of Periodic/Sporadic Tasks

•  Priority-driven vs. clock-driven scheduling:

•  Assumptions for now:

–  tasks are periodic/sporadic

–  jobs are ready as soon as they are released

–  preemption is allowed

–  tasks are independent

–  no aperiodic or (strictly) sporadic tasks

•  We will later:

–  integrate aperiodic and (strictly)

sporadic tasks

–  integrate resources

–  etc.

© R. Bettati

partn2
 partn3
 partn4
partn1

tasks

Static Multiprocessor Scheduling :

local

priority queues

task

assignment

Why Focus on Uniprocessor Scheduling?

tasks

priority queue

processors

Dynamic Multiprocessor Scheduling :

•  Poor worst-case performance of priority-driven algorithms in
dynamic environments.

•  Resource access is very complicated to analyze.

•  … we will re-visit multiprocessor scheduling later.

CPSC-663: Real-Time Systems Priority Driven Scheduling

2

© R. Bettati

Static-Priority vs. Dynamic Priority

Example: Earliest-Deadline-First: �

“The nearer the absolute deadline, the higher the priority.”

T1

T2

T1 is not preempted

here we break tie

Static-Priority:
All jobs in task have same priority.

Example: Rate-Monotonic: �

“The shorter the period, the higher the priority.”

T1

T2

)
3
,
1
,
3
(

)
5
,
3
,
5
(

2

1

=

=

T

T

Dynamic-Priority:
May assign different priorities to individual jobs.

© R. Bettati

Example Algorithms

Static-Priority:

–  Rate-Monotonic (RM): “The shorter the period, the higher the

priority.” [Liu+Layland ’73]

–  Deadline-Monotonic (DM): “The shorter the relative deadline,

the higher the priority.” [Leung+Whitehead ’82]

“Trivia”: For arbitrary relative deadlines, DM outperforms RM.

Dynamic-Priority:

–  EDF: Earliest-Deadline-First.

–  LST: Least-Slack-Time-First.

–  FIFO/LIFO

–  etc.

CPSC-663: Real-Time Systems Priority Driven Scheduling

3

© R. Bettati

Considerations about Priority Scheduling

Question: What makes for a good scheduling algorithm?

Def: [Schedulable Utilization] �
Every set of periodic tasks with total utilization less �
or equal than the schedulable utilization of an �
algorithm can be feasibly scheduled by that algorithm.

Two observations:

1.  The higher the schedulable utilization, the better the algorithm.

2.  The schedulable utilization cannot exceed 1.0!

Ok, a good scheduler meets deadlines…

... but what does this mean?!

© R. Bettati

Theorem: UFIFO = 0

Example: Schedulable Utilization of FIFO

Proof: �

Given any utilization level ε > 0, we can find a task set, with

utilization ε , that may not be feasibly scheduled according to
FIFO.

Example task set:

T1 : e1 = ✏

2p1

T2 : p2 = 2
✏ p1

e2 = p1

9
>>=

>>;
) U = �

p1

e1
T1

e2

p2

T2

CPSC-663: Real-Time Systems Priority Driven Scheduling

4

© R. Bettati

Theorem: EDF can feasibly schedule a system of independent
preemptable tasks with relative deadlines equal to their
periods iff their total utilization is less or equal 1 .

Optimality of EDF for Sporadic/Periodic Systems

•  Proof:
only-if :
obvious �

if :
show that if EDF fails to find feasible�

schedule, then the total utilization must �

exceed 1.

•  Assumptions:

–  At some time t, Job Ji,c of Task Ti misses its deadline.

–  WLOG: if more than one job have deadline t, break tie for Ji,c.

© R. Bettati

Optimality of EDF (cont)

•  Case 1:
Current period of every task begins at or after ri,c.

•  Case 2:
Current period of some task may start before ri,c.

•  Case 1:

•  Current jobs other than
Ji,c do not execute
before time t.

Ji,c misses

deadline !

current period

t < (t��i)e1
pi

+
P

k 6=i⇤
t��k

pk
⌅ek

� t · ei
pi

+ t ·
P

k 6=i
ek
pk

= t · U
⇥ U > 1

T1
T2

Ti
ri,c ri,c+pi

CPSC-663: Real-Time Systems Priority Driven Scheduling

5

© R. Bettati

Optimality of EDF (Case 2)

•  Case 2: �

Some current periods start before ri,c.

•  Notation:
�

T :
Set of all tasks.�

T’ :
Set of tasks where current period starts before ri,c.�

T-T’ :
Set of tasks where current period start at or after ri,c.

•  tl :
Last point in time before t when some current job in T’ is executed.

•  No current job is executed immediately after time tl.

•  Why?
1. All jobs in T’ are done.�

2. Jobs in T-T’ not yet ready.

tl

φ1’

ri,c ri,c+pi Ti

T1

T2

t

© R. Bettati

Optimality of EDF (Case 2, cont)

tl

φ1’

ri,c ri,c+pi Ti

T1

T2

t

(phasing now relative to tl !)

t� tl < (t�tl��0
i)e1

pi
+

P
k 6=i⌅

t�tl��k

pk
⇧ek

⇥ (t� tl) · ei
pi

+ (t� tl) ·
P

k 6=i
ek
pk

= (t� tl) · U
⇤ U > 1

CPSC-663: Real-Time Systems Priority Driven Scheduling

6

© R. Bettati

Optimality of EDF (idle time?!)

Q: What about assumption that processor never idle?

tl forget this

part

same proof

holds for

this part
 Q.E.D.

idle time

© R. Bettati

What about Static Priority?

•  Static-Priority is not optimal!

•  Example:

•  So: Why bother with static-priority?

–  simplicity

–  predictability

T1

T2

J1,3 must have lower
priority than J2,1!

) 5 , 5 . 2 , 5 (
) 2 , 1 , 2 (

2
1

=
=

T
T

U =
e1

p1
+

e2

p2
= 1  100%

CPSC-663: Real-Time Systems Priority Driven Scheduling

7

© R. Bettati

Unpredictability of EDF Scheduling

•  Over-running jobs in EDF hold on to their priorities

T1 = (1,2)

T2 = (1,4)

T3 = (2,8)

Normal Operation

•  Example

T1 = (1,2)

T2 = (1,4)

T3 = (2,8)

T3 over-runs by a bit more than one time unit

© R. Bettati

Unpredictability of EDF Scheduling (II)

T1 = (1,2)

T2 = (1,4)

T3 = (2,8)

The same situation using Rate-Monotonic Scheduling:

high-priority tasks are protected

T1 = (1,2)

T2 = (1,4)

T3 = (2,8)

T3 over-runs for a bit longer....

CPSC-663: Real-Time Systems Priority Driven Scheduling

8

© R. Bettati

Schedulability Bounds for Static-Priority

Proof:
Assume Ti misses deadline at time t.�

t is integer multiple of pi. �

t is also integer multiple of pk, ∀pk < pi.�

Q.E.D.

Utilization due to i
highest-priority tasks

Definition: A set of tasks is simply periodic if,
for every pair of tasks, one period is multiple
of another period.

Theorem: A system of simply periodic,
independent, preemptable tasks whose relative
deadlines are equal to their periods is
schedulable according to RM iff their total
utilization does not exceed 100%.

iX

k=1

t · ek

pk
= t · Ui = t ·

iX

k=1

ek

pk

If job of Ti misses deadline, then Ui > 1 ⇒ U > 1.

=> total time to complete jobs with deadline t : �

© R. Bettati

Theorem: [Liu&Layland ‘73] A system of n independent, preemptable
periodic tasks with Di=pi can be feasibly scheduled by the RM
algorithm if its total utilization U is less or equal �
to URM(n) = n(21/n-1) .

Schedulable Utilization of Tasks with Di=pi �
with Rate-Monotonic Algorithm

Proof Outline: First, show that theorem is correct for special case
where longest period pn<2p1 (p1 = shortest period). We
will remove this restriction later.

Why not 1.0? Counterexample:

T1

T2

misses deadline !

)
5
,
5
.
2
,
5
(

)
2
,
1
,
2
(

2

1

=

=

T

T

CPSC-663: Real-Time Systems Priority Driven Scheduling

9

© R. Bettati

Proof of Liu&Layland

•  General idea:
Find the most-difficult-to-schedule system of n

tasks among all difficult-to-schedule systems of

n tasks.

•  Difficult-to-schedule : Fully utilizes processor for some time

interval. Any increase in execution time would

make system unschedulable.�

•  Most-difficult-to-schedule : system with lowest utilization among

difficult-to-schedule systems.

•  Each of the following 4 steps brings us closer to this system.

© R. Bettati

Step 1: Identify phases of tasks in most-difficult-to-schedule
system.

Proof of Liu&Layland (cont)

System must be in-phase. (talk about this later)

CPSC-663: Real-Time Systems Priority Driven Scheduling

10

© R. Bettati

Step 2: Choose relationship between periods and execution times.
Hypothesize that parameters of MDTS system are thus
related.

Proof of Liu&Layland (cont)

•  Confine attention to first period of each task.

•  Tasks keep processor busy until end of period pn.

T1

T2

T3

Tn-1

Tn

p1

p2

p3

pn-1

pn

...

call this Property A

© R. Bettati

Step 3: Show that any set of D-T-S tasks that are not related
according to Property A has higher utilization.

Proof Liu&Layland (cont)

Q: What happens if we deviate from Property A?

Deviate one way:
Increase execution of some high-priority

task by ε: �

e’1 = e1 + ε = p2 - p1 + ε �

�

Must reduce execution time of some other

task:�

e’k = ek - ε

CPSC-663: Real-Time Systems Priority Driven Scheduling

11

© R. Bettati

Proof Liu&Layland (cont)

Deviate the other way:
�

Reduce execution time of some high-priority

tasks by ε:

e’’1 = e1 - ε = p2 - p1 - ε

�

�

Q: What happens if we deviate from Property A?

Must increase execution time of some lower-

priority task:

e’’1k = ek + 2ε

U 00 � U =
2✏

pk
� ✏

p1
> 0

© R. Bettati

Step 4: Express the total utilization of the M-D-T-S task
system (which has Property A).

Proof Liu&Layland (cont)

•  Define

•  Find least upper bound on utilization: Set first derivative of U with
respect to each of gi’s to zero:

Q.E.D.

for j=1,2,3,…,n-1

CPSC-663: Real-Time Systems Priority Driven Scheduling

12

© R. Bettati

What about Period Ratios > 2 ?

•  We show:
1.
Every D-T-S task system T with period ratio > 2 �

can be transformed into D-T-S task system T’

with
period ratio <= 2.�

2.
The total utilization of the task set decreases

during the transformation step.

•  We can therefore confine search to systems with period ratio < 2.

•  Transformation T->T’:

•  Compare utilizations:

Q.E.D.

while ⇧Tk with l · pk < pn ⇥ (l + 1)pk (l ⇤ 2)
Tk(pk, ek) ⌅ (l · pk, ek)
Tn(pn, en) ⌅ (pn, en + (l � 1)ek)

end

U � U ⇥ = ek
pk

+ en
pn
� ek

l·pk
� en+(l�1)ek

pn
= ek

pk
� ek

l·pk
� (l�1)ek

pn

=
⇣

1
l·pk

� 1
pn

⌘
(l � 1)ek > 0

© R. Bettati

Definition: [Critical Instant]

[Liu&Layland] If the maximum response time of all jobs in Ti is less

than Di, then the job of Ti released in the critical instant has the
maximum response time.

[Baker] If the response time of some jobs in Ti exceeds Di, then
the response time of the job released during the critical instant
exceeds Di.

Theorem: In a fixed-priority system where every job completes
before the next job in the same task is released, a critical
instant of a task Ti occurs when one of its jobs Ji,c is released
at the same time with a job of every higher-priority task.

That Little Question about the Phasing...

CPSC-663: Real-Time Systems Priority Driven Scheduling

13

© R. Bettati

Proof (informal)

•  Assume:

Theorem holds for k < i.

•  WLOG:

∀k < i : φk = 0
, and we look at Ji,1:

•  Observation:

The completion time of higher-priority jobs is

independent of the release time of Ji,1.

•  Therefore:

The sooner Ji,1 is released, the longer it has

to wait until it is completed.

Q.E.D.

© R. Bettati

Proof 2 (less informal)

•  WLOG:
min{φk | k = 1, …, i} = 0

•  Observation:
Need only consider time processor is busy executing

jobs in T1,T2, …, Ti-1 before φi. �
If processor idle or executes lower-priority jobs, ignore that portion
of schedule and redefine the φk’s.

•  Let Ri,1 be the response time for Ji,1 .

•  During [φk, φi +Ri,1] a total of ⎡(Ri,1 + φi - φk) / pk⎤ jobs of Tk become

ready for execution.

•  so (time-demand analysis):

•  and:

Ri,1 + �i = ei +
i�1X

k=1

dRi,1 + �i � �k

pk
eek

Ri,1 = ei +
i�1X

k=1

dRi,1 + �i � �k

pk
eek � �i

CPSC-663: Real-Time Systems Priority Driven Scheduling

14

© R. Bettati

Optimal Static-Priority Scheduling

[J.Y.-T.Leung, J. Whitehead, “On the complexity of Fixed-Priority Scheduling of
Periodic, Real-Time Tasks”, Performance Evaluation 2, 1982.]

Theorem: If a task set can be feasibly scheduled by some
static-priority algorithm, it can be feasibly scheduled by
DM. (“DM is optimal static-priority algorithm.”)

Proof:

–  Assume:
A feasible static-priority schedule S exists for a task

set T. The priority assignment is T1, T2, …, Tn.�

For some k, we have Dk > Dk+1.

–  We show that we can swap the priority of Tk and Tk+1 and the

resulting schedule – call it S(k) – remains feasible.

© R. Bettati

Optimality of DM: Proof (II)

•  So, you want to swap the priority of Tk and Tk+1 ?!

•  Observation: Response time for each task other than Tk and Tk+1 is
the same in S and S(k).

•  Observation: Response time of Tk+1 in S(k) must be smaller than in
S, since Tk+1 is not delayed by Tk in S(k).

•  Thus: Must prove that deadline of first invocation of Tk is also met
in S(k). (Critical Instant)

•  Let x be the amount of work done in S for all tasks in T1,...,Tk-1
during interval [0, dk+1].

•  Note: Amount of work done in S and S(k) for tasks in T1,...,Tk-1 is at
most x during any interval of length dk+1.

•  We must have

x + ek + ek+1 ≤ dk+1

CPSC-663: Real-Time Systems Priority Driven Scheduling

15

© R. Bettati

Optimality of DM: Proof(III)

•  Observation: Number of invocations of Tk+1 in Schedule S(k) during
interval [0, ⎣dk/dk+1 ⎦*dk+1] is at most ⎣dk/dk+1 ⎦.

•  Observation: Amount of work for all tasks in T1,...,Tk-1 in the
interval [0, ⎣dk/dk+1 ⎦ *dk+1] is at most ⎣dk/dk+1 ⎦ *x.

•  The following condition is sufficient to guarantee that the deadline
of the first request of Tk is met in S(k):

⎣dk/dk+1⎦ * (x+ek+1) + ek ≤ ⎣dk/dk+1⎦ * dk+1

•  This, however, follows from inequality on previous page. (QED)

© R. Bettati

Why Utilization-Based Tests?

•  If no parameter ever varies, we could use simulation.

•  But:

–  Execution times may be smaller than ei

–  Inter-release times may vary.

•  Tests are still robust.

•  Useful as methodology to define execution times or periods.

CPSC-663: Real-Time Systems Priority Driven Scheduling

16

© R. Bettati

Time-Demand Analysis

•  Compute total demand on processor time of job released at a critical
instant and by higher-priority tasks as function of time from the
critical instant.

•  Check whether demand can be met before deadline.

•  Determine whether Ti is schedulable:

–  Focus on a job in Ti, suppose release time is critical instant of Ti:

wi(t):
Processor-time demand of this job and all higher-

priority jobs released in (t0, t):

•  This job in Ti meets its deadline if, for some

t1 ≤ Di ≤ pi : wi(t1) ≤ t1

•  If this does not hold, job cannot meet its deadline, and system of
tasks is not schedulable by given static-priority algorithm.

wi(t) = ei +
i�1X

k=1

d t

pk
eek

© R. Bettati

Example

w(t)

t 2 4 6 8 10 12 14

w1(t)

) 5 . 0 , 8 (
) 25 . 1 , 7 (
) 5 . 1 , 5 (
) 1 , 3 (

4
3
2
1

=
=
=
=

T
T
T
T

w1(t) = d t

p1
ee1

CPSC-663: Real-Time Systems Priority Driven Scheduling

17

© R. Bettati

Example

w(t)

t 2 4 6 8 10 12 14

w1(t)

w2(t)) 5 . 0 , 8 (
) 25 . 1 , 7 (
) 5 . 1 , 5 (
) 1 , 3 (

4
3
2
1

=
=
=
=

T
T
T
T

w2(t) = d t

p1
ee1 + d t

p2
ee2

w1(t) = d t

p1
ee1

© R. Bettati

Example

w(t)

t 2 4 6 8 10 12 14

w1(t)

w2(t)

w3(t)

) 5 . 0 , 8 (
) 25 . 1 , 7 (
) 5 . 1 , 5 (
) 1 , 3 (

4
3
2
1

=
=
=
=

T
T
T
T

CPSC-663: Real-Time Systems Priority Driven Scheduling

18

© R. Bettati

Example

w(t)

t 2 4 6 8 10 12 14

w1(t)

w2(t)

w3(t)
w4(t)

) 5 . 0 , 8 (
) 25 . 1 , 7 (
) 5 . 1 , 5 (
) 1 , 3 (

4
3
2
1

=
=
=
=

T
T
T
T

© R. Bettati

Practical Factors

•  Non-Preemptable Portions (*)

•  Self-Suspension of Jobs (*)

•  Context Switches (*)

•  Insufficient Priority Resolutions (Limited Number of Distinct
Priorities)

•  Time-Driven Implementation of Scheduler (Tick Scheduling)

•  Varying Priorities in Fixed-Priority Systems

CPSC-663: Real-Time Systems Priority Driven Scheduling

19

© R. Bettati

Definition: [non-preemptable portion] Let’s denote by
ρI the largest non-preemptable portion of jobs in Ti.

Practical Factors I: Non-Preemptability

•  Jobs, or portions thereof, may be non-preemptable.

Definition: A job is said to be blocked if it is prevented from
executing by lower-priority job. (priority-inversion)

•  When testing schedulability of a task Ti, we must consider

–  higher-priority tasks

and

–  non-preemptable portions of lower-priority tasks

© R. Bettati

Analysis with Non-Preemptable Portions

•  Time-demand function with blocking:

Definition: The blocking time bi of Task Ti is the longest time
by which any job of Ti can be blocked by lower-priority
jobs:

•  Utilization bounds with blocking:

test one task at a time:

CPSC-663: Real-Time Systems Priority Driven Scheduling

20

© R. Bettati

T3 non-preemptible (i.e. ρ3 = 2)

Non-Preemptability: Example

w(t)

t

2
 4
 6
 8
 10

w1(t)

w3(t)

w2(t)

ti
m

e-
de

m
an

d
fu

nc
ti

on

) 2 , 9 (
) 5 . 1 , 5 (
) 1 , 4 (

3
2
1

=
=
=

T
T
T

© R. Bettati

Definition: Self-suspension of a job occurs when the job waits for
an external operation to complete (RPC, I/O operation).

Practical Factors II: Self-Suspension

•  Assumption:
We know the maximum length of external
operation; i.e.,

the duration of self-suspension is bounded.

T1 = (φ1=0,p1=4,e1=2.5)

self-suspension!

T2 = (φ2=3,p2=7,e2=2.0)

bSS
i = max. self-suspension time of Ti

+

Pi�1
k=1 min(ek,max. self-suspension time of Tk)

•  Example:

•  Analysis:
bi
SS : Blocking time of Ti due to self-suspension.

CPSC-663: Real-Time Systems Priority Driven Scheduling

21

© R. Bettati

Self-Suspension with Non-Preemptable Portions

•  Whenever job self-suspends, it loses the processor.

•  When tries to re-acquire processor, it may be blocked by tasks in
non-preemptable portions.

•  Analysis:
bNP
i:
Blocking time due to non-preemptable

portions �

Ki:
Max. number of self-suspensions
�

bi:
Total blocking time

bi = bSS
i + (Ki + 1) bNP

i

© R. Bettati

Definition: [Job-level fixed priority assignment]

In a job-level fixed priority assignment, each job is given a

fixed priority for its entire execution.

Practical Factors III: Context Switches

•  Case I: No self-suspension

–  In a job-level fixed-priority system, each job preempts at most

one other job.

–  Each job therefore causes at most two context switches

–  Therefore: Add the context switch time twice to the execution

time of job:
ei = ei + 2 CS

•  Case II: Self-suspensions can occur

–  Each job suffers two more context switches each time it self-
suspends

–  Therefore: Add more context switch times appropriately: �

ei = ei + 2 (Ki + 1) CS

CPSC-663: Real-Time Systems Priority Driven Scheduling

22

© R. Bettati

Practical Factors IV: Limited Priority Levels

Definition: Let TE(i) denote the subset of tasks, other than Ti ,
that have the same priority as Ti .

•  Examples: IEEE 802.5 has 8 priority levels, many real-time OS’s
have at most 256 priority levels, EIA-600 has 3 priorities.

•  Jobs of same priority are scheduled either in FIFO or in Round-
Robin fashion.

•  Time-demand function:

wi(t) = ei + bi +
X

Tk2TE(i)

ek +
X

Tk2TH(i)

d t

pk
eek

© R. Bettati

Schedulability Loss due to Limited Priority Levels�
in Fixed-Priority Systems

•  Uniform Mapping: task priorities are uniformly mapped to available
priorities.

•  Example: 9 tasks and 3 priority levels. Each priority levels is
assigned 3 tasks.

•  Problem: Highest-priority contains 3 tasks, which are scheduled
according to FIFO.

•  This results in low schedulability.

•  Constant-Ratio Mapping: Keep ratio between partition levels
constant.

•  This assigns fewer tasks to high priorities, and thus increases
schedulability level.

•  Schedulability bounds exist that take partition ratios into account.

