
CPSC-663: Real-Time Systems Resource Access Protocols

1

© R. Bettati

Resource Access Control in Real-Time Systems

•  Resources, Resource Access, and How Things Can Go Wrong: �

The Mars Pathfinder Incident

•  Resources, Critical Sections, Blocking

•  Priority Inversion, Deadlocks

•  Non-preemptive Critical Sections

•  Priority Inheritance Protocol

•  Priority Ceiling Protocol

•  Stack-Based Protocols

•  Resource Access in ADA

© R. Bettati

Resource Access Control in Real-Time Systems

•  Resources, Resource Access, and How Things Can Go Wrong: �

The Mars Pathfinder Incident

•  Resources, Critical Sections, Blocking

•  Priority Inversion, Deadlocks

•  Non-preemptive Critical Sections

•  Priority Inheritance Protocol

•  Priority Ceiling Protocol

•  Stack-Based Protocols

•  Resource Access in ADA

CPSC-663: Real-Time Systems Resource Access Protocols

2

© R. Bettati

Mars Pathfinder Incident

•  Landing on July 4, 1997

•  “experiences software glitches”

•  Pathfinder experiences repeated

RESETs after starting gathering of
meteorological data.

•  RESETs generated by watchdog
process.

•  Timing overruns caused by priority
inversion.

•  Resources:

 research.microsoft.com/~mbj/
Mars_Pathfinder/
Mars_Pathfinder.html

© R. Bettati

Priority Inversion on Mars Pathfinder

Task bc_dist

Task ASI/MET

other tasks

high priority

low priority
starts

locks mutex
gets preempted

becomes active

blocks on mutex
Task bc_sched
detects overrun

CPSC-663: Real-Time Systems Resource Access Protocols

3

© R. Bettati

Resource Access Control in Real-Time Systems

•  Resources, Resource Access, and How Things Can Go Wrong: �

The Mars Pathfinder Incident

•  Resources, Critical Sections, Blocking

•  Priority Inversion, Deadlocks

•  Non-preemptive Critical Sections

•  Priority Inheritance Protocol

•  Priority Ceiling Protocol

•  Stack-Based Protocols

•  Resource Access in ADA

© R. Bettati

Resource Access: System Model

Processor(s) and Resources

–  m types of serially reusable resources R1, ..., Rm

–  An execution of a job Ji requires:

•  a processor for ei units of time

•  some resources for exclusive use

Resources

–  Serially Reusable: Allocated to one job at a time. Once

allocated, held by the job until no longer needed.

–  Examples: semaphores, locks, servers, ...

–  Operations:

lock(Ri) -----<critical section>------ unlock(Ri)
–  Resources allocated non-preemptively

–  Critical sections properly nested

CPSC-663: Real-Time Systems Resource Access Protocols

4

© R. Bettati

Preemption of Tasks in their Critical Sections

•  Negative effect on schedulability and predictability.

•  Traditional resource management algorithms fail (e.g. Banker’s

Algorithm). They decouple resource management decisions from
scheduling decisions.

Example:

T1

T2

T3

lock(s)
 unlock(s)

lock(s)
 unlock(s)
Zzzz!

© R. Bettati

Unpredictability: Scheduling Anomalies

•  Example:
T1 = (c1=2, e1 = 5, p1 = 8) T2 = (4, 7, 22) T3 = (4, 6, 26)

•  Shorten critical section of T3:
�

T1 = (c1=2, e1 = 5, p1 = 8) T2 = (4, 7, 22) T3 = (2.5, 6, 26)

0
 5
 10
 15
 20
 25

0
 5
 10
 15
 20
 25

CPSC-663: Real-Time Systems Resource Access Protocols

5

© R. Bettati

Resource Access Control in Real-Time Systems

•  Resources, Resource Access, and How Things Can Go Wrong: �

The Mars Pathfinder Incident

•  Resources, Critical Sections, Blocking

•  Priority Inversion, Deadlocks

•  Non-preemptive Critical Sections

•  Priority Inheritance Protocol

•  Priority Ceiling Protocol

•  Stack-Based Protocols

•  Resource Access in ADA

© R. Bettati

Possible Solution: Disallow Processor Preemption of �
Tasks in Critical Section [A. Mok]

•  Analysis identical to analysis with non-preemptable portions

•  Define: β = maximum duration of all critical sections

•  Task Ti is schedulable if

•  Problem: critical sections can be rather long.

X : scheduling algorithm

0
 5
 10

iX

k=1

ek
pk

+
�

pi
 UX(i)

CPSC-663: Real-Time Systems Resource Access Protocols

6

© R. Bettati

Resource Access Control in Real-Time Systems

•  Resources, Resource Access, and How Things Can Go Wrong: �

The Mars Pathfinder Incident

•  Resources, Critical Sections, Blocking

•  Priority Inversion, Deadlocks

•  Non-preemptive Critical Sections

•  Priority Inheritance Protocol

•  Priority Ceiling Protocol

•  Stack-Based Protocols

•  Resource Access in ADA

© R. Bettati

Possible Solution: Priority Inheritance

0 5 10
π1 > π2 > π3 without priority inheritance

T1

T2

T3

0 5 10

T1

T2

T3

with priority inheritance

T3 blocks T2 here
T3 directly blocks T2 here

T3’s priority = π1

CPSC-663: Real-Time Systems Resource Access Protocols

7

© R. Bettati

Terminology

•  A job is directly blocked when it requests a resource Ri, i.e. executes a
lock(Ri), but no resource of type Ri is available.

•  Job J’ directly blocks J if J’ holds some resources that J has requested.

•  The scheduler grants the lock request, i.e. allocates the requested
resource to the job, according to the resource allocation rules, as soon
as the resources become available.

•  New forms of blocking (e.g. “blocking through inheritance”) may be
introduced by the resource management policy to control priority inversion
and/or prevent deadlocks.

© R. Bettati

Basic Priority-Inheritance Protocol

•  Jobs that are not blocked are scheduled according to a priority-driven

algorithm preemptively on a processor.

•  Priorities of tasks are fixed, except for the conditions described below:

–  A job J requests a resource R by executing lock(R)
–  If R is available, it is allocated to J. J then continues to execute and

releases R by executing unlock(R)
–  If R is allocated to J’, J’ directly blocks J. The request for R is

denied.

–  However:
Let
 π = priority of J when executing lock(R) �

 π’ = priority of J’ at the same time

–  For as long as J’ holds R, its priority is max(π, π’) and returns to π’

when it releases R.

–  That is: J’ inherits the priority of J when J’ directly blocks J , and J

has a higher priority.

•  Priority Inheritance is transitive.

CPSC-663: Real-Time Systems Resource Access Protocols

8

© R. Bettati

Example: Priority Inheritance Protocol

Problem:
If T5 tries to lock(B) while it has priority π1, we have a
deadlock!

T1

T2

T3

T4

T5

L(A)

L(A)

L(A) L(B)

L(B) U(B)

U(A)

U(A) U(B)

U(A)

Task uses A
 Task uses A and B
 Task uses B

π1 > π2 > π3 > π4 > π5

π5

π4

π3

π2

π2 π1

π1 π1 π1

π1

π5

© R. Bettati

Example: Priority Inheritance Protocol (2)

T1

T2

T3

T4

T5

L(A)

L(A)

L(A) L(B)

L(B)

Task uses A
 Task uses A and B
 Task uses B

L(B)

deadlocked!

deadlocked!

π1 > π2 > π3 > π4 > π5

Problem:
If T5 tries to lock(B) while it has priority π1, we have a
deadlock!

π1

π1

π1

π5 π5

π4

π3

π2

π2

deadlocked!

deadlocked!

CPSC-663: Real-Time Systems Resource Access Protocols

9

© R. Bettati

Properties of Priority Inheritance Protocol

1.  Priority Inheritance does not prevent deadlock.

2.  Task can be blocked directly by a task with a lower priority at most once,

for the duration of the (outmost) critical section.

Consider a task whose priority is higher than n other tasks:

•  Each of the lower-priority tasks can directly block the task at most once.

•  A task outside the critical section cannot directly block a higher-priority task.

L(Rn)

L(R1)

L(Rn-1)

L(R1)

L(R2)

U(R1)

U(R2)

U(Rn-1)

U(Rn)

L(R2) L(Rn-1) L(Rn)

© R. Bettati

Resource Access Control in Real-Time Systems

•  Resources, Resource Access, and How Things Can Go Wrong: �

The Mars Pathfinder Incident

•  Resources, Critical Sections, Blocking

•  Priority Inversion, Deadlocks

•  Non-preemptive Critical Sections

•  Priority Inheritance Protocol

•  Priority Ceiling Protocol

•  Stack-Based Protocols

•  Resource Access in ADA

CPSC-663: Real-Time Systems Resource Access Protocols

10

© R. Bettati

Priority Ceiling Protocol

•  Assumptions:

–  Priorities of tasks are fixed

–  Resources required by tasks are known

•  Definition (Priority Ceiling of R)

Priority Ceiling ΠR of R = highest priority of all tasks that will request R.

•  Any task holding R may have priority ΠR at some point; either its own
priority is ΠR, or it inherits ΠR .

•  Motivation:

–  Suppose there are resource A and B.

–  Both A and B are available. T1 requests A.

–  T2 requests B after A is allocated.

•  If π2 > ΠA : T1 can never preempt T2 ⇒ B should be allocated to T2.

•  If π2 ≤ ΠA : T1 can preempt T2 (and also request B) at some later

time. B should not be allocated to T2, to avoid deadlock.

© R. Bettati

Priority Ceiling Protocol (II)

•  Same as the basic Priority Inheritance Protocol, except for the
following:

•  When a task T requests for allocation of a resource R by
executing lock(R):
–  The request is denied if

1.  Resource R already allocated to T’. (T’ directly blocks T.)

2.  The priority of T is not higher than all priority ceilings of

resources allocated to tasks other than T at the time.
(These tasks block T.)

–  Otherwise, R is allocated to T.

•  When a task blocks other tasks, it inherits the highest of their
priorities.

CPSC-663: Real-Time Systems Resource Access Protocols

11

© R. Bettati

-
-

lock(X)
-
-

unlock(X)
-
-
-
-
-

T1

-
-

lock(Z)
-

lock(Y)
-

unlock(Y)
-

unlock(Z)

T2

-
-

-
-

-
unlock(Z)

-
unlock(Y)

-

T3

-

-

lock(Y)

lock(Z)

Priority Ceiling Protocol: Example �
[Lehoczky et al., 1990]

π1 > π2 > π3 (ΠX = π1 , ΠY = ΠZ = π2)

L(Y)

L(Z)

L(X) U(X)

L(Y)

U(Y)

T1

T2

T3

L(Z) U(Z)

U(Y) U(Z)

(*) lock(Z) is denied, since π2 ≤ ΠY

(*)

© R. Bettati

Priority Ceiling Protocol: Example II

(*)

Fails: directly blocked by T5

(**)
Fails: π4 < ΠA

(1) 
T5 blocks T4 (to prevent deadlock)

(2) 
T5 blocks T3 (to control priority inversion)

L(A)

L(A)

L(B)

L(B)

U(A)

L(A) U(A)

T5

T4

T3

T2

T1

U(B)

U(A)

U(B)

(1) (2) (2)

(**)

(*)

π1 > π2 > π3 > π4 > π5
ΠA = π2 , ΠB = π1

CPSC-663: Real-Time Systems Resource Access Protocols

12

© R. Bettati

Schedulability Analysis of PCP: Reminders

Recall: Blocking: A higher-priority task waits for a lower-priority task.

A task TH can be blocked by a lower-priority task TL in three ways:

Direct Blocking:

 X
 TL
TH

request for
 allocated to

Blocking due to Priority Inheritance: TL inherits a priority higher than the priority
πH of TH.
 X
 TL
T ≠ TH

(π > πH)

Blocking due to Priority Ceiling: TH requests a resource and the priority ceiling of
resources held by TL is equal to or higher than πH:

Y
 TL
TH

(πH ≤ ΠX)

X

© R. Bettati

T cannot be blocked if at time t, every resource allocated has a priority
ceiling less than π , i.e., π > Π(t) .

Preliminary Observation 1:

Sched. Analysis of PCP: Preliminary Observations

•  Consider:
Task T with priority π and release time t.

•  Define:
Current Priority Ceiling Π(t) : Highest priority ceiling of all

resources allocated at time t.

•  Obvious:

–  No direct blocking: T will not require any of the resources allocated at

time t with priority ceilings < π , and will not be directly blocked
waiting for them.

–  No inheritance blocking: No lower-priority task can inherit a priority
higher than π through resources allocated at time t.

–  No priority ceiling blocking: No task with priority lower than π holds
any resource with priority ceiling ≥ π.

–  Ergo: No blocking at all! Requests for resources by T will not be denied
because of resource allocations made before t.

CPSC-663: Real-Time Systems Resource Access Protocols

13

© R. Bettati

Sched. Analysis of PCP: Preliminary Observations (II)

Suppose that

1.  there is a task TL holding a resource X

2.  T (with priority π) preempts TL, and then

3.  T is allocated a resource Y.

Until T completes, TL cannot inherit a priority higher or equal to π.

Preliminary Observation 2

•  Reason:
(πL = priority of TL when it is preempted.)

–  πL < π
–  T is allocated a resource

⇒ π���� is higher than all the priority ceilings of resources held by all
lower-priority tasks when T preempts TL.

–  T cannot be blocked by TL, from Preliminary Observation 1.

⇒ πL cannot be raised to π or higher through inheritance.

© R. Bettati

A low-priority task TL can block a higher-priority task TH �
at most once.

Observation 1:

Schedulability Analysis of PCP

•  Reason: When TL is not in critical section:

–  πL < πH , and

–  TL cannot inherit a higher priority

•  Reminder: Critical sections are properly nested �
⇒ Duration of a critical section equals the outmost critical section.

CPSC-663: Real-Time Systems Resource Access Protocols

14

© R. Bettati

A task T can be blocked for at most the duration of one critical
section, no matter how many tasks share resources with T.

Observation 2

Schedulability Analysis of PCP (II)

T

T1

T2

L(B) L(A)

L(A)

L(B)

t

Not possible!
T1 is allocated B ⇒ π1 is higher
than ΠA, which is > π.

T

T1

T2

L(A)

L(A)

L(B)

t

Not possible!
 ΠA ≥ π = B is not allocated
to T1 (π1 < π) at t!

•  Reason:

–  It is not possible for T to be blocked for durations of 2 critical

sections of the same task.

–  It is not possible for T to be blocked by T1 and T2 with priorities
π1 < π , π2 < π .

© R. Bettati

Schedulability Analysis of PCP (III)

•  If such a subgraph were to exist, we must have:

–  Tasks assigned priorities must satisfy π1 > π2 > π3 .

–  Two or more resources are involved; the TWF-Graph must

contain the following subgraph, for two resources X and Y:

•  Task T3 must be allocated Y, then T2 is allocated X.

•  From Preliminary Observation 2: “Until T2 completes, it is not

possible for T3 to inherit a priority higher than π2.”

–  According to the above subgraph, T3 inherits π1 > π2 .

⇒ CONTRADICTION!

Y
 T3
X
 T2

The Priority Ceiling Protocol prevents transitive blocking.

i.e., the blocking graph cannot contain a subgraph of the form:

T2
 T3
T1

blocked by
 blocked by

Observation 3:

CPSC-663: Real-Time Systems Resource Access Protocols

15

© R. Bettati

Schedulability Analysis of PCP (IV)

•  Transitive blocking is not possible (Observation 3).

•  Therefore, it suffices to show that the blocking graph (or the
TWF-Graph) cannot contain cycles of length 2.

•  i.e. subgraphs of the form

The Priority Ceiling Protocol prevents deadlocks.

Observation 4:

X
 T2
T1
 Y

© R. Bettati

Resource Access Control in Real-Time Systems

•  Resources, Resource Access, and How Things Can Go Wrong: �

The Mars Pathfinder Incident

•  Resources, Critical Sections, Blocking

•  Priority Inversion, Deadlocks

•  Non-preemptive Critical Sections

•  Priority Inheritance Protocol

•  Priority Ceiling Protocol

•  Stack-Based Protocols

•  Resource Access in ADA

CPSC-663: Real-Time Systems Resource Access Protocols

16

© R. Bettati

Stack Sharing

•  Sharing of the stack among tasks eliminates stack space
fragmentation and so allows for memory savings:

•  However:

•  Once job is preempted, it can only resume when it returns to be

on top of stack.

•  Otherwise, it may cause a deadlock.

•  Stack becomes a resource that allows for “one-way preemption”.

T1

Ti

Tn

no stack sharing

T1

Ti

Tn

stack sharing

© R. Bettati

1.  Update Priority Ceiling: Whenever all resources are free, �
Π(t) = ∞. The value of Π(t) is updated whenever resource is allocated or
freed.

2.  Scheduling Rule: After a job is released, it is blocked from starting
execution until its assigned priority is higher than Π(t). �
At all times, jobs that are not blocked are scheduled on the processor
in a priority-driven, preemptive fashion according to their assigned
priorities.

3.  Allocation Rule: Whenever a job requests a resource, it is allocated the
resource.

Stack-Sharing Priority-Ceiling Protocol

Protocol :

•  To avoid deadlocks: Once execution begins, make sure that job is not
blocked due to resource access.

•  Otherwise: Low-priority, preempted, jobs may re-acquire access to CPU,
but can not continue due to unavailability of stack space.

•  Define:
Π(t) : highest priority ceiling of all resources currently

allocated.�

If no resource allocated, Π(t) = ∞.

CPSC-663: Real-Time Systems Resource Access Protocols

17

© R. Bettati

Stack-Based Priority-Ceiling Protocol (cont)

•  The Stack-Based Priority-Ceiling Protocol is deadlock-free:

–  When a job begins to execute, all the resources it will ever

need are free.

–  Otherwise, Π(t) would be higher or equal to the priority of the

job.

–  Whenever a job is preempted, all the resources needed by the
preempting job are free.

–  The preempting job can complete, and the preempted job can
resume.

•  Worst-case blocking time of Stack-Based Protocol is the same as
for Basic Priority Ceiling Protocol.

•  Stack-Based Protocol smaller context-switch overhead (2 CS)
than Priority Ceiling Protocol (4 CS)

–  Once execution starts, job cannot be blocked.

© R. Bettati

Scheduling Rules:

1.  Every job executes at its assigned priority when it does
not hold resources.

2.  Jobs of the same priority are scheduled on FIFO basis.

3.  Priority of jobs holding resources is the highest of the

priority ceilings of all resources held by the job.

Allocation Rule:

•  Whenever a job requests a resource, it is allocated the
resource.

Ceiling-Priority Protocol

Ceiling-Priority Protocol

•  Stack-Based Protocol does not allow for self-suspension

–  Stack is shared resource

•  Re-formulation for multiple stacks (no stack-sharing)
straightforward:

CPSC-663: Real-Time Systems Resource Access Protocols

18

© R. Bettati

Resource Access Control in Real-Time Systems

•  Resources, Resource Access, and How Things Can Go Wrong: �

The Mars Pathfinder Incident

•  Resources, Critical Sections, Blocking

•  Priority Inversion, Deadlocks

•  Non-preemptive Critical Sections

•  Priority Inheritance Protocol

•  Priority Ceiling Protocol

•  Stack-Based Protocols

•  Resource Access in ADA

© R. Bettati

Priority-Ceiling Locking in Ada 9X �
[Ada 9X; RT Annex]

•  Task definitions allow for a pragma Priority as follows:

pragma Priority(expression)

•  Task priorities:

–  base priority : priority defined at task creation, or dynamically set

with Dynamic_Priority.Set_Priority() method.

–  active priority : base priority or priority inherited from other sources

(activation, rendez-vous, protected objects).

•  Priority-Ceiling Locking:

–  Every protected object has a ceiling priority : Upper bound on active
priority a task can have when it calls a protected operation on
objects.

–  While task executes a protected operation, it inherits the ceiling
priority of the corresponding protected object.

–  When a task calls a protected operation, a check is made that its
active priority is not higher than the ceiling of the corresponding
protected object.

–  A Program Error is raised if this check fails.

CPSC-663: Real-Time Systems Resource Access Protocols

19

© R. Bettati

Priority-Ceiling Locking in Ada 9X: Implementation �
[Ada 9X; RT Annex]

•  Efficient implementation possible that does not rely on explicit locking.

•  Mutual exclusion is enforced by priorities and priority ceiling protocol only.

•  We show that Resource R can never be requested by Task T2 while it is held

by Task T1.

•  Simplified argument (AP = “Active Priority”):

–  AP(T2) can never be higher than C(R) . Otherwise, run-time error would
occur. ⇒ AP(T2) ≤ C(R)

–  As long as T1 holds R, it cannot be blocked.

•  Therefore, for T2 to request R after T1 seized it, T1 must have been

preempted (priority of T1 does not change while T1 is in ready queue).

–  For T2 to request R while T1 is in ready queue, T2 must have higher

active priority than T1.
⇒
AP(T2) > AP(T1)

–  T1 is holding R
⇒
C(R) ≤ AP(T1) < AP(T2)

•  Before T2 requests R, T2’s priority must drop to ≤ C(R)

Case 1: AP(T2) drops to below AP(T1) ⇒ T2 preempted

Case 2: AP(T2) drops to AP(T1) ⇒ T2 must yield to T1 (by rule)

