
CPSC-663: Real-Time Systems Common Scheduling Approaches

1

© R. Bettati

Common Approaches to Real-Time Scheduling

•  Clock-driven (time-driven) schedulers

•  Priority-driven schedulers

•  Examples of priority driven schedulers

•  Effective timing constraints

•  How to reason about Schedulers: The Earliest-Deadline-First (EDF)
Scheduler and its optimality

© R. Bettati

Common Approaches to Real-Time Scheduling

Clock-driven (time-driven) schedulers

–  Scheduling decisions are made at specific time

instants, which are typically chosen a priori.

Priority-driven schedulers

•  Scheduling decisions are made when particular

events in the system occur, e.g.

– a job becomes available

– processor becomes idle

•  Work-conserving: processor is busy whenever

there is work to be done.

CPSC-663: Real-Time Systems Common Scheduling Approaches

2

© R. Bettati

Clock-Driven (Time-Driven) -- Overview

•  Scheduling decision time:
point in time when scheduler decides

which job to execute next.

•  Scheduling decision time in clock-driven schedulers is defined a
priori.

•  For example: Scheduler periodically wakes up and generates a
portion of the schedule.

•  Special case: When job parameters are known a priori, schedule
can be pre-computed off-line, and stored as a table (table-driven
schedulers).

A B C D C A C

scheduler job

© R. Bettati

Priority-Driven -- Overview

Basic rule: Never leave processor idle when there is work to be
done. (Such schedulers are also called work conserving)

Based on list-driven, greedy scheduling.

Examples: FIFO, LIFO, SET, LET, EDF.

Possible implementation of preemptive priority-driven scheduling:

1.  Assign priorities to jobs.

2.  Scheduling decisions are made when

•  Job becomes ready

•  Processor becomes idle

•  Priorities of jobs change

3.  At each scheduling decision time, choose ready task with
highest priority.

In non-preemptive case, scheduling decisions
are made only when processor becomes idle.

CPSC-663: Real-Time Systems Common Scheduling Approaches

3

© R. Bettati

Scheduling Decisions

•  Scheduling decision points:

1.  The running process blocks, i.e. changes from running to waiting

(current CPU burst of that thread is over).

2.  The running thread terminates.

3.  A waiting thread becomes ready (new CPU burst of that thread

begins).

4.  The current thread is preempted, i.e. switches from running to

ready .

ready running

waiting
3 1

2
4

© R. Bettati

Example: Priority-Driven Non-Preemptive Schedules

J1 :1 J2 :2 J3 :1 J4 :1

J5 :3

J8 :3

J6 :2

J7 :1

Proc1 J1 J2 J3 J6 J4

Proc2 J5 J8 J7

L = (J1 , J2 , J3 , J4 , J5 , J6 , J7 , J8)

Proc1 J5 J2 J1 J6 J4

Proc2 J8 J7

LET = (J5 , J8 , J2 , J6 , J1 , J3 , J4 , J7)

J3

Proc1 J5

J2 J1 J6

J4

Proc2

J8

J7

L = (J8 , J1 , J2 , J3 , J4 , J5 , J6 , J7)

J3

execution time

job ID

CPSC-663: Real-Time Systems Common Scheduling Approaches

4

© R. Bettati

Example: Priority-Driven Non-Preemptive Schedules

J1 :1 J2 :2 J3 :1 J4 :1

J5 :3

J8 :3

J6 :2

J7 :1

Proc1 J1 J2 J3 J6 J4

Proc2 J5 J8 J7

L = (J1 , J2 , J3 , J4 , J5 , J6 , J7 , J8)

© R. Bettati

Example: Priority-Driven Non-Preemptive Schedules

J1 :1 J2 :2 J3 :1 J4 :1

J5 :3

J8 :3

J6 :2

J7 :1

Proc1 J5 J2 J1 J6 J4

Proc2 J8 J7

LET = (J5 , J8 , J2 , J6 , J1 , J3 , J4 , J7)

J3

CPSC-663: Real-Time Systems Common Scheduling Approaches

5

© R. Bettati

Example: Priority-Driven Non-Preemptive Schedules

J1 :1 J2 :2 J3 :1 J4 :1

J5 :3

J8 :3

J6 :2

J7 :1

Proc1 J5

J2 J1 J6

J4

Proc2

J8

J7

L = (J8 , J1 , J2 , J3 , J4 , J5 , J6 , J7)

J3

© R. Bettati

Example: Priority-Driven Non-Preemptive Schedules

J1 :1 J2 :2 J3 :1 J4 :1

J5 :3

J8 :3

J6 :2

J7 :1

Proc1 J1 J2 J3 J6 J4

Proc2 J5 J8 J7

L = (J1 , J2 , J3 , J4 , J5 , J6 , J7 , J8)

Proc1 J5 J2 J1 J6 J4

Proc2 J8 J7

LET = (J5 , J8 , J2 , J6 , J1 , J3 , J4 , J7)

J3

Proc1 J5

J2 J1 J6

J4

Proc2

J8

J7

L = (J8 , J1 , J2 , J3 , J4 , J5 , J6 , J7)

J3

CPSC-663: Real-Time Systems Common Scheduling Approaches

6

© R. Bettati

Interlude 1: The EDF Algorithm

The EDF (Earliest-Deadline-First) Algorithm:

At any time, execute that available job with the earliest deadline.

Theorem:
(Optimality of EDF) �

In a system one processor and with preemptions allowed, EDF can
produce a feasible schedule of a job set J with arbitrary release
times and deadlines iff such a schedule exists.

Proof:
By schedule transformation.

© R. Bettati

Proof of Optimality of EDF

•  Assume that arbitrary schedule S meets timing constraints.

•  For S to not be an EDF schedule, we must have the following
situation:

portion of Jj portion of Ji

di dj ri, rj

interval A interval B

S is EDF up to here

CPSC-663: Real-Time Systems Common Scheduling Approaches

7

© R. Bettati

Proof of Optimality of EDF (2)

•  We now have two cases.

•  Case 1:
L(A) > L(B)

di dj ri, rj

A B

portion of Jj

B

portion of Ji

© R. Bettati

Proof of Optimality of EDF (3)

•  We now have two cases.

•  Case 2:
L(A) <= L(B)

portion of Ji

di dj ri, rj

A B

A

portion of Jj

CPSC-663: Real-Time Systems Common Scheduling Approaches

8

© R. Bettati

EDF Not Always Optimal

•  Case 1: When preemption is not allowed:

•  Case 2: On a multiprocessor:

C d r

) 4 , 12 , 4 (
) 6 , 14 , 2 (
) 3 , 10 , 0 (

3
2
1

=
=
=

J
J
J

i i i

) 5 , 5 , 0 (
) 1 , 4 , 0 (
) 1 , 4 , 0 (

3
2
1

=
=
=

J
J
J

C d r i i i

J1
 J2
 J3

Proc 1

Proc 2

J1

J2

J3

© R. Bettati

Interlude 2: Preemptive Scheduling of Jobs with Arbitrary
Release Times, Deadlines, Execution Times

•  Determine schedule over a hyperperiod (if necessary).

•  Formulate scheduling problem as network flow problem.

I1

I2

Ij

Im-1

Im

Sink

J1

J2

Ji

Jn-1

Jn

Source

...

...

...

...

Ci
 Ij

t

r1
 r3
r2
 r4
d1
 d2
 d4
 d3

I1
 Im

CPSC-663: Real-Time Systems Common Scheduling Approaches

9

© R. Bettati

Interlude 3: NP Completeness of Non-Preemptive
Deadline Scheduling

Theorem:
The problem of scheduling a non-preemptable set

of jobs J1, ..., Ji, ... Jn, each with release time ri,

deadline di, and execution time Ci , is NP-complete.

Proof: Transformation from PARTITION [Garey/Johnson,1979]

Given: Finite set A = {A1, ..., Ai, ..., Am}, each element of size ai. �

Let

Partition A into two sets, each of same size.

B/2

Jm+1

B/2
 B/2+1
0
 B+1

B/2

Define a job set J1, ..., Jm+1, as follows:

