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Common Approaches to Real-Time Scheduling

Clock-driven (time-driven) schedulers
e Priority-driven schedulers
e Examples of priority driven schedulers
e Effective timing constraints

e How to reason about Schedulers: The Earliest-Deadline-First (EDF)
Scheduler and its optimality
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Common Approaches to Real-Time Scheduling

Clock-driven (time-driven) schedulers

- Scheduling decisions are made at specific time
instants, which are typically chosen a priori.

Priority-driven schedulers

e Scheduling decisions are made when particular
events in the system occur, e.g.

- a job becomes available
- processor becomes idle

e Work-conserving: processor is busy whenever
there is work to be done.
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Clock-Driven (Time-Driven) -- Overview

e Scheduling decision time: point in time when scheduler decides
which job to execute next.

e Scheduling decision time in clock-driven schedulers is defined a
priori.

e For example: Scheduler periodically wakes up and generates a
portion of the schedule.
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® Special case: When job parameters are known a priori, schedule
can be pre-computed off-line, and stored as a table (table-driven
schedulers).
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Priority-Driven -- Overview

Basic rule: Never leave processor idle when there is work to be
done. (Such schedulers are also called work conserving)

Based on list-driven, greedy scheduling.
Examples: FIFO, LIFO, SET, LET, EDF.

Possible implementation of preemptive priority-driven scheduling:
1. Assign priorities to jobs.
2. Scheduling decisions are made when
e Job becomes ready
® Processor becomes idle
e Priorities of jobs change

3. At each scheduling decision time, choose ready task with
highest priority.

In non-preemptive case, scheduling decisions
are made only when processor becomes idle.
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Scheduling Decisions
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e Scheduling decision points:

1. The running process blocks, i.e. changes from running to waiting
(current CPU burst of that thread is over).

2. The running thread fterminates.

3. A waiting thread becomes ready (new CPU burst of that thread
begins).
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4. The current thread is preempted, i.e. switches from running to
ready .
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Example: Priority-Driven Non-Preemptive Schedules
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Example: Priority-Driven Non-Preemptive Schedules
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Example: Priority-Driven Non-Preemptive Schedules
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Example: Priority-Driven Non-Preemptive Schedules
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Example: Priority-Driven Non-Preemptive Schedules
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Interlude 1: The EDF Algorithm

The EDF (Earliest-Deadline-First) Algorithm:

At any time, execute that available job with the earliest deadline.

Theorem: (Optimality of EDF)

In a system one processor and with preemptions allowed, EDF can
produce a feasible schedule of a job set J with arbitrary release
times and deadlines iff such a schedule exists.

Proof: By schedule transformation.
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Proof of Optimality of EDF

e Assume that arbitrary schedule S meets timing constraints.

e For S to not be an EDF schedule, we must have the following
situation:

S is EDF up to here
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Proof of Optimality of EDF (2)

e We now have two cases.

e Case l: L(A) > L(B)
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Proof of Optimality of EDF (3)

e We now have two cases.

e Case 2: L(A) <= L(B)
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EDF Not Always Optimal

e Case 1: When preemption is not allowed:
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Interlude 2: Preemptive Scheduling of Jobs with Arbitrary
Release Times, Deadlines, Execution Times

e Determine schedule over a hyperperiod (if necessary).
e Formulate scheduling problem as network flow problem.
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Interlude 3: NP Completeness of Non-Preemptive
Deadline Scheduling

Theorem: The problem of scheduling a non-preemptable set
of jobs J, .., J, .. J,, each with release time r,
deadline d, and execution time C;, is NP-complete.

Proof: Transformation from PARTITION [Garey/Johnson,1979]
Given: Finite set A = {A,, ..., A, ..., A}, each element of size a,
Let B = Z:’;l a;
Partition A into two sets, each of same size.

Define a job set J, ..., J,., as follows:

Ty = 0 Tm+1 = [3/2]
for 7 <1< m, define Jip = di = B+1 a']nH-l = dm+1 = |—(B + l)/2]
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