
CPSC–410/611/613 Bochs Environment

The Bochs Environment

The Bochs Environment

Bochs is a highly portable open source IA-32 (x86) PC emulator written in C++, that runs on
most popular platforms. It includes emulation of the Intel x86 CPU, common I/O devices, and a
custom BIOS. Bochs can be compiled to emulate many different x86 CPUs, from early 386 to the
most recent x86-64 Intel and AMD processors, even those not in the market yet.

The ZIP archive that comes with MP1 also contains a set of files that define the Bochs emulation
environment:

dev kernel grub.img: This file contains the image of the boot “floppy disk”. It contains the
GRUB bootloader and a dummy kernel.The boot loader is the first software that runs when
a computer testing and hardware initialization has been done. It loads the kernel and then
transfers control to it.

BIOS-bochs-latest: This file contains the BIOS.The BIOS (more generally known as firmware) is
the code that runs on power-on startup. Its main work is to initialize and test the hardware.
Every particular computer has a BIOS specifically designed for it. The BIOS also provides
basic operations such as I/O until the operating system is ready to take over.

VGABIOS-lpgl-latest: This file contains a basic VGA BIOS to manage the graphics card.

bochsrc.bxrc: This text file contains the configuration of the emulated machine. If bochs is
correctly installed, double-clicking on this file should start the emulator. You can also run
Bochs by invoking the program with the configuration file as an argument, as follows:

bochs -f bochsrc.bxrc

Note: You are not required to use Bochs. If you use a different emulator or a virtual machine
monitor (such as VirtualBox), the virtual machine will be set up differently, and you will not be
using the files described above, except for the floppy image file.

The Bochs Environment with GDB Integration

It is recommended to use an external debugger (gdb, the GNU debugger) with the Bochs environ-
ment. It would allow you to debug your program more efficiently. gdb is the standard debugger
on Linux. This is a source level debugger. It can be used over a serial line by implementing a
Remote Serial Protocol stub in your operating system. Bochs can be installed as /usr/bin/bochs,
/usr/bin/bochsdbg, and /usr/bin/bochs-gdb. The first one is the non-debugging version (faster
emulation). The second version has an internal debugger, allowing you to step through your code
in assembly. The third version is configured to use the gdb debugger which allow you to debug in
source level and set breakpoints etc.
To use GDB with Bochs, you need to build Bochs with gdb-stub enabled.

Step 1: Download Bochs with gdb sourcecode from the following location: https://sourceforge.
net/projects/bochs/files/bochs/2.6.8/

Step 2: Configure Bochs with gdb stub enabled, under the directory of the Bochs source code:

Ver. 2017A Page 1

https://sourceforge.net/projects/bochs/files/bochs/2.6.8/
https://sourceforge.net/projects/bochs/files/bochs/2.6.8/


CPSC–410/611/613 Bochs Environment

sudo ./configure --enable-gdb-stub

or

sudo sh .conf.linux --enable-gdb-stub

Step 3: After the configuration, to make it and move it to /usr/local/bin, run

sudo make

sudo make install

If errors related to plugins occur during compilation, remove -enable-plugins from .conf.linux

by uncommenting which config=normal and commenting out which config=plugins in
.conf.linux.

Step 4: gdb can be used to remotely debug the Bochs Environment, where the Bochs emulator
acts as a remote host and our Linux machine as the local host. For this to work, we need to
enable the gdb stub in the Bochs configuration file. This can be done by adding the following
line in bochsrc.brxc file as shown:

gdbstub: enabled=1, port=1234, text_base=0, data_base=0, bss_base=0

The port number mentioned can be any number above 1024, as long you connect to the
remote target using the same number.

Step 5: A flat binary output file is usually stripped off its debugging information and thus contains
only the data part. This makes it impossible to debug using gdb. An alternative is to produce
an ELF (Executable and Linkable Format) output that retains the debugging information.
Refer to the helpful doc [2] for details on how to produce an ELF output.

Step 6: To load up Bochs, run:

bochs -f bochsrc.bxrc

Bochs will load up and wait for a connection from GDB. To connect from GDB, open a new
terminal and run:

gdb YOUR-KERNEL

where YOUR-KERNEL is the ELF output file.

Helpful Links

[1] https://www.cs.princeton.edu/courses/archive/fall09/cos318/precepts/bochs_gdb.

html

[2] https://www.cs.princeton.edu/courses/archive/fall09/cos318/precepts/bochs_setup.

html

[3] http://bochs.sourceforge.net/doc/docbook/user/debugging-with-gdb.html

[4] http://heim.ifi.uio.no/~inf3150/doc/tips_n_tricks/bochsd.html

[5] http://wiki.yak.net/746

Ver. 2017A Page 2

https://www.cs.princeton.edu/courses/archive/fall09/cos318/precepts/bochs_ gdb.html
https://www.cs.princeton.edu/courses/archive/fall09/cos318/precepts/bochs_ gdb.html
https://www.cs.princeton.edu/courses/archive/fall09/cos318/precepts/bochs_ setup.html
https://www.cs.princeton.edu/courses/archive/fall09/cos318/precepts/bochs_ setup.html
http://bochs.sourceforge.net/doc/docbook/user/debugging-with-gdb.html
http://heim.ifi.uio.no/~inf3150/doc/tips_n_tricks/bochsd.html
http://wiki.yak.net/746


CPSC–410/611/613 Bochs Environment

Helpful Docs

On eCampus you can also find other documents:

[1] gdb quick reference

[2] gdb integration developed by two previous students.

Ver. 2017A Page 3

ecampus.tamu.edu

