
1. To	use	GDB	tools	with	Bochs,	first	we	need	to	rebuild	Bochs	with	gdb-stub	
enabled.	That’s	because	GDB	stub	is	not	active	in	standard	Bochs	binary	
package.	
	

• Get	Bochs	package	here:	
http://sourceforge.net/projects/bochs/files/bochs/2.6.8/	
Unzip	it	and	we	got	the	new	source	code.	
	

• Before	reinstall	it,	remove	the	existed	Bochs	in	the	Ubuntu	by:	
sudo	apt-get	remove	bochs	

	
• Then	configure	Bochs	with	gdb	stub	enabled.	Under	the	directory	of	the	Bochs	

source	code:	
sudo	./configure	--enable-gdb-stub	

or,	we	can	use	some	shortcut	script	by	running:	
	 sudo	sh	.conf.linux	--enable-gdb-stub	
	
Note:	Enable	debugging	via	gdb	by	adding	--enable-gdb-stub	instead	of	--enable-
debugger	and	--enable-disasm	(they	are	mutually	exclusive).	And	remember	to	use	
‘sudo’	all	the	time.	
	

• After	the	configuration,	run		
	 sudo	make	
to	compile	bochs,	and	then	run	
	 sudo	make	install	
to	move	it	to	/usr/local/bin	
	

• When	compile,	if	error	related	to	plugins	occurs,	remove	–enable-plugins	
from	.conf.linux	by	uncommenting	‘which_config=normal’	and	commenting	out	
‘which_config=plugins’	in	.conf.linux	
	

• Also,	you	may	have	error	related	to	x11	(	X	window),	just	install	libraries:	
	 sudo	apt-get	install	xorg-dev	
	

2. Enable	debugging	with	gdb	in	the	kernel	project.	
	

• Add	the	following	line	to	bochsrc	file:	
gdbstub:	enabled=1,	port=1234,	text_base=0,	data_base=0,	bss_base=0	

	 This	opens	a	remote	gdb	debug	port.	
• Edit	the	kernel	project	makefile	and	add	‘-g’	in	the	compiler	options	to	enable	

debugging	symbols.	Then	recompile	your	project.	
	

3. Now	we	can	run	and	debug	our	project.	
• Open	the	bochs	tool	and	it	will	wait	for	gdb	connection	on	port	1234	

Bochs	–f	bochsrc.txt	

	



	 	
• Open	another	terminal	window,	run	gdb	and	connect	it	to	Bochs	by:	

gdb	–q	kernel.o	
target	remote	:1234	

Then	the	bochs	will	be	connected	to	the	gdb	tool.	

	
	

• Now	we	can	“try”	to	debug	our	project	through	gdb.	
Upon	a	successful	connection,	bochs	will	break	at	the	first	instruction	in	the	BIOS	

(not	the	bootloader	nor	the	kernel).	Notice	that	you	won't	be	able	to	inspect	kernel	data	
at	this	point	because	your	kernel	has	not	yet	been	loaded	by	the	bootloader.	

	

	
		

	
	

	
	 	



Here	is	the	situation:	
Our	kernel.bin	file	seems	lose	symbols	which	are	needed	for	breakpoint	insertion.	According	
to	the	tutorial	http://wiki.yak.net/746	,	maybe	we	have	to	use	ELF(Executable	and	Linking	
Format)	as	the	kernel	image	format.		
Still	trying	to	figure	it	out.	
	
	
References:	
https://www.cs.princeton.edu/courses/archive/fall09/cos318/precepts/bochs_gdb.html	
https://www.cs.princeton.edu/courses/archive/fall09/cos318/precepts/bochs_setup.html	
http://bochs.sourceforge.net/doc/docbook/user/debugging-with-gdb.html	
http://heim.ifi.uio.no/~inf3150/doc/tips_n_tricks/bochsd.html	
	


