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ABSTRACT
This paper investigates recommendation fairness among new items.
While previous efforts have studied fairness in recommender sys-
tems and shown success in improving fairness, theymainly focus on
scenarios where unfairness arises due to biased prior user-feedback
history (like clicks or views). Yet, it is unknown whether new items
without any feedback history can be recommended fairly, and if
unfairness does exist, how can we provide fair recommendations
among these new items in such a cold-start scenario. In detail,
we first formalize fairness among new items with the well-known
concepts of equal opportunity and Rawlsian Max-Min fairness. We
empirically show the prevalence of unfairness in cold start recom-
mender systems. Then we propose a novel learnable post-processing
framework as a model blueprint for enhancing fairness, with which
we propose two concrete models: a joint-learning generative model,
and a score scaling model. Extensive experiments over four public
datasets show the effectiveness of the proposed models for enhanc-
ing fairness while also preserving recommendation utility.
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1 INTRODUCTION
Recommender systems are important for connecting users to the
right items. But are items recommended fairly? For example, in
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Figure 1: (a) Existing works consider fairness during warm
start recommendation period; (b) we study fairness among
new items, i.e., the cold start recommendation period.

a recruiting recommender that recommends job candidates (the
items here), are candidates of different genders treated equally? In
a news recommender, are news stories with different political ide-
ologies recommended fairly? And even for product recommenders,
are products from big companies favored over products from new
entrants? The danger of unfair recommendations for items has been
recognized in the literature [5, 7, 10, 41, 43], with potential negative
impacts on item providers, user satisfaction, the recommendation
platform itself, and ultimately social good.

Previous works have revealed that widely used recommendation
algorithms can indeed produce unfair recommendations toward
different items (like job candidates of different genders), e.g., [5, 10,
14, 21, 43]. However, these existing works consider fairness only
during the middle of the life cycle of an item, that is in the warm
start recommender scenario. In this scenario, prior works show that
the main driver of unfairness is the data bias in historical feedback
(like clicks or views), and recommendation algorithms unaware
of this bias can inherit and amplify this bias to produce unfair
recommendations. But what if there is no historical feedback? Can
we fairly recommend new items (we use ‘new items’ and ‘cold start
items’ interchangeably) in such a cold start scenario?

To illustrate, Figure 1a shows the life cycle of an item: the item
first appears in the system at 𝑡0; in the absence of historical feedback,
a cold start recommendation algorithm recommends this item to
users and receives the first collection of feedback at 𝑡2; then, a warm
start recommender can be trained at 𝑡3 by this first collection of
feedback, further recommending the item to users and collecting
new feedback at 𝑡4; the system continues this loop of collecting new
feedback and training a new warm start model until the item leaves
the system. While methods in existing works can introduce fairness
at time 𝑡3 and later, is the item treated fairly before then? In this
work, we show that the data bias can be transferred from warm
start items to new items through item content features by machine

https://doi.org/10.1145/3404835.3462948
https://doi.org/10.1145/3404835.3462948
https://doi.org/10.1145/3404835.3462948


learning based cold start recommendation algorithms, inducing
unfair recommendations among these new items.

This fairness gap can be especially problematic since unfairness
introduced by cold start recommenders will be perpetuated and
accumulated through the entire life cycle of an item, resulting in
growing difficulty for mitigating unfairness as the life cycle goes
on. Instead, providing fair recommendations among new items
could give rise to a virtuous circle of collecting (relatively) unbiased
feedback and training fairer models later in the life cycle. Hence,
as shown in Figure 1b, we propose to investigate fairness in cold
start recommender systems and aim to enhance fairness among
new items at the beginning of their life cycles.
Fairness goal. In this work, we follow two well-known concepts –
equal opportunity [12] and Rawlsian Max-Min fairness principle
of distributive justice [26] – to introduce the Max-Min Opportunity
Fairness in the context of cold start scenarios. The fairness goal is to
provide recommendations that maximize the true positive rate (that
is, the probability of being accurately recommended to matched
users who will like the item during testing) of the worst-off items
so that no item is under-served by the recommendation model. The
advantages of this fairness goal are twofold: i) by following equal
opportunity to measure fairness by the true positive rate, the fair-
ness is directly aligned with the feedback or economic gain items
receive as well as user satisfaction; and ii) by following Rawlsian
Max-Min fairness to accept inequalities, the fairness does not re-
quire decreasing utility for the better-served items and thus can
better preserve the overall utility. Thus, by improving the Max-Min
Opportunity Fairness, we aim to improve item fairness without
decreasing overall satisfaction.
Contributions. To the best of our knowledge, this is the first work
to study recommendation fairness among new items in cold start
recommenders. In sum, we make the following contributions:

i) We introduce the problem of fairness among new items in cold
start scenarios, and we conduct a comprehensive data-driven study
to demonstrate the prevalence of unfairness among new items in
cold start recommender systems.

ii) To mitigate unfairness among new items, we propose a novel
learnable post-processing framework as a solution blueprint, which
promises better practical feasibility than existing strategies. Based
on this blueprint, we demonstrate two concrete approaches for
enhancing item fairness: a score scaling model based on existing
work for addressing popularity bias [34] and a novel joint-learning
generative model that can effectively improve fairness.

iii) Extensive experiments over four datasets show that both
proposed methods can simultaneously enhance item fairness while
preserving recommendation utility, demonstrating the viability
of filling the fairness gap. Furthermore, we also demonstrate the
capability of the proposed methods to enhance group-level fairness
in addition to individual-level fairness.

2 RELATEDWORK
2.1 Item Fairness In Recommender Systems
Unfair recommendations for items can bring harmful impacts to
item providers, users, the platform owner, and society [5, 7, 10, 41,
43]. Hence, growing efforts have been dedicated to the study of
item fairness in recommender systems. Early studies mainly focus

on rating prediction tasks and investigate item fairness by mea-
suring the difference of predicted rating distributions across item
groups [14–17, 41]. To improve this score/rating based concept of
item fairness, regularization based [14–17] and latent factor ma-
nipulation based [41] methods have been proposed. Later, with the
prevalence of ranking based recommender systems, new formula-
tions [5, 10, 21, 25, 43] to directly study item fairness on ranking
results instead of on the intermediate predicted scores/ratings have
been proposed. Another line of research [6, 30, 31] studies fair-
ness in terms of equality of exposure, which investigates whether
the amortized exposure of items in recommendations are propor-
tional to the amortized relevance of items. Further, inspired by
fairness-aware classification [12], equal opportunity based fairness
that requires an equal true positive rate across item groups has
been proposed [5, 10, 25, 43]. To improve such ranking based equal
opportunity fairness, many new algorithms utilizing regulariza-
tion [5, 25], re-ranking [10], and adversarial learning [43] have also
been proposed.

All of these previous works study item fairness in a warm start
setting. Yet, it is equally crucial to ensure new items are fairly
recommended at the first moment when they join a system. Thus,
we propose to investigate fairness among new items in cold start
recommender systems.

2.2 Cold Start Recommender Systems
In almost all real-world applications, recommending new items
without any historical feedback from users (formally called the cold
start recommendation task), is heavily in demand and challenging.
Over the years, many approaches have been proposed including
heuristic non-parametric algorithms like KNN [29], though now
there is an emphasis on optimization based machine learning al-
gorithms. These methods can be categorized into two types [42]:
separate-training methods and joint-training methods.

Separate-training methods [4, 9, 27, 32, 35] separately learn two
models: a collaborative filtering (CF) model learns CF embeddings
of warm start items; and a content model learns how to transform
the item content features to the learned collaborative embeddings
using warm start items. During inference, the content model is first
applied on content features of new items to generate CF embed-
dings and then recommendations for these new items are provided
by these embeddings. A typical example is DeepMusic [35], which
utilizes a multi-layer perceptron (MLP) to transform item content
features to CF embeddings learned by a pretrained matrix factor-
ization model. Joint-training methods [20, 28, 37] combine the CF
model and content model together and train both of them through
a single backpropagation process. A typical example is Dropout-
Net [37], which has an MLP based content component to first trans-
form item content features, followed by a dot-product based neural
CF component to provide recommendations. Moreover, Heater in
[42] mixes separate-training and joint-training methods, which
delivers the state-of-the-art performance. Yet, there is no notion
of fairness in these cold start recommenders. Hence, we aim to
investigate the fairness of these representative models and propose
novel methods to enhance fairness in the cold start scenario. Specif-
ically, we investigate four typical cold start recommenders: Heater,
DropoutNet, DeepMusic, and KNN.



3 FAIRNESS AMONG NEW ITEMS
In this section, we first introduce the cold start recommendation
problem. Second, we formalize fairness among new items. Then,
we introduce how to measure recommendation utility from the
view of items. Last, we conduct a data-driven study over four public
datasets and four cold start recommendation algorithms to empiri-
cally demonstrate the prevalence of unfairness among new items.

3.1 Cold Start Recommendation
We focus on the cold start item recommendation task [37], where
all users are warm start during training and testing, but new items
never seen during training are to be recommended during testing.
Assume we have 𝑁 users U = {1, 2, . . . , 𝑁 } and 𝑀𝑤 warm start
items I𝑤 = {1, 2, . . . , 𝑀𝑤}, where each item has at least one histori-
cal interaction record in the training data. We denote O𝑡𝑟 = {(𝑢, 𝑖)}
as the training set, where 𝑢 ∈ U indexes one user, and 𝑖 ∈ I𝑤 in-
dexes one warm start item. We also have𝑀𝑐 cold start (new) items
I𝑐 = {1, 2, . . . , 𝑀𝑐 }, none of which are included in the training set
O𝑡𝑟 . We denote O𝑡𝑒 = {(𝑢, 𝑖)} as the test set, where 𝑢 ∈ U and
𝑖 ∈ I𝑐 . For each item 𝑖 , we have a subset of usersU+

𝑖
to indicate the

matched users (users who have already interacted the item during
training or will interact with the item during testing) for this item:
for a warm start item 𝑖 ∈ I𝑤 ,U+

𝑖
are matched users in the training

set O𝑡𝑟 ; for a new item 𝑖 ∈ I𝑐 ,U+
𝑖
are matched users in the test set

O𝑡𝑒 . The goal of a cold start recommender [29, 35, 37, 42] is to provide
a ranked list of cold start items to each user as recommendations.

To provide cold start recommendations, typical machine learn-
ing based methods [4, 9, 20, 27–29, 32, 35, 37, 42] need to utilize
user-item interactions O𝑡𝑟 of existing warm start users and items,
and content features of both warm and cold start items. These con-
tent features – such as item descriptions, reviews, or from other
sources – are often readily available even for new items. The main
idea of these cold start recommendation algorithms is to learn a
transformation from item content features of warm start items to
user-item interactions between warm start users and items during
training, and then apply this learned transformation process to
the content features of new items to predict possible interactions
between users and new items as recommendations during testing.
Note that item content features of warm start items and new items
share the same feature space. As a result, bias inherent in training
data of warm users and items collected from an existing fairness-
unaware recommender system will be transferred through the item
content features to recommendations for new items, generating
unfair recommendations among these new items.

3.2 Formalizing Fairness
A natural following question is how to determine if recommenda-
tions are fair or not among new items? In this work, we follow two
well-known concepts to formalize fairness: equal opportunity [12]
and Rawlsian Max-Min fairness principle of distributive justice [26].

In a classification task, equal opportunity requires a model
to produce the same true positive rate (TPR) for all individuals or
groups. Equal opportunity fairness has already been recognized as
unquestionably important in recommender systems by previous
works [5, 10, 25, 43]. The goal is to ensure that items from differ-
ent groups can be equally recommended to matched users during

testing (the same true positive rate): for example, candidates of dif-
ferent genders are equally recommended to job openings that they
are qualified for. In contrast, demographic parity fairness [14, 43]
only focuses on the difference in the amount of exposure to users
without considering the ground-truth of user-item matching. How-
ever, because only the exposure to matched users (as considered by
equal opportunity fairness) can influence the feedback or economic
gain of items, in recommendation tasks, equal opportunity is better
aligned than demographic parity fairness.

RawlsianMax-Min fairness requires a model to maximize the
minimum utility of individuals or groups so that no subject is under-
served by the model. Unlike equality (or parity) based notions of
fairness [5, 10, 14–17, 25, 43] aiming to eliminate difference among
individuals or groups but neglecting a decrease of utility for better-
served subjects, RawlsianMax-Min fairness accepts inequalities and
thus does not requires decreasing utility of better-served subjects.
So, Rawlsian Max-Min fairness is preferred in applications where
perfect equality is not necessary, such as recommendation tasks,
and it can also better preserve the overall model utility.

Hence, following these two concepts, for the cold start recom-
mendation task, we have the fairness definition:

Definition 3.1 (Max-Min Opportunity Fairness). Suppose H is a
set of models, 𝑇𝑃𝑅(𝑖) is the expected true positive rate a new item 𝑖

gets from a model ℎ, then the model ℎ∗ is said to satisfy Max-Min
Opportunity Fairness if it maximizes the true positive rate of the
worst-off item:

ℎ∗ = argmax
ℎ∈H

min
𝑖∈I𝑐

𝑇𝑃𝑅(𝑖)

Hence, the goal of enhancing such a Max-Min Opportunity Fair-
ness is to improve the true positive rate of the worst-off item in
recommendations. And we measure this Max-Min Opportunity
Fairness for a cold start recommender by calculating the average
true positive rate of the 𝑡% worst-off items, which are the 𝑡% items
with the lowest true positive rates among all cold start items during
testing. We measure the fairness over 𝑡% items instead of just the
worst item to make the metric more flexible and robust to noise.

Then, the next question is how to calculate the true positive
rate of an item? We calculate the true positive rate for a new item
by averaging a scoring function of ranking positions1 across all
matched users in the test set. Concretely, we propose the true
positive rate metric Mean Discounted Gain (MDG) for an item 𝑖:

𝑀𝐷𝐺𝑖 =
1

|U+
𝑖
|
∑

𝑢∈U+
𝑖

𝛿 (�̂�𝑢,𝑖 <= 𝑘)
𝑙𝑜𝑔(1 + �̂�𝑢,𝑖 )

, (1)

where U+
𝑖
is the set of matched users for the new item 𝑖 in the

test set; �̂�𝑢,𝑖 is the ranking position of 𝑖 (among all new items I𝑐 ,
ranging from 1 to 𝑀𝑐 ) for user 𝑢 by a cold start recommendation
model; 𝛿 (𝑥) returns 1 if 𝑥 is true, otherwise 0. That is to say, we only
consider the discounted gain 1/𝑙𝑜𝑔(1 + �̂�𝑢,𝑖 ) for ranking positions
within the top-k and assign 0 for positions after k (we fix 𝑘 = 100
in this work) so that MDG is aligned with the well-known metric
NDCG@k [22].𝑀𝐷𝐺𝑖 = 0means that item 𝑖 is never recommended

1We use a reciprocal log function as the scoring function to calculate the true positive
rate resulting in a metric aligned with NDCG. Other choices lead to true positive rate
calculations aligned with other existing utility metrics: a step function is aligned with
Recall@k; a reciprocal function is aligned with mean reciprocal rank.



Table 1: Characteristics of the four public datasets.

#user Train Validation Test
#item #record #item #record #item #record

ML1M 6,018 1,811 529,952 302 106,695 905 296,870
ML20M 112,292 6,083 10,697,409 1,014 1,797,626 3,041 5,490,603
CiteULike 5,551 13,584 164,210 1,018 13,037 2,378 27,739
XING 89,867 10031 1,893,135 1,671 376,994 5,016 1,131,487

to matched users who like it during testing;𝑀𝐷𝐺𝑖 = 1 means that
𝑖 is ranked at the top position to all matched users during testing.

With the introduced metric MDG, we measure the Max-Min
Opportunity Fairness in Definition 3.1 for a cold start recommender
by calculating the averageMDG of the 𝑡%worst-off items, which are
the 𝑡% items with the lowest MDG among all cold start items during
testing. In the empirical study, we report results with 𝑡% = 10% and
20%, denoted asMDG-min10% andMDG-min20%. Higher values
indicate the evaluated system is fairer. We also report the average
MDG for the 10% best-served items for comparison, which are the
10% items with the highest MDG, denoted asMDG-max10%.

3.3 Measuring Utility for Items
The typical way to evaluate the quality of a recommender system,
such as with NDCG@k, is to first calculate the recommendation
utility for each user and then average across users as the measured
utility for a recommendation algorithm. Thus, this metric repre-
sents the expectation of recommendation utility a random user can
receive from an algorithm, which is essentially from the view of
users. We call these conventional metrics like NDCG@k as user-
view utility. In contrast, we can also evaluate the recommendation
utility from the view of items to show how well items are generally
served by a recommendation algorithm. Because we study item fair-
ness in this work, it is natural to consider this item-view utility
as one evaluation aspect in empirical studies. In this work, given
the true positive rate metric MDG introduced in Section 3.2, we re-
port MDG-all =

∑
𝑖∈I𝑐 𝑀𝐷𝐺𝑖/|I𝑐 | as the item-view utility metric,

which shows the expectation of recommendation utility a random
item can get from an algorithm.

3.4 Data-Driven Study
Given the formalization of fairness in cold start recommendation,
how much unfairness can be generated by different cold start rec-
ommendation algorithms? Here, we conduct a data-driven study
on four public datasets and four different cold start models to show
the prevalence of unfairness in cold start recommendation.
Datasets. We adopt four widely used datasets for cold start rec-
ommendation: ML1M [13], ML20M [13], CiteULike [38], and
XING [3]. ML1M and ML20M are movie rating datasets, where
we consider all ratings as positive signals. Both datasets contain tag
genome scores [36] (showing relevance of an item to a fixed set of
tags) as the item content features. CiteULike is a dataset recording
user preferences toward scientific articles, and following [37], we
use the abstracts of these articles as item content features. XING
is a user-view-job dataset, and it includes career level, tags, and
other related information as the item content features. For ML1M,
ML20M, and XING, we randomly select 10% items and 30% items
as the cold start (new) items, with all the user-item interactions of
these items, to be the validation set and test set respectively. For

Table 2: Empirical results of four algorithms on ML1M (DN
stands for DropoutNet, DM stands for DeepMusic).

Heater DN DM KNN Optimal Random

User utility NDCG@15 .5516 .5488 .5312 .4402 1.000 .0550
NDCG@30 .5332 .5316 .5167 .4226 1.000 .0586

Item utility MDG-all .0525 .0552 .0572 .0646 .1932 .0236

Fairness
MDG-min10% .0000 .0000 .0000 .0001 .1388 .0118
MDG-min20% .0000 .0000 .0001 .0020 .1498 .0145
MDG-max10% .2272 .2294 .2323 .2091 .2471 .0386

CiteULike, we directly adopt the dataset splitting from [37]. The
detailed statistics of the four datasets are shown in Table 1.
Cold start recommendation models. There are many different
cold start recommendation models in the literature, and it is im-
possible to test all of them. Generally, existing algorithms can be
categorized into joint-training, separate-training, combined, and
heuristic non-parametric methods as introduced in Section 2.2.
Thus, in this work, we pick four representative algorithms from
each category: a typical joint-training method DropoutNet [37]; a
typical separate-training method DeepMusic [35]; a combination
of joint-training and separate-training method Heater [42]; and a
heuristic non-parametric method KNN [29].
Experiment protocol. Following these cold start recommendation
works [29, 35, 37, 42], during testing, we evaluate recommendations
for only new items without mixing warm start items in, which
allows us to focus on the behavior of cold start recommenders and
deepen our understandings of fairness among new items.
Empirical results. First, we report the results of four cold start rec-
ommendation algorithms on the ML1M dataset in Table 2. Besides,
we also show two special cases: i) theOptimal case we can achieve,
for which we directly get access to the positive user-item pairs in
the test set, and rank the matched items to the most top positions
with a random order for each user; and ii) the Random case, for
which we randomly rank the items for each user. The first three
rows in Table 2 show the results of user-view utility (NDCG@15
and NDCG@30) and item-view utility (MDG-all). User-view util-
ity and item-view utility reveal different aspects of a recommender
system, which usually show opposite patterns.2 For example, in Ta-
ble 2, Heater achieves the best user-view utility, however, it has the
lowest item-view utility (while KNN is the opposite). Since items
are treated unfairly by Heater, a small subset of items (potential
popular items) with large numbers of test samples receive very
high MDG and the majority of items get very low MDG, leading
to high user-view utility but low item-view utility. In other words,
the different patterns of user-view and item-view utility is due to
the unfairness in recommendations.

Hence, we next analyze the fairness as shown in the last three
rows in Table 2, where we present MDG-min10%, MDG-min20%
to show the average MDG of the worst-off items; and we also
present MDG-max10% to show the average MDG of the best-served
items for comparison. We can observe that Heater and DropoutNet
produce zero MDG for the 10% and 20% worst-off items, which
means these items are never exposed to matched users who will like
them during testing. DeepMusic and KNN perform slightly better,
2Although in practice, user-view and item-view utility often show opposite patterns,
indeed, they are not opposite to each other. Theoretically, an optimal model can achieve
the best user-view and item-view utility at the same time, and achieve fairness among
new items as well. One example of such an optimal model is the ‘Optimal’ in Table 2.



Figure 2: For ML1M and each model, sort items by MDG in
ascending order and plot their corresponding MDG.

but theMDG-min10% andMDG-min20% are still very low. However,
MDG-max10% values are very high for all four algorithms. The large
difference between MDG-min and MDG-max illustrates the unfairness
among new items in these four cold start recommendation models. For
the Optimal case, because the recommendation is optimal for every
user and item, the fairness is also guaranteed. Moreover, we can also
observe that MDG-min10% and MDG-min20% in the Random case
are higher than the personalized cold start recommendation models,
which on one hand shows the unfairness in these cold start models,
and on the other hand, demonstrates one possible way to enhance
the fairness by introducing randomness to recommendations.

To further understand the unfairness issue in these algorithms,
we plot the MDG of each item by different algorithms in Figure 2,
where for each algorithm, items are sorted based on their MDG in
ascending order. Each dot in Figure 2 represents one item for one
algorithm; the y-axis shows the MDG an item receives from one
of the six algorithms; and the x-axis shows the position of an item
in a sorted item list of an algorithm (e.g., the dot corresponding to
100% represents the item with the largest MDG for one algorithm,
0% represents the item with the lowest MDG). From the figure, we
can see that all four cold start recommendation algorithms produce
skewed distributions of MDG across recommended new items: most
items receive low or even zero MDG, and only a few items receive
extremely high MDG, confirming the existence of unfairness. The
Optimal shows the best result we can achieve on the given test set,
where we can observe that the overall distribution is much more
flat, with higher MDG for worst-off items but lower MDG for the
best-served items compared with the other four algorithms. The
goal of fairness enhancement is to generate a distribution as close as
possible to the optimal case.

Last, we report results for the best-performing model Heater
on all four datasets in Table 3. From the table, we can see that
for all four datasets, MDG-min10% and MDG-min20% are very
small (or even zero) compared with MDG-max10%, demonstrating
that the unfairness among new items is prevalent across datasets
from different domains and with different characteristics. Besides,
comparing results of different datasets, we find that fairness is highly
related to the density of training data and quality of item content
features: training data with high density or with high-quality item
content features can lead to more unfair recommendations, such as
ML1M andML20Mwhich are very dense and have high-quality item
content features (informative tag genome scores [36]). When the
training data is dense or item content features are informative, a cold
start recommendation model can more effectively learn information

Table 3: Empirical results of Heater on four datasets.
ML1M ML20M CiteULike XING

User utility NDCG@15 0.5516 0.4408 0.2268 0.2251
NDCG@30 0.5332 0.4308 0.2670 0.2762

Item utility MDG-all 0.0525 0.0187 0.1833 0.1333

Fairness
MDG-min10% 0.0000 0.0000 0.0046 0.0028
MDG-min20% 0.0000 0.0000 0.0251 0.0129
MDG-max10% 0.2272 0.1455 0.5106 0.3821

including data bias in training data and hence deliver unfairer
recommendations.

4 FAIRNESS ENHANCEMENT APPROACHES
Given the observation of unfairness, we study in this section how
to enhance the fairness for new items. We first propose a novel
learnable post-processing framework to enhance the fairness for
new items, which is not a concrete model but a high-level solution
blueprint. Then, based on this blueprint, we propose two concrete
models: a novel joint-learning generative method; and a score scal-
ing model, which adapts a previous work for popularity bias [34]
into the proposed framework, as a baseline for comparison.

4.1 Learnable Post-processing Framework
We first elaborate the overall structure of the proposed framework,
and then explain how to enhance fairness in this framework.
Main structure of the framework.Most existing works improve
item fairness [5, 10, 39, 43], popularity bias [2, 8, 34], or diver-
sity [24, 40] for warm start recommender systems by either in-
processing methods or non-parametric post-processing methods.
In-processing methods [2, 5, 39] modify the original recommenda-
tion models to achieve fairness or other goals. The major drawback
of this type of method is that it requires re-training the whole rec-
ommender system with all training data, which is highly resource
intensive and not practically feasible in real-world systems. Another
widely investigated class is the non-parametric post-processing
method [10, 21, 33], which keeps the original recommender sys-
tems unchanged, but conducts a heuristic re-ranking to the output
of the original model to achieve fairness or other goals. This type of
approach is more practically feasible because it does not require re-
training the base model. But limitations are that it usually produces
inferior performance than learning based in-processing methods
and can be difficult to adapt to equal opportunity based fairness. To
overcome the disadvantages of these two types of approaches, we
propose a learnable post-processing framework to enhance fairness.

The proposed learnable post-processing framework is shown
in Figure 3a, which has three main components: i) Similar to the
non-parametric post-processing method, we keep the original base
model unchanged, which can be any existing cold start recommen-
dation model, such as Heater, DropoutNet, DeepMusic, or KNN
used in Section 3.4. ii) Instead of the heuristic re-ranking in the
non-parametric post-processing method, we learn an autoencoder
(denoted as𝜓 ) to conduct the ‘re-ranking’. We input the predicted
score vector of an item 𝑖 from the base model to the autoencoder
𝜓 , where the score vector is denoted as 𝑅:,𝑖 ∈ R𝑁 and the size of
the vector is the total number of users 𝑁 . Autoencoder𝜓 outputs
the reconstructed score vector 𝑅:,𝑖 ∈ R𝑁 for final rankings. iii) By
introducing fairness to the training process of the autoencoder𝜓 ,
we enable𝜓 to produce fairer results for new items.



(a) The learnable post-processing framework. (b) The Gen method. (c) The Scale method.

Figure 3: The structures of the proposed learnable post-processing framework and two concrete models.

During training, we can only get access to the warm start items,
so we use 𝑅:,𝑖 for 𝑖 ∈ I𝑤 to train the autoencoder𝜓 . Then, during
testing, we receive predicted scores from the base model for new
items 𝑅:,𝑖 with 𝑖 ∈ I𝑐 , and feed them to the trained 𝜓 to have
fairness-enhanced scores for recommending these new items. Note
that if we do not introduce fairness to the learning process of𝜓 and
just make the output of the autoencoder 𝑅:,𝑖 as close as possible to
the input 𝑅:,𝑖 , then the learnable post-processing framework will
reproduce the same recommendations as the base model.

Enhancing fairness in this framework. The next question is
how can we enhance the fairness among new items in such a frame-
work? The ultimate goal of fairness is to promote the true positive
rate for worst-off items so that they can receive similar true positive
rate as best-served items. From the formulation of true positive
rate (such as Equation 1), we know that if we can improve the
expectation of ranking position to matched users for under-served
items during testing, then fairness can be enhanced. However, rank-
ing position is hard to control in a recommendation model. So we
need to further align the ranking positions with scores predicted
by models, then ensure the fairness by increasing the expectation
of predicted scores to matched users for under-served items. There-
fore, to achieve fairness, we need to accomplish two requirements:
• Requirement-1: promote under-served items so that their dis-

tributions of matched-user predicted scores, denoted as 𝑃 (𝑅U+
𝑖
,𝑖 ),

are as close as possible to the distributions of best-served items.
• Requirement-2: for every user, the predicted scores, denoted
as 𝑅𝑢,:, follow the same distribution.

By achieving Requirement-1, we try to maximize the expectation
of predicted scores to matched users for under-served items. By
achieving Requirement-2, we ensure that a specific predicted score
value corresponds to a specific ranking position for all users. Hence,
with both requirements fulfilled, under-served items are promoted
to have higher expectation of ranking position to matched users
during testing, i.e., fair recommendations are provided.

To achieve these two requirements for new items during testing,
we need to train the autoencoder 𝜓 so that 𝜓 achieves these re-
quirements for warm start items during training. Requirement-2 is
easy to accomplish. First, before training𝜓 , we normalize the score
distributions of users in the outputs of the base model to a standard
normal distribution (score distributions for users are usually consid-
ered as normal distributions [23, 43]). And we use the normalized
scores as the ground truth to train𝜓 . By this,𝜓 will learn to output
scores normalized for users. Thus, during training, we have the
predicted score matrix for warm start items 𝑅 ∈ R𝑁×𝑀𝑤 from the
base model, and we normalize it for each user:

𝑅𝑁𝑢,: = (𝑅𝑢,: −𝑀𝑒𝑎𝑛(𝑅𝑢,:))/𝑆𝑡𝑑 (𝑅𝑢,:), (2)

Figure 4: In each training epoch, update 𝜓 to push 𝑃 (𝑅U+
𝑖
,𝑖 )

of under-estimated items (𝑖1 and 𝑖2) as close as possible to
the target 𝑃 generated by 𝜑 .

where 𝑀𝑒𝑎𝑛(·) calculates the mean value of a sequence; 𝑆𝑡𝑑 (·)
calculates the standard deviation of a sequence; and 𝑅𝑁𝑢,: with all𝑢 ∈
U form the normalized score matrix 𝑅𝑁 to train the autoencoder𝜓 .
A good property of this method is that because the recommendation
is based on a ranked list of items for each user, the normalization
of scores for each user will not influence the ranking order.

Now, the remaining challenge is how to accomplish Requirement-
1. To tackle this, following the learnable post-processing framework,
we propose two concrete models: a novel joint-learning generative
method (Gen); and a score scaling method (Scale).

4.2 The Joint-learning Generative Method
The overall framework of the joint-learning generative method
is shown in Figure 3b where there are two main components: an
autoencoder𝜓 and a distribution generator 𝜑 . The intuition of Gen
is: in each training epoch, the distribution generator 𝜑 first gener-
ates a target distribution 𝑃 ; then we update the autoencoder𝜓 so
that it promotes items that are under-estimated in prior epochs by
pushing their matched-user score distributions 𝑃 (𝑅U+

𝑖
,𝑖 ) as close

as possible to the target distribution 𝑃 , and at the same time, have
𝜓 preserve the recommendation utility as much as possible; last
we update the distribution generator 𝜑 to generate a new target
distribution 𝑃 as the average of all items’ matched-user score dis-
tributions 𝑃 (𝑅U+

𝑖
,𝑖 ). We show an example in Figure 4, where there

are 3 items 𝑖1, 𝑖2 and 𝑖3 and we show their matched-user score
distributions at current training epoch. 𝑖1 and 𝑖2 have worse distri-
butions (lower expectations of matched-user scores) than 𝑖3, and
we have the target distribution 𝑃 which is the average of all three
items. So, in this epoch, we need to update 𝜓 so that 𝑃 (𝑅U+

𝑖
,𝑖 ) of

𝑖1 and 𝑖2 are promoted to be close to 𝑃 . After this, we also need to
update the 𝑃 to be the average of the new 𝑃 (𝑅U+

𝑖
,𝑖 ) of these three

items. By jointly learning these two components, we can push the
matched-user score distribution 𝑃 (𝑅U+

𝑖
,𝑖 ) of under-estimated items

(like 𝑖1 and 𝑖2) to be closer and closer to best-served items (like 𝑖3)
epoch by epoch, and eventually achieve a fair status.

Concretely, the autoencoder 𝜓 is the same as the one in the
framework in Section 4.1, which takes predicted score vectors 𝑅:,𝑖
from a base model as input and outputs 𝑅:,𝑖 , with user-normalized
score vectors 𝑅𝑁:,𝑖 as training ground-truth.



The distribution generator 𝜑 is to generate a target distribution 𝑃
(the average distribution of 𝑃 (𝑅U+

𝑖
,𝑖 ) over all items from last epoch)

for under-estimated items to be promoted to. 𝜑 is a multi-layer
perceptron (MLP) with 1-dimension input and output layers, which
takes 𝑆 random seeds from a standard normal distribution as inputs
and outputs 𝑆 samples 𝑅 ∈ R𝑆 to represent the target distribution
𝑃 . To generate such a 𝑅, at the end of each training epoch, we first
retrieve the matched-user entries 𝑅U+

𝑖
,𝑖 in the output vectors 𝑅𝑁:,𝑖

from the autoencoder𝜓 for all warm itemsI𝑤 . Then, for each item 𝑖 ,
we update 𝜑 to minimize the sum of distribution distances between
generated samples 𝑅 from 𝜑 and matched-user scores 𝑅U+

𝑖
,𝑖 so

that the underlying distribution of 𝑅 has the minimum sum of
distances to all items. For example, in Figure 4, the generated 𝑃 has
the minimum sum of distances to these three items, that is, 𝑃 is the
average distribution of these items. Here, we adopt the Maximum
Mean Discrepancy (MMD) [11], an effective kernel based statistic
test method, to calculate the distribution distance by samples from
two distributions as the loss for the distribution generator:

min
𝜑

L𝑔𝑒𝑛 =
∑
𝑖∈I𝑤

𝑀𝑀𝐷 (𝑅, 𝑅U+
𝑖
,𝑖 )

=
∑
𝑖∈I𝑤

( 1
𝑆2

𝑆∑
𝑥,𝑦=1

𝑓 (𝑅 [𝑥], 𝑅 [𝑦]) − 2
𝑆2

𝑆∑
𝑥=1

𝑆∑
𝑦=1

𝑓 (𝑅 [𝑥], 𝑅U+
𝑖
,𝑖 [𝑦])

+ 1
𝑆2

𝑆∑
𝑥,𝑦=1

𝑓 (𝑅U+
𝑖
,𝑖 [𝑥], 𝑅U+

𝑖
,𝑖 [𝑦])),

where 𝑓 (𝑎, 𝑏) = 𝑒𝑥𝑝 (−(𝑎 − 𝑏)2/𝑙2) is a Gaussian kernel with 𝑙 = 1.
Note that we do not need a regularization for 𝜑 because there is no
overfitting problem for it.

After generating samples 𝑅 following the target distribution 𝑃 ,
we then update the autoencoder𝜓 by:

min
𝜓

L𝐴𝐸 =
∑
𝑖∈I𝑤

(∥𝑅𝑁:,𝑖 − 𝑅:,𝑖 ∥F

+ 𝛼 (𝑀𝑀𝐷 (𝑅, 𝑅U+
𝑖
,𝑖 ) · 𝛿 (𝑖 ∈ I𝑈𝐸 ))) + _∥𝜓 ∥F,

where ∥𝜓 ∥F is the L2 regularization and _ is the regularization
weight; the RMSE part ∥𝑅𝑁:,𝑖 −𝑅:,𝑖 ∥F is to preserve the recommenda-
tion utility from the base model; 𝛼 is the fairness-strength weight
to control the fairness enhancement strength: the larger the more
strength for improving fairness; I𝑈𝐸 is a subset of items that are
under-estimated by the autoencoder 𝜓 from last epoch: we first
calculate the mean value of the matched-user scores for each item
𝑖 as𝑚𝑖 = 𝑀𝑒𝑎𝑛(𝑅U+

𝑖
,𝑖 ), then determine the under-estimated item

set I𝑈𝐸 with items whose mean values are lower than the average
of all items, i.e., 𝑖 ∈ I𝑈𝐸 if𝑚𝑖 < 𝑀𝑒𝑎𝑛(𝑚I𝑤 ). As a result, by this
loss, we push 𝑃 (𝑅U+

𝑖
,𝑖 ) for 𝑖 ∈ I𝑈𝐸 to be close to 𝑃 .

4.3 The Score Scaling Method
In addition to Gen, we adapt an existing work for addressing popu-
larity bias [34] into the proposed learnable post-processing frame-
work to enhance fairness among new items. This score scaling
method can also serve as a baseline method.

To counteract popularity bias, thework [34] re-scales the training
data based on item popularity: it up-scales ratings for unpopular

items and down-scales ratings for popular items of high popularity,
and then it trains a recommendation model on the scaled data
to deliver debiased recommendations. Similarly, we can scale the
user-normalized predicted score vectors 𝑅𝑁:,𝑖 to be fairer ground-
truth to train a fair autoencoder𝜓 in the proposed post-processing
framework. In detail, for the user-normalized score vector 𝑅𝑁:,𝑖 of
each warm start item 𝑖 ∈ I𝑤 , we scale the matched-user entries:

𝑅𝑁𝑆
U+

𝑖
,𝑖
= 𝑅𝑁U+

𝑖
,𝑖
×
𝑀𝑎𝑥 ({𝑀𝑒𝑎𝑛(𝑅𝑁U+

𝑗
, 𝑗
)𝛽 | 𝑗 ∈ I𝑤})

𝑀𝑒𝑎𝑛(𝑅𝑁U+
𝑖
,𝑖
)𝛽

, (3)

where 𝑅𝑁U+
𝑖
,𝑖
are the matched-user entries in 𝑅𝑁:,𝑖 ;𝑀𝑒𝑎𝑛(𝑅𝑁U+

𝑖
,𝑖
) cal-

culates the mean value of matched-user entries;𝑀𝑎𝑥 (·) returns the
maximumvalue in a sequence, andwe use𝑀𝑎𝑥 ({𝑀𝑒𝑎𝑛(𝑅𝑁U+

𝑗
, 𝑗
)𝛽 | 𝑗 ∈

I𝑤}) as the numerator so that no item is down-scaled but only
under-estimated items are up-scaled during the scaling; 𝛽 is the
fairness-strength weight – the larger the more strength to enhance
fairness; 𝑅𝑁𝑆

U+
𝑖
,𝑖
denotes the scaled entries for matched users, and

we write them back to 𝑅𝑁:,𝑖 to have the final score vector 𝑅𝑁𝑆
:,𝑖 for

𝑖 as the ground-truth for training the autoencoder𝜓 . The overall
framework of the proposed Scale is shown in Figure 3c.

By this, we have fairness-enhanced scores for warm items. The
autoencoder learned with these scaled scores as ground truth will
bring fairer recommendations for new items during testing. We
adopt the RMSE loss for learning the proposed Scale model:

min
𝜓

L𝑆𝑐𝑎𝑙𝑒 =
∑
𝑖∈I𝑤

∥𝑅𝑁𝑆
:,𝑖 − 𝑅:,𝑖 ∥F + _∥𝜓 ∥F . (4)

5 EXPERIMENTS
In this section, we conduct extensive experiments to answer three
key research questions: RQ1, how does the Gen model enhance
fairness for new items and preserve utility, compared with Scale and
other baselines? RQ2, what is the impact of the hyper-parameters
in the two proposed methods? and RQ3 what is the impact of the
proposed fairness-enhancement methods on group-level fairness?

5.1 Experiment Setup
Data and Metrics. Similar to the data-driven study in Section 3.4,
we use the same four datasets (ML1M, ML20M, CiteULike, and
XING) and same metrics: we report NDCG@k with k=15 and 30 for
evaluating user-view utility; MDG-all for item-view utility; MDG-
min10% and MDG-min20% (the larger the fairer a model is) for
fairness; and we also report MDG-max10% for comparison.
Baselines. We use the same four cold start recommendation base
models (Heater, DropoutNet, DeepMusic, and KNN) as introduced
in Section 3.4. And we investigate the fairness-enhancement per-
formance of the proposed Gen and Scale. We consider the Scale
method, which adapts a previous work for addressing popularity
bias into the proposed learnable post-processing framework, as
one baseline to compare with Gen. Besides, we saw in Section 3.4
that random rankings can also improve the true positive rates of
worst-off items compared with personalized cold start recommen-
dation algorithms. Hence, we also consider a Noise method which
adds random noise to the output of base cold start recommendation



Table 4: Empirical results on ML1M dataset for all models.
NDCG MDG-all Fairness: MDG

@15 @30 min10% min20% max10%
Heater 0.5516 0.5332 0.0525 0.0000 0.0000 0.2272
Noise 0.4240 0.4084 0.0482 0.0017 0.0046 0.1730
Scale 0.5282 0.5135 0.0755 0.0015 0.0066 0.2025
Gen 0.5379 0.5206 0.0719 0.0073 0.0136 0.2036
DN 0.5488 0.5316 0.0552 0.0000 0.0000 0.2294
Noise 0.4586 0.4420 0.0513 0.0010 0.0037 0.1876
Scale 0.5315 0.5150 0.0766 0.0015 0.0069 0.2057
Gen 0.5345 0.5175 0.0745 0.0075 0.0138 0.2055
DM 0.5312 0.5167 0.0572 0.0000 0.0001 0.2323
Noise 0.4406 0.4304 0.0543 0.0007 0.0032 0.1937
Scale 0.5058 0.4946 0.0726 0.0010 0.0047 0.2140
Gen 0.5144 0.5024 0.0730 0.0027 0.0071 0.2136
KNN 0.4402 0.4226 0.0646 0.0001 0.0020 0.2091
Noise 0.3450 0.3378 0.0591 0.0016 0.0053 0.1643
Scale 0.4181 0.4027 0.0712 0.0023 0.0084 0.1791
Gen 0.4158 0.4002 0.0724 0.0075 0.0140 0.1831

models as another baseline, in which there is a fairness-strength
weight 𝛾 to control the amount of noise added.
Reproducibility. All models are implemented by Tensorflow [1]
and optimized by Adam algorithm [18]. For the four cold start rec-
ommendation base models, we follow the hyper-parameter tuning
strategies in [42]. For the two proposed fairness-enhancement mod-
els, we assign the autoencoder𝜓 a single hidden layer of dimension
100 with a linear activation function. For Gen, we assign the dis-
tribution generator 𝜑 two hidden layers of dimension 50 with a
tanh activation function. We tune the fairness-strength weight 𝛼 ,
𝛽 , 𝛾 in Gen, Scale, and Noise models by grid search on validation
sets. Because there is a trade-off between the user-view utility and
fairness, when tuning the fairness-strength weights 𝛼 and 𝛽 , we
try to preserve a relatively high NDCG@k for both methods and
analyze the fairness performance of them. All code, data, and set-
tings will be available at https://github.com/Zziwei/Fairness-in-Cold-
Start-Recommendation.

5.2 RQ1: Fairness-Enhancement Performance
First, we investigate how do the two proposed methods perform in
terms of improving fairness and preserving recommendation utility.
We first apply the two proposed methods and baseline Noise to each
of the four cold start recommendation models. Results on the Ml1M
dataset are reported in Table 4, where we show results of the four
cold start recommendation base models. The three rows following
each of the cold start recommendation base models are results of
Noise, Scale, and Gen with the given cold start recommendation
model as the base model (forming a four-row group).

From Table 4, comparing the results before and after applying
the two proposed methods Scale and Gen, we have four major
observations: i) for all cold start recommendation methods, after
applying the proposed models, the user-view utility decreases but
with small percentages; ii) after applying Scale and Gen, the fairness
among new items (evaluated by MDG-min10% and MDG-min20%)
is significantly improved; iii) after applying proposed methods,
the utility for the best-served items (measured by MDG-max10%)
decreases, but with a limited percentage as well; and iv) the item-
view utility (evaluated by MDG-all) significantly increases after
applying Scale and Gen. This item-view utility improvement is due

(a) 0∼50%-th items. (b) 50∼100%-th items.

Figure 5: Heater as base, MDG of items by different models.

to that items originally under-served by base models receive more
utility from the two proposedmodels, leading to the improvement of
overall item-view utility even though the best-served items receive
lower utility. Based on these observations, we can conclude that
Scale and Gen can significantly enhance the fairness among new
items; and they can also effectively preserve the user-view utility
and improve the item-view utility.

Next, we compare the performance between Noise, Scale, and
Gen in Table 4. We can find that Scale and Gen promote fairness to
a greater extent with higher utility (both user-view and item view)
preserved than Noise, showing the effectiveness of the proposed
framework and methods. Then, comparing Scale and Gen, under
the circumstance that they produce similar user-view utility: i)
Scale provides slightly higher item-view utility than Gen; but ii)
Gen delivers better fairness-enhancement performance than Scale:
Gen outperforms Scale for 295.68% for MDG-min10% and 80.95%
for MDG-min20%. As a result, we conclude that Gen can enhance
fairness for new items more effectively than Scale.

To better understand the effects of the proposed Scale and Gen,
on the ML1M dataset, we sort the recommended new items by
MDG in ascending order and plot them in Figure 5 for Heater and
three fairness-enhancement methods with Heater as the base model.
Figure 5a shows the MDG for items belonging to the first half of the
sorted list (from 0%-th to 50%-th items), and Figure 5b shows the
MDG for items belonging to the left half of the sorted list (from 50%-
th to 100%-th items). From these two figures, we see that compared
to the base model Heater: both Scale and Gen significantly increase
MDG (better than Noise) for most items (around from 0%-th to
90%-th in the sorted item list), which are originally under-served by
Heater; and MDG for items that are best-served by Heater (around
90%-th to 100%-th) are only slightly decreased by Scale and Gen.
Moreover, another interesting observation is that Gen improves
the MDG of the worst-served items better than Scale as shown in
Figure 5a, while Scale promotes the MDG for items between the
worst-served and best-served (around 40%-th to 90%-th) more than
Gen. This is the reason why Gen outperforms Scale for fairness but
Scale performs better for item-view utility as in Table 4.

Last, in Table 5, we report the results of Heater and the three
fairness-enhancement methods with Heater as base model on all
datasets. Similar conclusions can be drawn from these results: for all
different datasets, the proposed Scale and Gen can more effectively
enhance the fairness for new items and preserve the utility.

5.3 RQ2: Impact of Hyper-parameters
We next turn to study the impact of the fairness-strength weights
𝛼 in Gen, 𝛽 in Scale, and 𝛾 in Noise. Recall that larger 𝛼 , 𝛽 , and 𝛾
lead to more strength for enhancing fairness. We run experiments
for Gen with 𝛼 varying from 40 to 360 with step 40, Scale with 𝛽

https://github.com/Zziwei/Fairness-in-Cold-Start-Recommendation
https://github.com/Zziwei/Fairness-in-Cold-Start-Recommendation
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Figure 6: Investigate impact of 𝛼 , 𝛽 , and 𝛾 on ML1M dataset: (a) shows the impact on NDCG@30; (b) shows the impact on
MDG-all; and (c) shows the impact on NDCG@30 and MDG-max10% together.

Table 5: Results on 4 datasets for Heater as base model.
NDCG MDG-all Fairness: MDG

@15 @30 min10% min20% max10%

ML1M
Heater 0.5516 0.5332 0.0525 0.0000 0.0000 0.2272
Noise 0.4240 0.4084 0.0482 0.0017 0.0046 0.1730
Scale 0.5282 0.5135 0.0755 0.0015 0.0066 0.2025
Gen 0.5379 0.5206 0.0719 0.0073 0.0136 0.2036

ML20M
Heater 0.4408 0.4308 0.0187 0.0000 0.0000 0.1455
Noise 0.3600 0.3509 0.0184 0.0000 6𝑒−6 0.1144
Scale 0.4166 0.4104 0.0302 0.0000 2.5𝑒−5 0.1443
Gen 0.4265 0.4165 0.0296 0.0003 0.0014 0.1430

CiteULike
Heater 0.2268 0.2670 0.1833 0.0046 0.0251 0.5106
Noise 0.2095 0.2481 0.1779 0.0051 0.0259 0.4958
Scale 0.2202 0.2610 0.1867 0.0055 0.0270 0.5099
Gen 0.2187 0.2599 0.1869 0.0111 0.0332 0.5034

XING
Heater 0.2251 0.2762 0.1333 0.0028 0.0129 0.3821
Noise 0.2051 0.2553 0.1301 0.0038 0.0142 0.3561
Scale 0.2183 0.2701 0.1414 0.0038 0.0162 0.3801
Gen 0.2185 0.2712 0.1487 0.0093 0.0256 0.3755

varying from 1 to 5 with step 0.5, and Noise with 𝛾 varying from 0.4
to 0.8 with step 0.5. In Figure 6a, we show the results of NDCG@30
on the ML1M dataset, where 𝑣0 to 𝑣8 correspond to different values
of 𝛼 , 𝛽 , and 𝛾 in ascending order. The figure shows that with larger
fairness-strength weights, the user-view utility gets smaller for all
methods. Then, we present how the item-view utility (measured by
MDG-all) changes when we increase the fairness-strength weights
in Figure 6b. We can observe that with weights increasing, MDG-all
keeps increasing for both Scale and Gen, but slowly decreases for
Noise. Next, we show how fairness (MDG-min10%) changes with
weights increasing in Figure 6c, which demonstrates that all models
improve fairness when the weights get larger.

For Figure 6a, Figure 6b, and Figure 6c, note that we cannot
directly compare the NDCG@30, MDG-all, and MDG-min10% be-
tween Scale, Gen, and Noise because the x-axis (values of 𝛼 , 𝛽 ,
and 𝛾 ) is not the same for these two methods. Therefore, to fur-
ther compare these three methods, we plot Figure 6d: the y-axis is
MDG-min10%; the x-axis is NDCG@30; each dot represents an ex-
periment result of a model with a specific fairness-strength weight;
and weights are in decreasing order from left to right (for exam-
ple, the leftmost dot for Gen corresponds to the experiment with
𝛼 = 360). Now, we can conclude from this figure that with the same
user-view utility preserved, Gen enhances fairness more effectively
than Scale and Noise for different fairness-strength weights.

5.4 RQ3: Impact on Group-level Fairness
The fairness we discussed so far is for individual items: we consider
the difference among individual items as unfairness. Another widely
investigated concept is group-level fairness: consider the difference

Figure 7: Investigate group-level fairness on ML1M.
among different items groups determined by item attributes as
unfairness [5, 10, 43]. Here, we want to study how do our proposed
methods impact group-level fairness in cold start recommendation.

To be consistent to the measurement of fairness in this paper, we
evaluate the group-level fairness by calculating the average MDG
for the worst-off item group (the item groupwith the lowest average
MDG), which is also similar to the measurement of group-level fair-
ness in a classification task [19]. We denote the group-level fairness
metric as MDG-min-group. For the ML1M dataset, we show the
group-level fairness results of all four cold start recommendation
base models and their corresponding fairness-enhanced results by
the three methods in Figure 7, where we group items by the movie
genres provided by ML1M dataset [13], and the worst-off movie
genre for all methods is ‘Documentary’. From Figure 7, we see that
after applying the two proposed methods and baseline Noise, the
group-level fairness is significantly improved, and Gen performs
better than Scale and Noise. This result is reasonable and expected,
because these methods improve MDG for all under-served items,
resulting in under-served groups consisting of under-served items
being promoted in general. This property is very helpful when
group-level fairness is required but no group attribute is accessible.

6 CONCLUSION AND FUTUREWORK
In this work, we investigate the fairness among new items in cold
start recommenders. We first empirically show the prevalence of un-
fairness in cold start recommenders. Then, to enhance the fairness
among new items, we propose a novel learnable post-processing
framework as a solution blueprint and propose two concrete mod-
els – Scale and Gen – following this blueprint. Last, extensive ex-
periments show the effectiveness of the two proposed models for
enhancing fairness and preserving recommendation utility. In the
future, we plan to further explore the recommendation fairness be-
tween cold and warm items in a unified recommendation scenario.
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