
International Journal of Web Services Research, Vol. X, No. X, 200X

 1

Development of Distance Measures for Process Mining,
Discovery, and Integration

Joonsoo Bae1, Ling Liu2, James Caverlee3, Liang-Jie Zhang4, Hyerim Bae5

1 Chonbuk National Univ, South Korea
jsbae@chonbuk.ac.kr

2 Georgia Institute of Technology, USA
lingliu@cc.gatech.edu

3 Georgia Institute of Technology, USA
caverlee@cc.gatech.edu

4 IBM T.J. Watson Research Center, USA
zhanglj@us.ibm.com

5 Pusan National Univ, South Korea
hrbae@pusan.ac.kr

ABSTRACT:
Business processes continue to play an important role in today’s service-oriented enterprise
computing systems. Mining, discovering, and integrating process-oriented services has attracted
growing attention in the recent years. In this paper we present a quantitative approach to
modeling and capturing the similarity and dissimilarity between different process designs. We
derive the similarity measures by analyzing the process dependency graphs of the participating
workflow processes. We first convert each process dependency graph into a normalized process
matrix. Then we calculate the metric space distance between the normalized matrices. This
distance measure can be used as a quantitative and qualitative tool in process mining, process
merging, and process clustering, and ultimately it can reduce or minimize the costs involved in
design, analysis, and evolution of workflow systems.

KEY WORDS:
Business Process, Similarity, Process Mining

1. Introduction

With the increasing interest and wide deployment of web services, we see a growing demand
for service-oriented architectures and technologies that support enterprise transformation.
Effective enterprise transformation refers to strategic business agility in terms of how efficiently
an enterprise can respond to its competitors and how timely an enterprise can anticipate new
opportunities that may arise in the future. In the increasingly globalized economy, enterprises
face complex challenges that can require rapid and possibly continual transformations. As a result,
more and more enterprises are focused on the strategic management of fundamental changes with
respect to markets, products, and services (Rouse, 2005). Such transformation typically has a
direct impact on the business processes of an enterprise. Enterprise transformation may range
from traditional business process improvement to wholesale changes to the processes supported
by the enterprise – from performing current work in a new fashion to performing different work
altogether. Each of these challenges may lead to a different degree of enterprise transformation.

Fundamental to enabling the transformation of an enterprise is the development of novel tools
and techniques for transforming the business processes of an enterprise. In this paper, we present
a critical component to the problem of process transformation from a web services point-of-view.
In particular, we present a novel process difference analysis method using distance measures

International Journal of Web Services Research, Vol. X, No. X, 200X

 2

between process definitions of two transactional web services. The process difference analysis
focuses on process activity dependencies and process structure to identify distance measures
between processes.

The proposed difference analysis method achieves three distinct goals. First, by analyzing the
attributes of process models, we present a quantitative process similarity metric to determine the
relative distance between process models. This facilitates not only the comparison of existing
process models with each other, but also provides the flexibility to adapt to changes in existing
business processes. Second, the proposed method is quick and flexible, which reduces the cost of
both the analysis and design phases of web service processes. Third, the proposed method enables
the flexible deployment of process mining, discovery, and integration – all key features that are
necessary for effective transformation of an enterprise.

2. Web Service Process Reference Model

The web service process reference model consists of business process definitions and the
specification of workflows among the processes with respect to data flow, control flow, and
operational views (Rush, 1997; Schimm, 2004). We define a business process in terms of
business activity patterns. An activity pattern consists of objects, messages, message exchange
constraints, preconditions and postconditions (WfMC, 2005), and is designed to specify the
service actions and execution dependencies of the business process. An activity pattern can be
viewed as a web service process when it is executable as a web service. We consider two types of
activity patterns – elementary activity patterns and composite activity patterns (Aalst, 2003a; Bae,
2004). An elementary activity pattern is an atomic unit. A composite activity pattern consists of a
one or more elementary activity patterns or other composite activity patterns. The dependencies
could capture complex interactions between activities.

We define a business process as a collection of business activities connected by data flow and
control flow, where each represents a business process. A process definition can be seen as a web
service (or a collection of web services). We use data flow among processes to define the data
dependencies among processes within a given business process. We use control flow to capture
the operational structure of the business process service, including the process execution ordering,
the transactional semantics and dependencies of the process. A number of workflow
specifications have gathered attention, including BPEL4WS (BEA, IBM, Microsoft), WSFL
(IBM), XLANG (Microsoft), and XPDL (WfMC) (WfMC, 2005). In our prototype development,
we choose to use a variant of BPEL4WS.

Formally, each workflow service is specified in terms of process definitions. We can model
each process definition as a process model using activities, precedence relation between activities,
and their properties.

Definition 1 (Process Model, PM)
A process model PM consists of tasks, links, and attributes. That is, PM= <A, L, Attr>.

• A set of activities: A = {ai | i= 1,…, I}, where, ai represents i-th activity and I is the total
number of tasks in a process.

• A set of links: L = {lk= (ai, aj) | ai, aj �A, i≠j }, where, lk represents a link between two
activities, ai and aj. A link also represents a precedence relation. The link (ai, aj) indicates
that ai immediately precedes aj.

• A set of attributes: Attr is a set of attributes (attrl), whose element represents feature of
objects such as process, activity and link. An attribute of an object is represented using

International Journal of Web Services Research, Vol. X, No. X, 200X

 3

common dot(.) notation. For example ai.attrName represents name attribute of activity ai.

In our process model definition, structural information is specified using activities and links.
All the other information related to time properties, business logic, correctness, and split/merge
pattern is assumed to be presented with attributes. In order to execute the process model after
being designed, it should be in a computer readable format. We store process models in an XML
format, and they can be exported into BPEL4WS codes automatically, to be accessible via web
services.

As a real-life example of business process, there are many PIPs (Partner Interface Processes)
as defined by RosettaNet (RosettaNet). PIPs define business processes between trading partners.
PIPs fit into seven Clusters, or groups of core business processes, that represent the backbone of
the trading network. Each Cluster is broken down into Segments and within each Segment are
individual PIPs. RosettaNet standards provide the infrastructure for integrating business processes
with trading partners across the globe, delivering essential value to industries and proven real-
world business results. Fig. 1 shows a standard process of procurement order by buyer, which is
in Segment 3A(Quote and Order Entry) of Cluster 3(Order Management). This example process
has 13 activities, 22 links, and many attributes, which can be presented with our formal model in
the following.

A = {a1, a2, a3, …, a13}
L = {l1, l2, l3, … , l22} = {(a1, a2), (a1, a3), (a1, a4), ... , (a12, a13)}
Attr = {a1.attrTaskName(= “Analyze ordering needs”), a2.attrTaskName, …,
 a1.attrExpTime, ..., l1.attrTransCond, ….}

Recent business environments impel enterprises to interface with each other, and SOA
(Service Oriented Architecture) is considered as a natural tool for B2B (Business to Business)
collaboration. For our model to be used in such computing environments, we transform our
process model into XML based language, that is, BPEL4WS codes. Rules used for our
transformation are summarized in Table 1.

Table 1. Rules for transforming process model into BPEL4WS codes

Pattern Graph (Structured) BPEL4WS

Sequence a1 a2a1 a2
<sequence> <a1> <a2> </sequence>

OR-joinOR-split

a1

a2 OR-joinOR-split

a1

a2

a1

a2

<switch>
 <case condition=”condition”><a1></case>

<case condition=”condition”><a2></case>
</switch> Parallel

Flow
a1

a2 AND-joinAND-split

a1

a2

a1

a2 AND-joinAND-split

<flow> <a1> <a2></flow>

Loop a1 a2

OR-join OR-split

a1 a2

OR-join OR-split

<loop condition=”condition”> <a1>
<a2></loop>

International Journal of Web Services Research, Vol. X, No. X, 200X

 4

Switch-
sequence

a1 a2

OR-joinOR-split
a3 a4

a1 a2

OR-joinOR-split
a3 a4

<switch>
 <case condition=”condition”> <sequence>

<a1><a2></sequence> </case>
<case condition=”condition”> <sequence>

<a3><a4></sequence></case>
</switch>

Complex
Flow

a1 a2

OR-join OR-splitOR-join

a1 a2

OR-join OR-splitOR-join

<sequence><a1><a2></sequence>
<loop>
 <switch>
 <case><a1></case>
 </switch>
 <a2>
</loop>

Analyze
ordering
needs

Set quote specifications
and create a quote

request

Process the order
status response

Analyze
purchase order

confirmation

Create
purchase

order request

Define requested
products and send price
and availability request

Analyze price and
availability responses

Create order
status query

Analyze the
changes from seller

Analyze the purchase
order acknowledgement

Make the needed
changes to the
purchase order

Cancel the
purchase order

Order completed

a2

a3

a4

a5 a6

a7 a8

a9

a10

a11

a12

a13a1

Analyze
ordering
needs

Set quote specifications
and create a quote

request

Process the order
status response

Analyze
purchase order

confirmation

Create
purchase

order request

Define requested
products and send price
and availability request

Analyze price and
availability responses

Create order
status query

Analyze the
changes from seller

Analyze the purchase
order acknowledgement

Make the needed
changes to the
purchase order

Cancel the
purchase order

Order completed

a2

a3

a4

a5 a6

a7 a8

a9

a10

a11

a12

a13a1

Fig. 1 A real-life example of business process

3. Process Dependency Graph

From a process model, we can extract a graph which presents dependencies among activities.
We call the graph ‘Dependency Graph’ in Definition 2. The process dependency graph captures
information about how activities share information and how data flows from one activity to
another. Depending on whether the edges indicate execution dependencies or data flow
dependencies, we have a process aggregation hierarchy, which captures the hierarchical execution
ordering of activities.

Definition 2 (Dependency Graph, DG)
A dependency graph DG is defined by a binary tuple <DN, DE>, where
• 1 2{ , , ..., }nDN nd nd nd= is a finite set of activity nodes where 1n ≥ .

• 1 2{ , , ..., }mDE e e e= is a set of edges, 0m ≥ . Each edge is of the form i jnd nd→ .

Note that in the dependency graph formulation, self-edges are disallowed since edges are

intended to denote data flow dependencies between different activities (nodes). Additionally, a

International Journal of Web Services Research, Vol. X, No. X, 200X

 5

dependency graph must be a connected graph. Unconnected nodes and isolated groups of nodes
are disallowed in the graph, as isolated nodes or groups of nodes are considered a separate service
process in our reference model.

Given two processes and their respective dependency graphs, there are numerous ways these
two graphs may differ. Typically, it makes more sense to compare only those graphs that have
sufficient similarity in terms of their dependency graphs. Consider two extreme cases: one is
when there is no common node between two graphs and the other is when the two dependency
graphs have the same set of nodes. By assigning 0 for the first case and 1 for the latter case, we
define a comparability measure that indicates the ratio of common nodes in two graphs. One way
to measure the extent of comparability between two graphs is to use a user-controlled threshold,
called δ-Comparability, which is set to be between 0 and 1. Because this value represents the ratio
of common nodes over the union of all nodes in two graphs, the larger the value is, the greater
degree of comparability between the two graphs. Note that δ value can not be 0 since δ = 0 means
that there is no common node between two graphs, i.e., 1 2DN DN∩ ≠ ∅ .

Definition 3 (δ-Comparability of DG)
Let 1 1 1(,)DG DN DE= and 2 2 2(,)DG DN DE= be two dependency graphs, and δ be a user-defined
control threshold. We say that DG1 and DG2 are δ-comparable if the

condition 1 2

1 2

DN DN

DN DN
δ

∩
≥

∪
holds, where 0 1δ< ≤

If we apply the δ-Comparability to the example graphs shown in Fig. 2 with δ=0.5, g0 and f2 are

not comparable because the number of common nodes is only one but the number of total nodes

is 7, that is 1 2

1 2

1
0.5

7

DN DN

DN DN

∩
= <

∪
. On the other hand, g0 and g2 are δ-comparable because there

are 3 common nodes and the total number of nodes is 5, thus the two graphs satisfy the δ-

comparability condition 1 2

1 2

3
0.5

5

DN DN

DN DN

∩
= ≥

∪
 and δ = 0.5.

A C B D A B C E A
B

D

A B C D

g0

A B C D

g0

g1 g2 g3

C

F G H I

f1

F G H I

f1

A G H I

f2

A G H I

f2

Fig. 2 Examples of δ-Comparability

4. Motivating Scenarios

Given the process reference model, we consider two motivating scenarios that benefit from the
difference analysis methodology introduced in this paper. Consider a scenario where a company
has maintained a warehouse of existing processes used in various business locations. Process
mining (Aalst, 2003b; Aalst, 2004) of the process warehouse can help the enterprise to discover

International Journal of Web Services Research, Vol. X, No. X, 200X

 6

interesting associations or classifications among business processes running at different locations
or branches of the company.

1 2
3

4

11

8 10
7
6
5

9

1 2
3

4

11

8 10
7

5
9

g2

1 2
3

4

11

8 10
7

5
9

g2

g3

1 2
3

4

11

8 10
7
6 9

g5

1 2
3

4

11

8 10
7
6 9

g51 2
3

4

11

8
7
6
5

g4

A Process Warehouse

1 2
3

4

11

8 10
7
6
5

9

δ- Value

Query Process

1 2
3

4

11

8 10
7
6
5

9

Selected Process

g3

1 2
3

4

11

10
7
6
5

9

g1

Fig. 3 Process mining example

In Fig. 3, we show a process warehouse that contains many types of processes (for example, g1,

g2, g3, g4, g5). A typical process mining scenario is the identification of the processes most similar
to a query process template in the process warehouse. Given a query process and a comparability
threshold δ-value, the process mining will identify (g3) as the process that is most similar based
on the comparability criterion. It is obvious that the concept of process similarity (or distance) is
critical to the effectiveness of process mining.

5. Process Difference Analysis

In this section, we present the process difference analysis method for evaluating the distance
between two processes. We first define the concept of a process matrix and introduce the concept
of a normalized matrix. And then, we define the dependency distance measure by measuring the
difference between the normalized matrices.

Process Dependency Graph

Process Matrix

Normalized Matrices

Distance Measure Proof of Distance Properties

δ-Comparability Filter

Ranked List of Processes

Process Warehouse,
Query Process, δ- value

Process Dependency Graph

Process Matrix

Normalized Matrices

Distance Measure Proof of Distance Properties

δ-Comparability Filter

Ranked List of Processes

Process Warehouse,
Query Process, δ- value

Fig. 4 Flow chart of Difference Analysis

International Journal of Web Services Research, Vol. X, No. X, 200X

 7

In order to show the proposed procedure, we use two derived processes that are variations of
procurement order process in Fig. 1. These two processes have 10 activities respectively but have
different activities with each other. The first process (g11) has A6 but does not have A8, and the
second process (g22) has A8 but does not have A6. These two graphs satisfy δ-Comparability as

1 2

1 2

9
0.5

11

DN DN

DN DN

∩
= ≥

∪
 and δ = 0.5.

A1 A2

A3

A4

A11

A8 A10

A7

A5

A9

a 1 a 2

a 3

a 4

a 11

a 8 a 10

a 7

a 5

a 9

A1 A2

A3

A4

A11

A10

A7

A6

A5

A9

a 1 a 2

a 3

a 4

a 11

a 10

a 7

a 6

a 5

a 9

A1 A2

A3

A4

A11

A8 A10

A7

A5

A9

a 1 a 2

a 3

a 4

a 11

a 8 a 10

a 7

a 5

a 9

A1 A2

A3

A4

A11

A10

A7

A6

A5

A9

a 1 a 2

a 3

a 4

a 11

a 10

a 7

a 6

a 5

a 9

(a) g11 (b) g22

Fig. 5 Two extended examples of Fig. 1

5.1. Comparison Matrices

Two dependency graphs are said identical if the two graphs have the same set of nodes and the
same set of edges. Formally we define identical dependency graphs as follows:

Definition 4 (Identical dependency graphs)
Let

1 1 1(,)DG DN DE= and
2 2 2(,)DG DN DE= be two dependency graphs. We say that DG1 and DG2

are identical if the two graphs have the same set of nodes and the same set of edges.
i) 1 2SetDN DN= ii) 1 2SetDE DE=

One way to compare and rank a set of similar process definitions is to transform each
dependency graph into a numerical representation. This allows us to compare the dependency
graphs using similarity distance in Euclidian distance metric space. This leads us to introduce the
concept of a process matrix. A process matrix M is established in order to describe the precedence
dependencies between two activities (tasks). The size of M is determined by the number of nodes
in the dependency graph and each cell in the matrix denotes an element of M. The value of cell
M(i,j) is set either to 1 or 0 depending on whether or not there is a precedence dependency
between the two nodes i and j.

Definition 5 (Process matrix, M)
Let (,)g DN DE= be a dependency graph with DN n= nodes. A process matrix M of g is n-by-n
matrix with n rows and n columns, and each row is named after the node name. Let Mg(i,j) denote
the value of the ith row and the jth column in M, 1 ,i j n≤ ≤ . We define Mg(i,j) as follows:

1 , (,)
(,)

0
i j i j

g

if nd nd DN such that nd nd DE
M i j

else

∃ ∈ ∈
=




Fig. 6 depicts the transformation of a process dependency graph g11 shown in Fig. 5 (a) into its

process matrix M, a 10×10 matrix. Each element of M is determined according to whether or not
the corresponding two activities have precedence dependency. An edge between nodes a1 and a2
shows that activity a1 precedes activity a2. Thus, Mg(a1, a2) is set to a value of 1. There is no
direct edge between nodes a1 and a3. Thus Mg(a1, a3) is set to a value of 0.

International Journal of Web Services Research, Vol. X, No. X, 200X

 8

M11 TO

 a1 a2 a 3 a4 a5 a6 a7 a9 a10 a11
a1 0 1 0 0 0 0 0 0 0 0
a2 0 0 1 1 0 0 0 0 0 0
a3 0 0 0 0 1 1 1 0 0 0
a4 0 0 0 0 0 0 0 0 1 0
a5 0 0 0 0 0 0 0 1 0 0
a6 0 0 0 0 0 0 0 1 0 0
a7 0 0 0 0 0 0 0 1 0 0
a9 0 0 0 0 0 0 0 0 0 1
a10 0 0 0 0 0 0 0 0 0 1

F
R
O
M

a11 0 0 0 0 0 0 0 0 0 0

Fig. 6 Process matrix of g11

In order to compare the two process dependency graphs g11
 and g22, we need to further

normalize each process matrix that participates in the similarity computation. Each
normalized process matrix includes the union of all sets of nodes, each from one
participating process dependency graph. We formally introduce the concept of
normalized process matrix in Definition 6 by extending the definition of a process matrix
to include the entire union of nodes in the two graphs. The size of the normalized matrix
is increased to the size of the union of the sets of nodes in both graphs. For those nodes
that exist in a process matrix before normalization, the corresponding elements in the
normalized matrix are the same as those in the process matrix. For those nodes added
through the normalization, the corresponding elements in the normalized matrix are set to
a value of 0. After normalization, both matrices have the same number of rows and
columns, and share the same row and column names and sequences. The normalized
matrices can then be used as an input to calculate distance.

Definition 6 (Normalized Matrix, NM)
Let

1 1 1(,)DG DN DE= and
2 2 2(,)DG DN DE= be two dependency graphs. Let NM1 and NM2 denote

the normalized matrices for DG1 and DG2 respectively. We generate NM1 and NM2 from DG1 and
DG2 as follows.

i) The number of rows and columns are computed by 1 2m DN DN= ∪
ii) Let 1 2 1 2{ , , ..., }mDN DN a a a=U . Note that the row and column names of NM1 and NM2 are

now normalized into the same node names 1 2, , ..., ma a a in the union of DN1 and DN2.

iii) Let 1 (,)NM i j denote the value of the ith row and the jth column in NM1, and 2 (,)NM i j
denote the value of the ith row and the jth column in NM2

1

1

1 if (,)
(,)

0 otherwise
i ja a DE

NM i j
∈

=




,

2

2

1 if (,)
(,)

0 otherwise
i ja a DE

NM i j
∈

=




International Journal of Web Services Research, Vol. X, No. X, 200X

 9

Consider processes in Fig. 5 as an example. By constructing normalized matrices for g11 and g22,
denoted by NM11 and NM22 respectively, the size of NM11 of g11 is increased to 11 because NM11
should include node a8, which was not originally included in g11. All the elements of the newly
added column for node a8 are set to a value of 0 because there is no dependency between any
node of g11

 and node a8. Similarly, node a6 is added in NM22. Now NM11 and NM22 have the same
row names and column names: a1 through a11. We can use NM11 and NM22 to compare g11 and g22.

NM11 a1 a2 a 3 a4 a5 a6 a7 a8 a9 a10 a11
A1 0 1 0 0 0 0 0 0 0 0 0
A2 0 0 1 1 0 0 0 0 0 0 0
A3 0 0 0 0 1 1 1 0 0 0 0
A4 0 0 0 0 0 0 0 0 0 1 0
A5 0 0 0 0 0 0 0 0 1 0 0
A6 0 0 0 0 0 0 0 0 1 0 0
A7 0 0 0 0 0 0 0 0 1 0 0
A8 0 0 0 0 0 0 0 0 0 0 0
A9 0 0 0 0 0 0 0 0 0 0 1
A10 0 0 0 0 0 0 0 0 0 0 1
A11 0 0 0 0 0 0 0 0 0 0 0

(a) NM11

NM22 a1 a2 a 3 a4 a5 a6 a7 a8 a9 a10 a11
a1 0 1 0 0 0 0 0 0 0 0 0
a2 0 0 1 1 0 0 0 0 0 0 0
a3 0 0 0 0 1 0 1 0 0 0 0
a4 0 0 0 0 0 0 0 1 0 0 0
a5 0 0 0 0 0 0 0 0 1 0 0
a6 0 0 0 0 0 0 0 0 0 0 0
a7 0 0 0 0 0 0 0 0 1 0 0
a8 0 0 0 0 0 0 0 0 0 1 0
a9 0 0 0 0 0 0 0 0 0 0 1
a10 0 0 0 0 0 0 0 0 0 0 1
a11 0 0 0 0 0 0 0 0 0 0 0

(b) NM22
Fig. 7 An example of comparison matrices

The algorithm for construction of normalized process matrices consists of three steps. First, we

must determine whether or not DG1 and DG2 are δ-comparable for the given δ value. Second, we
compute the size of the normalized NM by 1 2m DN DN= ∪ and label nodes in { }1 2DN DN∪ as

{ }1 2, , ..., ma a a using a uniform naming scheme. Third, we create the matrix data structures for
DG1 and DG2: 1 (,)NM i j and 2 (,)NM i j , where i, j = 1, 2, ..., m, and assign a value of 1 or 0 to
each element in the two normalized matrices.

International Journal of Web Services Research, Vol. X, No. X, 200X

 10

5.2 Distance-based Process Similarity Measures

With the concept of a normalized matrix, we now transform the problem of comparing two
processes into the problem of computing the distance-based similarity of the two normalized
process matrices. One obvious idea is to compute the distance of two normalized matrices using
matrix subtraction.

Consider the example processes g11 and g22 in Fig. 5. One way of computing the distance
between g11 and g22 by matrix subtraction is to simply perform subtraction element by element.
By subtracting NM22 from NM11, we can see only five elements have values 1 and -1 respectively
and the rest of the elements are 0. This means that five elements are unmatched between the two
dependency graphs g11 and g22.

NM1−NM2 =

 a1 a2 a 3 a4 a5 a6 a7 a8 a9 a10 a11
a1 0 0 0 0 0 0 0 0 0 0 0
a2 0 0 0 0 0 0 0 0 0 0 0
a3 0 0 0 0 0 1 0 0 0 0 0
a4 0 0 0 0 0 0 0 -1 0 1 0
a5 0 0 0 0 0 0 0 0 0 0 0
a6 0 0 0 0 0 0 0 0 1 0 0
a7 0 0 0 0 0 0 0 0 0 0 0
a8 0 0 0 0 0 0 0 0 0 -1 0
a9 0 0 0 0 0 0 0 0 0 0 0
a10 0 0 0 0 0 0 0 0 0 0 0
a11 0 0 0 0 0 0 0 0 0 0 0

A drawback of this approach is that both 1 and -1 values in the resulting matrix represent the

fact that there are some discrepancies between two graphs g11 and g22 in five elements. But it does
not tell the degree of such discrepancies in terms of concrete distance measure. Thus we need an
efficient way to represent the total number of non-zero values in the resulting matrix.

One obvious way to capture the degree of the difference between NM11 and NM22 is to use the
sum of the squares of elements in NM1−NM2 as shown below, which is
() () () () ()2 2 2 2 21 1 1 1 1 5+ − + + + − = because only five elements have non-zero values 1 and -1.

11 22 11 22()()TNM NM NM NM− − =

 a1 a2 a 3 a4 a5 a6 a7 a8 a9 a10 a11
a1 0 0 0 0 0 0 0 0 0 0 0
a2 0 0 0 0 0 0 0 0 0 0 0
a3 0 0 1 0 0 0 0 0 0 0 0
a4 0 0 0 2 0 0 0 -1 0 0 0
a5 0 0 0 0 0 0 0 0 0 0 0
a6 0 0 0 0 0 1 0 0 0 0 0
a7 0 0 0 0 0 0 0 0 0 0 0
a8 0 0 0 -1 0 0 0 1 0 0 0

International Journal of Web Services Research, Vol. X, No. X, 200X

 11

a9 0 0 0 0 0 0 0 0 0 0 0
a10 0 0 0 0 0 0 0 0 0 0 0
a11 0 0 0 0 0 0 0 0 0 0 0

Interestingly, we can calculate the sum of the squares of elements in a matrix by the notion of

trace in linear algebra. According to (Anton, 1994), the sum of diagonal elements in a matrix is
defined as the trace of the matrix. The best way to calculate the sum of the squares of elements in
a matrix is using the concept of inner products, which is defined by the trace concept.

Definition 7 (Dependency Difference Metric, d)
Let 1 1 1(,)DG DN DE= and 2 2 2(,)DG DN DE= be two dependency graphs. Let NM1 and NM2 be the
normalized matrix of DG1 and DG2 respectively. We define the symmetric difference metric on
graphs DG1 and DG2 by the trace of the difference matrix of NM1 and NM2 as follows:

1 2 1 2 1 2(,) [() ()]Td DG DG tr NM NM NM NM= − × −
where tr[⋅] denotes the trace of a matrix, i.e., the sum of the diagonal elements.

This distance function counts the number of edge discrepancies between DG1 and DG2. Now,

we want to show that the dependency difference metric d satisfies the distance measure properties.
The function d is called a metric if and only if for all graphs g1, g2, g3, the following conditions
hold (Banks, 1994):

i) d(g1, g2) = 0 iff g1 and g2 are identical
ii) d(g1, g2) = d(g2, g1)
iii) d(g1, g2) ≤ d(g1, g3) + d(g3, g2).

Theorem 1. d(DG1,DG2) satisfies Distance Measure Properties.
Proof:
Concretely, we want to prove that if 1 2A NM NM= − and

2

1 2
1 1

(,) , ()
n n

T T

ij
i j

d DG DG A A tr A A a
= =

=< >= × = ∑∑ , then this distance 1 2(,)d DG DG satisfies the three

distance measure properties:
i) 1 2(,) 0d DG DG = iff DG1 and DG2 are identical, because the matrix A becomes 0.
ii) 1 2 2 1(,) (,)d DG DG d DG DG= by the d definition.
iii) 1 2 1 3 3 2(,) (,) (,)d DG DG d DG DG d DG DG≤ +
For any two nodes i, j, let

11 if (,)
(,)

0 otherwise
i j

k

a a DE
NM i j

∈
=




 for k=1, 2, 3

Then we can show the property iii) holds.

 { }
1 2 1 2 1 2

2

, 1 2

2 1

(,) [() ()]

 (,) (,)

 (,)

T

i j

d DG DG tr NM NM NM NM

NM i j NM i j

d DG DG

= − × −

= −

=

∑ .

International Journal of Web Services Research, Vol. X, No. X, 200X

 12

Now we show that the property iii) holds as well, because 1 2(,) (,)NM i j NM i j− is either 0 or

±1, thus we have 1 2 , 1 2(,) (,) (,)i jd DG DG NM i j NM i j= −∑ .

{ }

1 3 3 2

, 1 3 , 3 2

, 1 3 3 2

, 1 3 3 2

, 1 2

1 2

(,) (,)

 (,) (,) (,) (,)

 (,) (,) (,) (,)

 (,) (,) (,) (,)

 (,) (,)

 (,)

i j i j

i j

i j

i j

d DG DG d DG DG

NM i j NM i j NM i j NM i j

NM i j NM i j NM i j NM i j

NM i j NM i j NM i j NM i j

NM i j NM i j

d DG DG

+

= − + −

= − + −

≥ − + −

= −

=

∑ ∑
∑
∑
∑

So the new process distance measure is, in fact, a distance metric.

Since the dependency distance metric d(g1, g2) counts the number of asymmetric arcs, it can
reflect the difference of some characteristics between two processes, such as activity precedence,
activity commonality, flow structure, etc. Activity precedence describes how the activities are
linked and sequenced in terms of execution ordering. The dependency distance metric denotes the
disparity of sequence between two activities and can be extended to represent the sequence
disparities between all activities. In Fig. 8, the distance of two processes g0 and g1, denoted by
d(g0, g1), illustrates the difference of activity precedence. Activity commonality means how many
activities are shared between two process models. This counts the different activities or new
activities of two processes, as illustrated by processes g0 and g2 in Fig. 8. In addition, flow
structure denotes the difference between serial and parallel flows. Two processes g0 and g3 show
the difference measurement of flow structures, serial and parallel flows.

A B C D

A C B D A B C E A
B

D

d(g0, g1) = 6, d(g0, g2) = 2, d(g0, g3) = 3

g0

g1 g2 g3

C
Fig. 8 Examples of dependency distance

In Fig. 8, if we follow the previous procedure to calculate the dependency distance, all of the

graphs are transformed to process network matrices and normalized process matrices. Then the
distance of dependency between g0 and g1 is 6, the distance of g0 and g2 is 2, and the distance of
g0 and g3 is 3. This means that g0 and g2 are the most similar, which is intuitively correct because
the first three activities are in the same sequence but only the last activity is different. g0 and g1
are mostly different because the sequence of the activities in g1 is quite different from g0. In this
dependency distance measure, the parallel execution in g3 is not considered important and only
the precedence relationships and common activities are considered important.

If we look into more extended examples in Fig. 5 again, each graph is transformed into
process matrix, and then normalized matrix. These two normalized matrices are
subtracted and squared. Finally we can get the proposed dependency distance 5 by
obtaining the trace of it.

6. Prototype Implementation and Experiments

International Journal of Web Services Research, Vol. X, No. X, 200X

 13

The presented concepts of this paper were implemented to analyze the similarity of processes
in process warehouse. This system, called “BPSAT(Business Process Similarity Analysis Tool)”,
is developed by using Java language. This prototype system has three windows: process browser,
graph editor, and execution log output window. We can select some processes in the left process
browser, and the selected process is shown and modified in the right graph editor. All the
execution log and analysis outputs are displayed in the bottom window. There are also necessary
buttons in tool bar. The basic manipulation such as creating and editing of process graph can be
done in this prototype system, and the functionality of similarity analysis methods proposed in
this paper can be done in this system. Also other new similarity criteria can be added in this
system. The current version of this system can be downloaded at
http://it.chonbuk.ac.kr/~jsbae/BPMstuff/BPMstuff.html.

1. Two processes are selected 2. This button(One arrow) is clicked

3. Process Dependency Distance is generated

Tool Bar

Process
Browser

Graph Editor

Execution Log & Output

Fig. 9 Prototype system of BPSAT

After we check the candidate processes to be compared, we select two processes to be

compared, g11 and g22. Then we can get the proposed process dependency distance is generated
and shown in the output window.

Using the prototype system, we conducted experiments to analyze effectiveness of our method
with variation of activity number. We did our experiments for processes including a number of
activities. All the processes are generated using random process generator developed in (Ha,
2006). Ten pairs of different distances were calculated for processes with the same number of
activities, and an average value was obtained for each number of activities.

First, we observed time required for calculating process dependency distance with increase of
activity number. As we expected, more time is required as the number of activities increases, but
the increase rate is not so high. The experimental result is presented in Fig. 10 (a).

International Journal of Web Services Research, Vol. X, No. X, 200X

 14

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

10 20 30 40 50

Number of Activity

T
im

e
(s

ec

0

10

20

30

40

50

60

70

80

10 20 30 40 50

Number of Activity

Pr
oc

.
D

ep
en

.
Va

lu

(a) Calculation time (b) Process dependency distance

Fig. 10 Calculation time and process dependency distance value according to process structure

Next, we examined how values of process dependency distance change as the number of
activities increases, which is illustrated in Fig. 10 (b). Our result shows that absolute values of the
distance in case of more activities are higher than those of fewer activities. This means that
distance values among processes cannot be compared for an arbitrary number of activities, which
we reserve as our future research work.

7. Related Work

Although business process management systems have been deployed in many industrial
engineering fields, research on analysis, mining and integration of business processes are still in
its infancy. One of the representative existing studies on process improvement is workflow
mining, which investigates the traces and results of workflow execution, and determines
significant information in order to improve the existing workflow processes (Aalst, 2003b; Aalst,
2004; Agrawal, 1994; Cook, 1999; Schimm, 2004). However, most of the existing workflow
mining research does not provide a quantitative measure to compare and capture the similarity of
different workflow designs.

The graph theory in a traditional algorithm textbook is a useful means to analyze the process
definitions. Graphs, or representative data structures, are used as an accepted effective tool to
represent the problem in various fields, which include pattern matching and machine recognition,
such as pattern recognition, web and XML document analysis, and schema integration (Bunke,
1998; Hammouda, 2004; Wombacher, 2004; Zhang, 1989). For example, research on similarities
in graph structures can be divided into three categories. The first category of traditional similarity
is based on graph and sub-graph isomorphism, which has several weaknesses and distortions in
the input data and the models. In order to overcome these weaknesses, other graph similarity
analysis techniques, such as the graph edit distance (GED) metric and maximal common sub-
graph (MCS) have been introduced (Bunke, 1998; Zhang, 1989). It is also worth mentioning that
Bunke (Bunke, 1998) has shown that with generic graphs, under certain assumptions concerning
the edit-costs, determining the maximum common sub-graph is equivalent to computing the
graph edit-distance. This MCS is a basic concept of workflow similarity that measures the
common activities and transitions of workflow processes. In this paper we utilize the graph theory
results to derive the metric space distance metric for measuring process similarity and difference.

Our research on workflow similarity measure is mainly inspired by the research results on
document similarity analysis and graph similarity measures. A large number of document
similarity measures are presented in existing literature for building document management
systems, knowledge management systems, as well as search engines (Bunke, 1998; Hammouda,
2004; Lian, 2004).

International Journal of Web Services Research, Vol. X, No. X, 200X

 15

Finally, in order to support web service composition, an infrastructure for searching and
matchmaking of business processes is needed. One example is using annotated deterministic
finite state automata (aDFA) to model the business processes (Wombacher, 2004). If a business
process is specified as aDFA, the match between two aDFAs is determined by the intersection of
their languages. When there is non-empty intersection, the two business processes are matched.

8. Conclusion and Future work

We have presented a difference analysis methodology using distance measures between
process definitions of web services. The proposed difference analysis method achieves three
distinct goals. First, by analyzing the attributes of process models, we can present a quantitative
process similarity metric to determine the relative distance between process models. This
facilitates not only the comparison of existing process models with each other, but also provides
the flexibility to adapt to changes in processes. Second, the proposed method is fast and flexible,
which reduces the cost of both the analysis and design phases of complex web service processes.
Third, the proposed method enables the flexible deployment of process mining, discovery, and
integration – all desirable functionality that are critical for fully supporting the effective
transformation of an enterprise.

Our research on process mining, discovering and integration through similarity analysis
continues along several directions. First, we are interested in distance measures that can compare
workflow designs with complex block structure and various execution constraints. Second, we are
interested in developing a prototype system that provides efficient implementation of various
similarity analysis methods, including the dependency distance metric presented in this paper.
Furthermore we are interested in applying the method developed to concrete case studies of
existing enterprise transformations and to evaluate and improve the similarity measures proposed
in this paper.

ACKNOWLEGMENT
The first author was supported by the Korea Research Foundation Grant (KRF-2005-214-
D00192). The second author is partially supported by NSF and AFOSR.

References
van der Aalst, W. M. P., Hofstede, A.H.M. ter, Kiepuszewski, B. Barros, A.P., (2003), Workflow Patterns,

Distributed and Parallel Databases, 14(3), 5-51.
van der Aalst, W.M.P., van Dongen, B.F., Herbst,,J., Maruster,,L., Schimm, G., Weijters, A.J.M.M., (2003),

Workflow Mining: A Survey of Issues and Approaches, Data and Knowledge Engineering, 47(2), 237-
267.

van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L., (2004), Workflow Mining: Discovering Process
Models from Event Logs, IEEE Transactions on Knowledge and Data Engineering, 16(9), 1128-1142.

Agrawal,, R. Gunopulos, D., Leymann, F., (1998), Mining Process Models from Work-flow Logs, 6th
International Conference on Extending Database Technology, 469-483.

Anton, H., Rorres, C., (1994), Elementary Linear Algebra: Applications, John Wiley&Sons.
Bae, J., Bae, H., Kang, S., Kim, Y., (2004), Automatic control of workflow process using ECA rules, IEEE

Trans. on Knowledge and Data Engineering, 16(8), 1010-1023.
Banks, D., Carley, K., (1994), Metric inference for social networks, Journal of classification, 11(1), 121-

149.
Bunke, H,. Shearer, K., (1998),A Graph Distance Metric based on the Maximal Common Subgraph,

Pattern Recognition Letters, 19(3-4), 255-259.
Cook, J.E., Wolf, A.L., (1999), Software Process Validation: Quantitatively Measuring the Correspondence

of a Process to a Model, ACM Transactions on Software Engineering and Methodology, 8(2), 147-176.

International Journal of Web Services Research, Vol. X, No. X, 200X

 16

Ha, B.-H., Reijers, H. A., Bae, J., Bae, H., (2006), An Approximate Analysis of Expected Cycle Time in
Business Process Execution, Lecture Notes in Computer Science, 4103, 65-74.

Hammouda, K.M., Kamel, M.S., (2004), Efficient Phrase-Based Document Indexing for Web Document
Clustering, IEEE Transactions on Knowledge and Data Engineering, 16(10), 1279-1296.

Leymann, F., Roller, D., (2000), Production workflow: concepts and techniques, Prentice Hall PRT, New
Jersey.

Lian, W., Cheung, W.W., Mamoulis, N., Yiu, S., (2004), An Efficient and Scalable Algorithm for
Clustering XML Documents by Structure, IEEE Transactions on Knowledge and Data Engineering,
16(1), 82-96.

RosettaNet, RosettaNet Standard (RosettaNet Partner Interface Processes), http://www.rosettanet.org.
Rouse, W. B., (2005), A Theory of Enterprise Transformation, Systems Engineering, 8(4), 279-295.
Rush, R., Wallace, W.A., (1997), Elicitation of knowledge from multiple experts using network

inference, IEEE Transactions on Knowledge and Data Engineering, 9(5), 688-698.
Schimm, G., (2004), Mining exact models of concurrent workflows, Computers in Industry, 53(3), 265-281.
WfMC, (2005), Workflow Management Coalition Workflow Standard Process Definition Interface -- XML

Process Definition Language, Document Number WFMC-TC-1025 Version 1.13.
Wombacher, A.,Fankhauser, P., Mahleko, B., Neuhold, E., (2004), Matchmaking for Business Processes

Based on Choreographies, International Journal of Web Services, 1(4), 14-32.
Zhang, K., Shasha, D., (1989), Simple Fast Algorithms for the Editing Distance between Trees and Related

Problems, SIAM Journal of Computing, 18(6), 1245-1262.

ABOUT THE AUTHORS

Joonsoo Bae is an Assistant Professor of Department of Industrial and Information
Systems Engineering in Chonbuk National University. He received PhD, MS, and BS
degrees in Industrial Engineering from Seoul National University, South Korea in 2000,
1995, and 1993, respectively. He also completed one year postdoctoral course in
College of Computing of Georgia Institute of Technology at 2006. He had industry
experience in LG-EDS as a technical consultant of SCM & CRM team from 2000 to
2002. He is interested in system design and integration of management information
system and e-Business technology. His research topics include business processes

management using workflow systems and advanced internet application.

Ling Liu is an associate professor at the College of Computing at Georgia Tech. There,
she directs the research programs in Distributed Data Intensive Systems Lab (DiSL),
examining research issues and technical challenges in building large scale distributed
computing systems that can grow without limits. Dr. Liu and the DiSL research group
have been working on various aspects of distributed data intensive systems, ranging
from distributed computing systems, enterprise systems to business workflow
management systems. Prof. Liu has published more than 160 technical papers in the
areas of Internet Computing systems, Internet data management, distributed systems,
and information security. She is the recipient of best paper award of WWW 2004 and

best paper award of IEEE ICDCS 2003, and a recipient of 2005 Pat Goldberg Memorial Best Paper Award.
Her research group has produced a number of software systems that are either open sources or directly
accessible online, among which the most popular ones are WebCQ and XWRAPElite. Dr. Liu is currently
on the editorial board of several international journals, including IEEE Transactions on Knowledge and
Data Engineering, International Journal of Very large Database systems (VLDBJ), International Journal of
Web Services Research, and has chaired a number of conferences as a PC chair, a vice PC chair, or a
general chair, including IEEE International Conference on Data Engineering (ICDE 2004, ICDE 2006,
ICDE 2007), IEEE International Conference on Distributed Computing (ICDCS 2006), IEEE International
Conference on Collaborative Computing (CollaborateCom 2005, 2006), IEEE International Conference on
Web Services (ICWS 2004). She is a recipient of IBM Faculty Award (2003, 2006). Prof. Liu’s current
research is partly sponsored by grants from NSF CISE CSR, ITR, CyberTrust, AFOSR, and IBM.

International Journal of Web Services Research, Vol. X, No. X, 200X

 17

James Caverlee is a Ph.D. candidate in the College of Computing at Georgia Tech and
a member of the multidisciplinary Tennenbaum Institute for enterprise transformation.
His research interests are generally in the areas of Web and Distributed Information
Management, with an emphasis on: (1) Enterprise Computing and Workflow
Management; (2) Spam-Resilient Web-Scale Computing; and (3) Web Information
Retrieval and Management. James graduated magna cum laude from Duke University in
1996 with a B.A. in Economics. He received the M.S. degree in Engineering-Economic
Systems & Operations Research in 2000, and the M.S. degree in Computer Science in
2001, both from Stanford University.

Liang-Jie(LJ) Zhang is a Research Staff Member (RSM) in Services Technologies
Department at IBM T.J. Watson Research Center. He has been leading SOA and Web
Services for Business Consulting Services and Industry Solutions research since 2001.
He is the founding chair of the Services Computing PIC (Professional Interest
Community) at IBM Research and lead professional activities for IBM's Services
Computing discipline. In 2004 and 2005, Dr. Zhang was appointed as the Chief
Architect of Industrial Standards at IBM Software Group, where he played leadership
role in helping define IBM's strategy for industrial standards and open architecture for

service-oriented business solutions.

Hyerim Bae is an assistant professor in the Industrial Engineering Department at
Pusan National University (PNU), Korea. He received PhD, MS, and BS degrees from
the Industrial Engineering Department at Seoul National University, Korea. He had
been a manager for information strategic planning at Samsung Card Corporation
before he joined PNU. He is interested in the areas of Business Process Management
(BPM), process-based B2B integration, and ubiquitous business computing. His
current research activities include analysis of business process efficiency, controlling
of logistics processes with context awareness, and convenient modeling of business
processes.

