
Hierarchical Comments-Based Clustering

Chiao-Fang Hsu
Department of Computer
Science and Engineering

Texas A&M University
College Station, TX 77843

drakishu@cse.tamu.edu

James Caverlee
Department of Computer
Science and Engineering

Texas A&M University
College Station, TX 77843

caverlee@cse.tamu.edu

Elham Khabiri
Department of Computer
Science and Engineering

Texas A&M University
College Station, TX 77843
khabiri@cse.tamu.edu

ABSTRACT
Information resources on the Web like videos, images, and docu-
ments are increasingly becoming more “social” through user en-
gagement via commenting systems. These commenting systems
provide a forum for users to discuss the resources but have the side
effect of providing valuable editorial and contextual information
about the resources. In this paper, we explore a comments-driven
clustering framework for organizing Web resources according to
this user-based perspective. Concretely, we propose a hierarchical
comment clustering approach that relies on two key features: (i)
comment term normalization and key term extraction for distilling
noisy comments for effective clustering; and (ii) a real-time inser-
tion component for incrementally updating the comments-based hi-
erarchy so that resources can be efficiently placed in the hierarchy
as comments arise and without the need to re-generate the (poten-
tially) expensive hierarchy. We study the clustering approach over
the popular video sharing site YouTube. YouTube is a challeng-
ing and difficult environment, notorious for its extremely short, ill-
formed, and often unintelligible user-contributed comments. Through
extensive experimental study, we find that the proposed approach
can lead to effective and efficient comments-based video organiz-
ing even in a YouTube-like environment.

1. INTRODUCTION
One of the cornerstones of emerging participatory information

environments – like Web 2.0 social news aggregators, social me-
dia sites, digital libraries incorporating social computing features,
etc. – is the emphasis on user-driven commenting and discussion.
By encouraging users to comment, resources in these systems (like
videos, images, news articles) can become “social” resources that
reflect the attitudes and interests of the community of users in a
way that may depart from the viewpoint of system experts, editors,
and the content of the underlying information resource itself. Pop-
ularized by weblogs, commenting systems are now in wide use by
major media (e.g., NYTimes), social media sites (e.g., YouTube,
Flickr), and other participatory environments. This rising preva-
lence of user-contributed comments is inspiring new approaches
for enhancing how users view and access information resources in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’11 March 21-25, 2011, TaiChung, Taiwan.
Copyright 2011 ACM 978-1-4503-0113-8/11/03 ...$10.00.

these systems. As an example, NYTimes now prominently fea-
tures highly-rated comments as an added dimension to their arti-
cle. From a search perspective, researchers are examining tech-
niques for retrieving and ranking information resources via com-
ments [23].

Since user-contributed comments provide a potentially rich source
of contextual information, we are interested to study whether these
comments can be used to automatically self-organize a collection
of information resources. In this way, the comments themselves
may provide a “semantic overlay” that groups similar resources by
the collaborative user perspective encoded in the comments (rather
than editorial grouping, e.g., into “News” or “Sports”). Our vision
is a self-organizing collaborative information sharing space where
user comments are automatically reflected in how resources are or-
ganized. Concretely, we study one popular approach for organiz-
ing resources – hierarchical clustering. Hierarchical clustering has
been widely studied in the context of structuring text documents
(like Web pages and email) [1, 6, 11, 19, 21] and has shown suc-
cess in improving information search and browsing [4, 15, 22].

Automatically clustering resources by their comments is chal-
lenging, however. Comments are typically free-form and highly
unstructured with users engaging in a wide variety of comment-
ing purposes, including: (i) describing the underlying resource; (ii)
engaging in a back-and-forth discussion with other users; (iii) ex-
pressing emotional reaction (e.g., “Awesome!”); (iv) providing new
perspective and pointers (e.g., summarizing a related article and
adding a hyperlink). In addition to the variation in purpose and
substance, comments are often syntactically “messy” with a huge
variation in quality and style. Spelling errors (both intentional and
not), grammatical errors, typos, and shorthand are all typical of the
comments generated by a large group of (typically) volunteer com-
menters. These challenges suggest that effective clustering may
be dependent on high-quality comment distillation – for finding
the “essence” of a community’s collective comments. Addition-
ally, since comments themselves are dynamic (with comments be-
ing written at unknown time intervals and reflecting the changing
perspective of different commenters), any proposed automatic clus-
tering approach should be designed to balance stable resource clus-
tering (by considering all possible comments) with timely resource
clustering (by immediately organizing a resource according to the
first comment).

With these challenges in mind, we present a comments-based hi-
erarchical clustering approach for organizing information resources.
Two of the salient features of the proposed approach are its (i)
comment term normalization and key term extraction for distill-
ing noisy comments for effective clustering; and (ii) a real-time in-
sertion component for incrementally updating the comments-based
hierarchy so that resources can be efficiently placed in the hierar-

1130

chy as comments arise and without the need to re-generate the (po-
tentially) expensive hierarchy. Concretely, we study the clustering
approach over the popular video sharing site YouTube. YouTube
is a challenging and difficult environment, notorious for its ex-
tremely short, ill-formed, and often unintelligible user-contributed
comments. Through extensive experimental study, we find that the
proposed approach can lead to effective and efficient comments-
based video organizing even in a YouTube-like environment.

Our main contributions can be summarized as follows:
• We propose to automatically organize information resources

in participatory information environments through comments-
based hierarchical clustering.

• We introduce a comments distillation framework for extracting
core comment features via comment term normalization and
KL-divergence-based key term extraction for enabling effective
clustering.

• We present an adaptive resource insertion component for in-
crementally updating the comments-based hierarchy, leading to
efficient and accurate updates.

• Finally, we evaluate the proposed approach over a large YouTube
video testbed and find that the proposed methods achieve high
quality results while maintaining efficiency.

The rest of the paper is organized as follows. We discuss related
work in Section 5. Section 2 introduces the overview of hierarchi-
cal comments-oriented clustering and outlines two key challenges
to successful clustering. The following two sections – Section 3
and Section 4 – address these two key challenges by introducing
and evaluating methods for distilling user-contributed comments to
an informative core and for adaptively updating the resource hier-
archy via a comments-driven resource insertion component. We
conclude in Section 6 with some final thoughts.

2. PROBLEM STATEMENT
In this section, we present the formal problem statement for orga-

nizing information resources using user-generated comments. Our
goal is to automatically construct a self-organizing hierarchy of
information resources so that the community perspective of com-
ments can drive how resources are grouped and linked. A hier-
archical structure can provide users with more freedom in brows-
ing through different level of granularity, from high-levels grouping
many loosely-related resources to lower-levels with fewer and more
tightly-related resources. Concretely, we approach the problem of
organizing resources (like videos, images, etc.) as a comments-
based hierarchical clustering problem.

2.1 Hierarchical Clustering
A hierarchical clustering algorithm takes as input a set of k re-

sources (e.g., Web documents, images, videos) O = {o1;o2; ...;ok}
and outputs a rooted hierarchical tree (called a dendrogram), such
that each leaf of the tree represents one of the k resources; interme-
diate nodes in the tree represent subclusters of resources (combin-
ing all resources below that node in the tree); and the root of the
tree is a super-cluster containing all k resources. The final hierar-
chical structure is a set of clusters Ω = {ω1;ω2; ...;ωm} where each
cluster node ω has a set of up to c resources ω = {o1;o2; ...;oc} and
two children nodes ω → {ωchild1 ,ωchild2}. All leaf nodes contain
only a single resource |ωlea f | = 1 and no children. Compared to
flat clustering algorithms (like k-means [8], probabilistic models
like Latent Dirichlet Allocation [2], and graph-based approaches
[12]), hierarchical clustering algorithms have the advantage of re-
vealing more structure and allowing greater freedom of navigation

from cluster to cluster (by ascending and descending the hierarchy),
though at the cost of less efficient computation (typically with time
complexity of O(N3)).

Hierarchical clustering algorithms are either bottom-up (agglom-
erative) or top-down (divisive). A divisive clustering algorithm be-
gins with all resources in a single cluster and recursively divides
clusters into sub-clusters until each resource belongs to a leaf node.
An agglomerative algorithm begins with each resource as a leaf
cluster, and subsequently merges clusters until all resources belong
to a single root node. In this paper, we focus on the widely-studied
agglomerative clustering approach illustrated in Algorithm 1.

Algorithm 1 Hierarchical Resource Clustering
1: Assign resource representation using term vector derived from

comments associated with the resource
2: Let each resource o be in a singleton group ω = o.
3: Set all Ω as available for clustering.
4: while |Ωavailable|> 1 do
5: Choose most similar ωα , ωβ ∈ Ωavailable according to sim-

ilarity s(ωα ,ωβ)
6: Mark ωα and ωβ ∈ Ωavailable as “not available”
7: Insert ωα ∪ ωβ into Ω

2.2 Comments-Based Representation
Given the hierarchical clustering algorithm, it is still an open

question as to how to represent each resource and how to determine
which clusters are most similar for merging. We adopt a “bag-of-
words” comments-based resource representation such that each re-
source oi is represented by the text of the n comments associated
with it Ci = {ci1 ;ci2 ; ...;cin}, where each comment ci j has a set of
m terms Tci j = {t1; t2; ...; tm} associated with it. Each resource is
then initially represented as the feature vector v⃗ over all terms in
all comments (we shall revisit this choice in the following section
when we discuss comment distillation for extracting key terms).
Weights can be assigned to each feature using standard measures
like term frequency, TFIDF, etc. As resources merge into clus-
ters ωnew = ωα ∪ωβ , we view each cluster as the average of the
comments-based features: v⃗ωnew = 1

|ωnew| ∑o∈ωnew
v⃗.

To determine which clusters are most similar, we measure the
group-average cosine similarity between resources of two clusters.
Cosine similarity is a similarity measurement between two vectors
– in this case, the vectors associated with clusters v⃗ωα and v⃗ωβ :

cos(⃗vωα , v⃗ωβ) =
v⃗ωα · v⃗ωβ

|⃗vωα |
∣∣∣⃗vωβ

∣∣∣
By normalizing the comment term vector to unit length in the

L2-norm, the similarity of two clusters cos(⃗vωα , v⃗ωβ) is simply the
dot product v⃗ωα · v⃗ωβ . This approach has the advantage of more effi-
ciently computing cluster similarity by reusing similarity measures
at lower levels of the cluster merge hierarchy.

For implementation, we maintain with each cluster ωh a heap of
clusters ordered by largest similarity cos(ωh,ωg) where ωh,ωg ∈Ω.
Thus, for each cluster, we are able to access the most similar cluster
in constant time. The time complexity of the whole procedure is
O(n2log(n)).

2.3 Evaluation Metrics and Dataset
To evaluate the quality of the clusters produced by a hierarchi-

cal clustering algorithm, we need a test dataset and an evaluation
metric.

1131

YouTube Dataset. Since there are no standard comment-oriented
datasets, we collected a sample dataset from YouTube using the
open source Tubekit toolkit [20]. By querying YouTube either with
a randomly selected word from an English dictionary or with a pop-
ular query based on Google Trends (totaling 1,493 queries over
September to November 2009), we sampled 5,676 unique videos.
Along with each video, we extracted the video’s submitter and
the information provided by the submitter – including the title of
the video, a short text description, keywords, and a self-assigned
YouTube category (e.g., News, Politics) – as well as the comments
associated with each video as contributed by the YouTube commu-
nity. The sample dataset consists of 5,676 videos and 11,341,849
total comments.

Measuring Cluster Quality. For evaluation, we can rely on either
external or internal measures of goodness. External measures rely
on a known “gold standard” clustering and compare the results of
the clustering to this known gold standard. Unfortunately, there is
no standard organization for YouTube videos (aside from the very
poor quality YouTube categories, which we discussed shortly). As
a result, we focus on measuring cluster quality through an inter-
nal measurement. Internal measures typically rely on identifying
tight clusters (with high intracluster similarity among resources)
that are far apart (the clusters have high intercluster dissimilarity)
and do not require knowledge of a “correct” clustering. We eval-
uate the quality of the clustering using the Silhouette Coefficient
which combines both of these cohesion and separation properties
into a single metric:

Silhouette(oi) =
(β (oi)−α(oi))

max{β (oi),α(oi)}
where α represents the cohesion of each cluster that the resource
belongs to and β is a separation measurement that compares the
distance to clusters that do not include the target resource:

α(oi,ω j) =

0 if oi /∈ ω j,ω j ∈ Ω
∑x∈ω j

distance(oi,x)∣∣∣Cω j

∣∣∣ if oi ∈ ω j,ω j ∈ Ω

β (oi,ω j) = min{
∑x∈ω j

distance(oi,x)∣∣ω j
∣∣ |∀ω j ∈ Ω,oi /∈ ω j}

The value of Silhouette is between -1 and 1. A positive value
(α(oi) < β (oi)) is desirable because we would like to have higher
similarity for intra-cluster comparisons and lower similarity for inter-
cluster comparisons. The maximum value of 1 can be achieved
when we have α(oi)→ 0. Note that the above equation is designed
for flat clustering. In our study, each resource resides in multiple
nested clusters that have a hierarchical relationship with each other.
To accommodate the nature of this clustering tree, we adjust the
weight of each α based on the number of elements in the cluster.
Intuitively, the closer the cluster is to the root, the more separate it
is for intra-cluster measurement. In order to diminish the degrading
effect from the core quality of the tree, we calculate the average of
the weighted sum of α for each object. We set the weight as the
inverse of the size of the cluster, resulting in a hierarchical Silhou-
ette:

α̂(oi) =
∑ω j∈Ω

w j
1

|Ci|−1 ∗α(oi,ω j)∣∣{ω j|ω j ∈ Ω,oi ∈ ω j}
∣∣

The Silhouette score quantifies the core quality of a hierarchi-
cal tree. It shows how well the elements are positioned so as to

maximize the similarity within each layer of groups as well as the
distance of dissimilar groups.

2.4 Initial Results
Given the baseline comments-based representation, the hierar-

chical clustering framework, and an appropriate evaluation testbed,
we first consider the results of applying this setup to the set of
YouTube videos. As a point of comparison, we compare the results
of the comments-driven hierarchical clustering versus two alterna-
tive approaches:
• By YouTube category: In the first alternative, we group videos

according to their official YouTube category. YouTube provides
the uploader of each video with a pre-set list of 15 categories
to choose from including Education, Entertainment, Gaming,
News and Politics, etc. Such an approach is limited, though,
since the number of predefined categories in YouTube is lim-
ited, resulting in coarse-level categories that provide little dis-
criminative power among related videos. There is also the draw-
back of closely-related videos appearing in different categories
since the category decision is made solely by the video’s up-
loader.

• By YouTube keywords: In the second alternative, we group
videos according to the keywords assigned to each video by
the video’s uploader. Each video is assigned to tag groups if
the video contains the tag. Thus, each video can be assigned
to more than one group for our evaluation process. Intuitively,
tags do a better job than the YouTube category since there is a
higher degree of freedom for video representation. However,
some videos may suffer from having too few tags or from ill-
specified tags (again, because the tag decision is made by the
video uploader only).

In all three cases – by YouTube category, by YouTube keywords,
and by comments – we used the comments-based term vector of
each video for the Silhouette calculation.

Table 1: Comparing Clustering Quality
Silhouette Improvement

By Category 0.139
By Tag 0.186
By Comment 0.556 300% / 198%

As shown in Table 1, we find that the clusters generated based on
categories and on tags have low cohesion among elements (result-
ing in a low Silhouette score) as compared to the quality of clusters
generated by the comments-based approach. Additionally, we per-
formed a t-test to compare the comments-based approach versus
grouping videos by YouTube category (t = 217.7406, p < 0.0001)
and by YouTube tag (t = 198.4679, p < 0.0001). In both cases,
these t-tests show that it is very unlikely to encounter this signifi-
cant difference of cluster quality by chance. Together, these initial
results indicate that there is a fundamental mismatch between what
users are contributing (via comments) and how the resources are
currently organized according to YouTube categories and YouTube
tags. This mismatch indicates an opportunity for clustering over
community-driven commenting to serve as an alternative enhanced
approach for resource organization.

2.5 Challenges
While these initial results are encouraging for indicating that

comments may provide a valuable baseline for grouping related
information resources, we next turn our attention to two key chal-
lenges for the comments-based hierarchical clustering framework:

1132

• First, user-contributed comments range widely in style, quality,
and informativeness. By naively relying on all comments, the
inclusion of all comment terms in the resource representation
can result both in poor quality clustering (by including noisy
and unimportant terms) and in less efficient clustering due to
the large size of the resource vectors. Can we improve on the
baseline performance to deal with these challenges?

• Second, user-contributed comments are constantly being added
to Web resources, meaning that a perfectly satisfactory cluster-
ing may become stale as new resources are commented on and
as the comment focus of existing resources changes. How can
new resources be efficiently inserted into the existing resource
organization framework? Since it can be expensive to re-cluster
all resources as new comments and new resources are added, we
must be careful to balance overall cluster quality with support
for fast updates.

In the following two sections, we address these two challenges in
turn, toward the goal of an adaptable and efficient comments-driven
hierarchical resource organization.

3. COMMENT DISTILLATION
In this section, we study two approaches for distilling comments

to their core “essence” through comments-oriented dimensionality
reduction. Concretely, the first component is comment term nor-
malization for compacting variants of terms into their user-intended
root form. The second component is key term extraction for iden-
tifying and extracting highly informative terms from the comments
for succinctly summarizing a resource.

3.1 Comment Term Normalization
Our first observation is that user-contributed comments typically

contain large numbers of misspellings (often intentionally) and slang.
Misspellings can be divided into unintentional typos (e.g., “wacth,
watc, watcing” → “watch”) and intentionally misspelled words.
From our YouTube dataset, some examples of this type are:
• reallyr, reallyreally reeeeeeaaaaaaalllllllllllllllllllllllllllllllllli,

reeeeeeaaaaaaalllllllllllllllllllllllllllllllllly → really
• cuuutte, cuuuttee, cuuuuutest, cutee, cuteeee, cuteeeee, cute-

ness → cute
This type of irregular spelling is very common in user comment-

ing systems. Our goal is to map these user-contributed terms to
their common root term so that (i) we can consider multiple forms
of a term as similar to semantically merge them; and (ii) so that we
can compress the size of the resource vectors v⃗ for more efficient
resource clustering.

We could rely on traditional stemming approaches popularized
in the information retrieval community [17]. These stemmers are
typically designed to collapse variants of correctly spelled terms to
a common root (e.g., “buying”, “buys” → “buy”) and so are not
appropriate for this task since many semantically related terms –
“cutee” and “cuuutte” – do not share the same suffix. Alternatively,
traditional spell checking approaches typically compare encoun-
tered words against a known list of correctly spelled words (i.e.,
the dictionary). Most domains such as search queries, email, and
document composition are straightforward in terms of the “correct
spelling” term corpus. These approaches – including using prob-
ability theory1, incorporating query log [3], and machine learning
approach [7] – are typically not designed to tolerate the type of
unseen user-contributed words and intentional misspellings in user
commenting systems.
1http://norvig.com/spell-correct.html

Toward the goal of normalizing comments terms, we propose
a comment-tailored spell corrector. Since users may use standard
words, newly invented slang, and intentionally misspelled words,
we need to develop a spell correcting engine that can map mis-
spelled words to a base term. Additionally, such a spell correc-
tor should be able to identify slang terms and record them as new
words in the dictionary rather than considering them as misspelled
variants of existing words. In our Comment Term Normalization,
we say that a standard English word is a term that can be found
in the standard English dictionary; A non-standard English term is
slang that people use as special Internet language; A variant term
is either an intentional or unintentionally misspelling.

The comments-based term normalization algorithm is shown in
Algorithm 2. For preprocessing, we remove stop words and ap-
ply Porter’s Stemmer (step 3 & 5). We need a customized Com-
ment Term Dictionary (CTD) originally set to empty. During the
processing of comments, terms may push in or pop out from the
CTD. Entering the main procedure, we examine each remaining
term sequentially. Firstly, a standard English dictionary is used to
identify whether it is a standard English term or not. If positive,
we add this term to our CTD and identify its variants from the ex-
isting CTD terms which were marked as “non-standard” using the
Jaccard Coefficient (JC) (step 10 & 11). Otherwise, we apply the
Jaccard Coefficient to check whether this term is a variant of any
of the existing CTD standard terms (step 15). If so, the root form
of this term is found. Otherwise, we insert this term into CTD and
mark it as a non-standard term (step 20). Before each non-standard
term is clarified as a variant of a newly discovered standard term,
it is treated as a slang term and placed in the CTD like all other
standard English words.

Algorithm 2 Comment Term Normalization
1: for v = 1 to all resources do
2: for c = 1 to all comments ∈ v do
3: remove stop words
4: Encounter a term t parsed from a comment
5: apply Porter stemming on t
6: if t ∈CT D then
7: return t
8: else
9: if t ∈ standardEnglishword then

10: Insert t into CTD
11: check JC of all non-standard term in CT D to find a

list of variants of t =⇒ γ
12: if γ¬ /0 then
13: attach γ to the variants list of t
14: else
15: check JC of all standard term in CT D to find the term

that t is the variants of =⇒ χ
16: if χ found then
17: attach t to the variants list of χ
18: return χ
19: else
20: Insert t into CT D and mark as non-standard term
21: return t

The Jaccard Similarity Coefficient is used in our algorithm to
determine whether a term is a variant of another recorded term in
CTD. The implementation operates at a token level, comparing two
terms by first tokenizing them and then dividing the number of to-
kens shared by the terms by the total number of tokens. Concretely,
each term t is tokenized into n characters Φt = {α1,α2, ...,αn}.

1133

J(Φt1|Φt2) =
|Φt1 ∩Φt2|
|Φt1 ∪Φt2|

We calculate the Jaccard Similarity Coefficient between the en-
countered term t and each term recorded in the CTD dictionary.
Whenever this comparison is needed, we return the term with the
highest Jaccard value which must also exceed a threshold of 0.8.

3.2 Key Term Extraction from Comments
In this section, we want to show that user generated comments

are valuable in terms of identifying hidden information that may
not be contained in the information resource itself (e.g., in the text
of a news article) or in the metadata associated with the resource
(e.g., the title, description, category, and keywords for YouTube
videos that are provided by the video’s uploader). In contrast to a
single perspective provided by the author of a resource, mass con-
tributed user comments may provide additional perspectives on the
concepts associated with a resource and by mining these comments,
we may find a concise summary for representing each resource for
the purposes of hierarchical clustering.

However, as what has been observed previously [10, 13], com-
ments are typically messy and unstructured. Among all the terms
used in comments only some may be truly informative or represen-
tative of the resource itself. Intuitively, as a first step toward ex-
tracting the terms from each resource’s set of comments that can be
used to represent the resource itself, we propose to rank the terms
using the standard TFIDF weighting.

Formally, we define TFIDF as follows:
• tf: The term frequency is defined as the number of times a given

term i appears in a set of comments of a resource j

t fi, j = ni, j

• idf: The inverse document frequency is obtained by dividing the
total number of resources k by the number of resources contain-
ing the term, and then taking the logarithm of that.

id fi = log
k

|{o j : ti ∈C j}|

However, it is not clear how many terms are necessary to suf-
ficiently represent the underlying resource. Toward optimizing a
top-k number of terms to choose, as ranked by TFIDF, we ob-
serve that choosing too many terms (a large k) may introduce too
much noise and lead to poor clustering, whereas choosing too few
terms (a small k) may be insufficient to capture the essence of the
comments. On the other hand, defining a strict threshold TFIDF
value for keyword consideration (e.g., consider all terms with a
TFIDF above some threshold) may result in a skewed selection
of terms across resources, since the term TFIDF distribution may
vary greatly. Therefore, we propose a dynamic selection criterion
to identify an appropriate number of representative terms for each
resource.

3.2.1 Using KL-Divergence To Identify Key Terms
As discussed earlier, it is not wise to apply the same rule for term

selection to each resource. To select the right amount of terms, or
more precisely, best set of words from usually thousands of unique
comment terms, we want to develop a new approach that is as dy-
namic in nature as the comments of the online resources, in our
case, the YouTube videos. A logical starting point is to rank each

of our comment terms of a video by their TFIDF value, which rep-
resents the importance of words for each resource. Once we ob-
tain this rank list, we want to find the cutting point tailored for
each resource accordingly. Here, we apply the Kullback-Leibler
divergence technique to measure the discriminating power of the
keywords parsed from the user generated comments. For each re-
source, we start with an empty set of keywords. Iteratively, we
add the most important terms from the rank list to our keyword set
and calculate the KL-Divergence of the current representation over
the average term representation in our corpus. The idea of find-
ing the cutting point θ is that, once the distinguishing power does
not increase anymore, this subset of keywords can best describe the
video and distinguish itself from other resources. Any further in-
clusion of terms with lower TFIDF may diminish the quality of the
resource representation. Concretely, the KL-Divergence calculates
the information gain of using a language model θ1 over the base
language model θ2.

KL(θ1|θ2) = ∑
w

p(w|θ1)log(p(w|θ1)/p(w|θ2)) (1)

where in our case, θ1 is the comments-based language model of
a resource when only considering the top-k terms and θ2 is the
overall comments-based language model using the average TFIDF
of each term in the corpus.

After we preprocess the dataset and calculate Equation 1 for ev-
ery term in each resource, we identify the appropriate number of
discriminating comment terms for each resource by Equation 2.

δvi = argmax(k,KL(θ k
1 |θ2)) (2)

At the end, we extract the terms ranked from 1 to δ in the term
TFIDF ranked list to represent the community view of hidden con-
cepts of each resource.

3.3 Evaluating Comment Distillation
We next evaluate the impact of comment term distillation both in

terms of the sizes of comment vectors and in terms of the impact
on cluster quality.

Comment Vector Compression. Recall that the first goal of com-
ment distillation is to reduce the potentially large and noisy com-
ment term vectors to an informative core, resulting in more robust
and efficient clustering. Starting with the 11,341,849 total com-
ments in the YouTube dataset, we first identify 274,055 unique
terms. Applying the Comment Term Normalization algorithm of
Section 3.1 results in a reduced set of 120,558 terms, 56% savings
(see Table 2).

Table 2: Compression: Comment Term Normalization
Number of terms

Without comment normalization 274,055
With comment normalization 120,558
Percent change 56%

We next apply the dynamic Key Term Extraction approach de-
scribed in Section 3.2, which achieves another 67% savings in terms
of the total terms extracted from user comments (see Table 3).

To further explore the dynamic Key Term Extraction, we show
in Figure 1 the distribution of compression rates after applying the
KL-Divergence approach for selecting discriminating keywords.
About 800 of the 5,676 unique videos achieve more than a 95%
compression rate. Even in the worst case, the KL-Divergence ap-
proach results in a 15% compression rate. We see that most videos

1134

Table 3: Compression: Key Term Extraction
Number of terms

With comment normalization 120,558
Using key term extraction 39,229
Percent change 67%

0 20 40 60 80 100 120
0

50

100

150

200

250

300

Compression Rate

F
re

qu
en

cy

Figure 1: Compression rate of keywords considering using KL
Divergence approach over all available comment terms of each
video

are within the compression rate of 30% to 50%, meaning that about
1/3 to 1/2 of all comment terms can be disregarded by the cluster-
ing algorithm. We find that the compression rate has a positive
correlation (0.75) with the number of unique terms appearing in
the comments of a video.

Impact on Clustering. We have seen how the two comment term
distillation techniques can reduce the size of the comment vectors.
We next explore the impact of these techniques on the quality of
clustering.

We first consider the impact of comment normalization in Ta-
ble 4. The first row shows the quality of the clustering structure
using all raw terms from the user comments to construct the vec-
tor representation for each resource. The second row of the table
shows the case where we applied comment normalization, resulting
in a 20% increase in the quality of clustering. We additionally ap-
plied a t-test to compare the two cases, with a significant difference
(t=28.6145, p < 0.0001). These results show that comment normal-
ization can improve the quality of clustering by reducing the noise
in comments.

We next consider the impact of key term extraction on clustering
quality. Following by the term normalization is the experimental
performance of various ways on further feature selection for video
representation. We compare a baseline with no key term extraction
against three alternatives – the first is a threshold-based approach,

Table 4: Clustering Quality: Impact of Comment Term Nor-
malization

Silhouette Improvement
Without normalization 0.556
With normalization 0.670 20%

Table 5: Clustering Quality: Key Term Extraction
Silhouette Improvement

Baseline 0.670
Threshold=0.5 0.689 3%
Threshold=1 0.700 4%
Threshold=5 0.694 4%
Top-50 0.747 11%
Top-100 0.691 3%
Top-500 0.701 5%
Dynamic (KL) 0.764 14%

where all terms with a TFIDF score higher than a particular thresh-
old are extracted; the second is a top-k approach, where all terms
ranked in the top-k according to TFIDF are extracted; the final ap-
proach is the KL-Divergence based approach for dynamically se-
lecting key terms based on their informativeness. Table 5 shows
that KL-Divergence approach results in the best overall clustering
performance, indicating that Key Term Extraction is important for
improving the quality of resource representation. We additionally
tested the statistical significance of the KL-Divergence approach
(t = 6.7542, p < 0.0001) and find that it is, indeed, a significant
improvement.

4. INCREMENTAL COMMENTS-DRIVEN RE-
SOURCE INSERTION

Algorithm 3 Incremental Resource Insertion
1: Build an initial Hierarchical Agglomerative Clustering tree T

(dendrogram) over a baseline set of information resources
2: for all resources to be inserted do
3: for 10 random walkers do
4: place the incoming new resource x at the root of T
5: while current node is not the leaf do
6: compute ŝ1 , ŝ2 , ŝ3
7: if ŝ1 or ŝ2 is the largest then
8: (Figure 2(b) explains this case)
9: insert the new resource o into cluster C1/C2

10: set C1/C2 as current node
11: else
12: (Figure 2(c) explains this case)
13: create a new cluster N2 to include video o
14: create a new cluster N1 to include all resources in

cluster C and N2
15: set C and N2 as children of N1
16: connect N1 to the parent P
17: stop traversing
18: x arrives at a leaf node.
19: Figure 2(d) explains this case
20: create a new node N2 to hold x
21: create a new node N1 to hold N2 and C
22: choose the route from the best random walker

Using Algorithm 1, we can develop a hierarchical structure for
a collection of resources by applying the comments-based resource
representation and the comment distillation techniques introduced
in the previous section. However, we find it is not practical to run
the clustering algorithm every time a new resource is added to the
system or when new comments are contributed. As a step toward
overcoming this challenge, we propose to incrementally add new
resources to an existing hierarchy, so that expensive re-clusterings

1135

(a) Adding x to Tree. (b) max = s(x,c1/c2) (c) max = s(c1,c2) (d) leaf case

Figure 2: Resource Insertion Traversal Rule

are reduced.
Suppose we have initially built a dendrogram (the rooted hier-

archical tree that is the output of the hierarchical clustering algo-
rithm) with a base set of information resources using Algorithm 1.
Now we want to insert a new resource x into the dendrogram with-
out having to re-cluster the entire collection of resources. Our intu-
ition is that a new resource alone will not require a full re-clustering
and will most likely fit into one of the existing nodes of the dendro-
gram or require only a small change to the dendrogram. Over time,
the accumulated errors of introducing many new resources may re-
sult in a “concept drift” of the overall hierarchy, necessitating the
need for a full (or at least partial) re-clustering. Our goal is to re-
duce these errors by making good insertion decisions, so that the
need to re-cluster is reduced.

We propose to incrementally insert a new resource into the tree
by starting at the root of the tree and then descending the tree ac-
cording to a greedy selection mechanism to select the best path.
After descending the tree, the resource will be incorporated into
the tree, leading to a new cluster tree until the next resource is in-
serted. Algorithm 3 shows the rules for incoming resource node
traversal and the related data structure updating. At each step, x
will make a binary selection to find the best path as it descends the
tree. The time complexity of this approach is O(k*N) if we have k
new resources and N resources in the original dendrogram T .

We now begin with a deterministic approach which compares the
comments-based resource representation of x against the current
cluster model at that point in the tree, selecting the route that has
the highest similarity value:

1. • ŝ1 = similarity(x,C1)
• ŝ2 = similarity(x,C2)
• ŝ3 = similarity(C1,C2)

Such a route traversal can result in a poor quality placement of
the new resource if the greedy route results in a local maximum
(that is, there may be a better placement in the tree through a route
that initially looks less promising to the greedy selection mecha-
nism). To overcome this problem, we consider a set of probabilis-
tic random walkers that descend the tree in an effort to increase
the coverage of possible placement locations for the new resource.
Concretely, there are three extra steps in place of the deterministic
model comparison.

1. • s1 = similarity(x,C1)
• s2 = similarity(x,C2)
• s3 = similarity(C1,C2)

2. assign 3 to the max(s1,s2,s3), 2 to the median(s1,s2,s3), 1
to the min(s1,s2,s3) and get s̄1,s̄2,s̄3

Figure 3: Clustering Performance for Incremental Resource
Insertion

3. produce three random numbers, p1, p, p3 between 0 and 1

4. ŝ1 = p1∗ s̄1, ŝ2 = p2∗ s̄2, ŝ3 = p3∗ s̄3

The time complexity for this binary comparison approach O(k *
10* log N) if we set up 10 random walkers for selecting the best
route. Of course this is an approximate algorithm for finding the
best position in the tree for the incoming resource, but without the
cost of an exhaustive search of the tree.

4.1 Evaluating Incremental Insertion
Our goal is to understand how many resources are necessary to

build the initial tree so that the incremental resource insertion still
results in high-quality clustering. In the best case, we would need
only an empty initial tree; in the worst case, nearly all resources
would be necessary to build the initial tree, meaning that the incre-
mental insertion could only rarely be performed.

To experimentally evaluate incremental resource insertion, we
first built an initial dendrogram using a varying k number of re-
sources (YouTube videos) and then inserted the remaining N − k
resources using the approach described in the first part of this sec-
tion. We evaluated the quality of the clustering using the Silhouette
measure against a gold standard in the case when all N resources
are used to build the dendrogram. We repeated this experiment 10
times and report the average results in Figure 3. After an initial im-
provement as the number of resources in the initial tree increases,
we see that the quality of clustering stabilizes at around 300 re-
sources, indicating that using just a fraction of resources (300 out
of more than 5,000) to build the tree can result in good quality clus-
tering.

5. RELATED WORK

1136

The impact of user-contributed metadata such as tags, ratings and
comments has been explored in several related works. For exam-
ple, researchers have incorporated information extracted from com-
ments to increase search accuracy, e.g., [23]. They discovered that
comments can further distinguish relevant videos from each other
especially on popular videos where the comment set is large. Oth-
ers have investigated approaches for summarizing user-contributed
content for better visualization and navigation, e.g., in cloud-style
summaries [9]. Along this line, [14] incorporates user contributed
comments in the data cloud generation process. Some other re-
searchers have explored using user-generated tags and comments
for flat clustering, e.g., [18] and [16].

An incremental hierarchical clustering algorithm on text docu-
ments as discussed in [19]. This algorithm inherited from a non-
text incremental hierarchical clustering algorithm called COBWEB
by Fisher [5]. In order to adapt the algorithm for text domain, they
assume the word occurrences follow the Katz’s distribution. Their
approach is different from ours. The difference is that they have an
incremental approach start with an empty tree. As documents ar-
rive, the tree is expanded leaves are added, merged, split, etc. That
is, starting with an empty tree, N documents arrive; you end up with
a final tree where all N documents live in each leaf in the tree. On
the other hand, our approach is to take N documents, do an initial
hierarchical clustering to derive an unbalanced binary tree. As new
documents arrive we insert them to the tree incrementally.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have explored the use of user-contributed com-

ments as a basis for organizing information resources in a hierar-
chical fashion. We have proposed using comment term normaliza-
tion and key term extraction via KL-Divergence for distilling noisy
comments for effective clustering. We also developed an incre-
mental insertion component for updating the comments-based hi-
erarchy so that resources can be efficiently placed in the hierarchy
as comments arise and without the need to re-generate the (poten-
tially) expensive hierarchy. Our experimental study over YouTube
provides evidence that the proposed approach can lead to effective
and efficient comments-based video organizing even in a YouTube-
like environment. As part of our future work, we are interested in
to integrate these results as part of our broader research effort to
build enhanced Social Web information management applications
that leverage this social collective intelligence.

7. ACKNOWLEDGMENTS
We thank Jia-Hao Fan for his discussions on the Incremental

Comments-Driven Resource Insertion algorithm. We also thank
the three anonymous reviewers for their valuable feedback.

8. REFERENCES
[1] F. Beil, M. Ester, and X. Xu. Frequent term-based text

clustering. In the 8th international conference on Knowledge
discovery and data mining, pages 436–442, 2002.

[2] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet
allocation. pages 993 – 1022, 2003.

[3] S. Cucerzan and E. Brill. Spelling correction as an iterative
process that exploits the collective knowledge of web users.
In the Conference on Empirical Methods in Natural
Language Processing, 2004.

[4] P. Ferragina and A. Gulli. A personalized search engine
based on web-snippet hierarchical clustering. In the 14th
international conference on World Wide Web, pages
801–810, 2005.

[5] D. Fisher. Knowledge acquisition via incremental conceptual
clustering. pages 139–172, 1987.

[6] B. C. Fung, K. Wang, and M. Ester. Hierarchical document
clustering using frequent itemsets. In the international
conference on data mining, 2003.

[7] A. R. Golding and D. Roth. A winnow-based approach to
context-sensitive spelling correction. pages 107–130, 1999.

[8] J. A. Hartigan and M. A. Wong. A k-means clustering
algorithm. JSTOR: Applied Statistics, pages 100–108, 1979.

[9] Y. Hassan-Montero and V. Herrero-Solana. Improving
tag-clouds as visual information retrieval interfaces. In
International Conference on Multidisciplinary Information
Sciences and Technologies, 2006.

[10] C.-F. Hsu, E. Khabiri, and J. Caverlee. Ranking comments
on the social web. In International Conference on Social
Computing, pages 90–97, 2009.

[11] M. Iwayama and T. Tokunaga. Hierarchical bayesian
clustering for automatic text classification. In the 14th
international joint conference on Artificial intelligence,
pages 1322–1327, 1995.

[12] I. Jonyer, D. J. Cook, and L. B. Holder. Graph-based
hierarchical conceptual clustering. pages 19–43, 2002.

[13] E. Khabiri, C.-F. Hsu, and J. Caverlee. Analyzing and
predicting community preference of socially generated
metadata: A case study on comments in the digg community.
In the 3rd International Conference on Weblogs and Social
Media, 2009.

[14] G. Koutrika, Z. M. Zadeh, and H. Garcia-Molina. Course
cloud: Summarizing and refining keyword searches over
structured data. In Stanford Infolab, Technical Report, 2009.

[15] K. Kummamuru and R. Lotlikar. A hierarchical monothetic
document clustering algorithm for summarization and
browsing search results. In the 13th international conference
on World Wide Web, 2004.

[16] B. Li, S. Xu, and J. Zhang. Enhancing clustering blog
documents by utilizing author/reader comments. In the 45th
annual southeast regional conference, pages 94–99, 2007.

[17] M. F. Porter. An algorithm for suffix stripping. Readings in
information retrieval, pages 313–316, 1997.

[18] D. Ramage and P. Heymann. Clustering the tagged web. In
2nd International Conference on Web Search and Data
Mining, pages 54–63, 1991.

[19] N. Sahoo and J. Callan. Incremental hierarchical clustering
of text documents. In the 15th international conference on
Information and knowledge management, pages 357–366,
2006.

[20] C. Shah. Tubekit: a query-based youtube crawling toolkit. In
the 8th conference on Digital libraries, pages 433–433, 2008.

[21] V. Torra, S. Miyamoto, and S. Lanau. Exploration of textual
document archives using a fuzzy hierarchical clustering
algorithm in the gambal system. Inf. Process. Manage., 2005.

[22] R. Weiss, B. Vélez, and M. A. Sheldon. Hypursuit: a
hierarchical network search engine that exploits content-link
hypertext clustering. In the the 7th ACM conference on
Hypertext, pages 180–193, 1996.

[23] W. G. Yee, A. Yates, S. Liu, and O. Frieder. Are web user
comments useful for search? In 7th Workshop on
Large-Scale Distributed Systems for Information Retrieval,
2009.

1137

