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Abstract

In this paper, we investigate the impact of spatial vari-
ation on the construction of location-sensitive user pro-
files. We demonstrate evidence of spatial variation over a
collection of Twitter Lists, wherein we find that crowd-
sourced labels are constrained by distance. For example,
that energy in San Francisco is more associated with the
green movement, whereas in Houston it is more associ-
ated with oil and gas. We propose a three-step frame-
work for location-sensitive user profiling: first, it constructs a
crowdsourced label similarity graph, where each labeler and
labelee are annotated with a geographic coordinate; second, it
transforms this similarity graph into a directed weighted tree
that imposes a hierarchical structure over these labels; third,
it embeds this location-sensitive folksonomy into a user pro-
file ranking algorithm that outputs a ranked list of candidate
labels for a partially observed user profile. Through extensive
experiments over a Twitter list dataset, we demonstrate the
effectiveness of this location-sensitive user profiling.

Introduction
User profiles are a valuable component of many appli-
cations, including recommender systems, search engines,
question-answering systems, and online social networks.
These profiles provide insight into the interests and exper-
tise of each user, and can lead to improved personalization
of the underlying system (Liu et al. 2012a; Majumder and
Shrivastava 2013; Weng et al. 2010). Many systems rely on
an explicit definition of a user profile – for example, by fill-
ing in an “About” section in a social media profile or by
directly selecting topics of interest on a question-answer
system. Alternatively, implicit user profiles can be uncov-
ered through methods like query log mining, running Latent
Dirichlet Allocation (LDA) over a user’s posts, or by apply-
ing matrix factorization approaches to identify hidden (or la-
tent) topics of interest (Hong, Doumith, and Davison 2013;
Jiang et al. 2012; Yin et al. 2014; Zhong et al. 2015). In
a complementary direction, recent years have seen the de-
velopment of crowdsourced user profiles construction, e.g.,
(Bhattacharya et al. 2014; Ghosh et al. 2012; Rakesh et al.
2014). In this scenario, crowds of users apply descriptive
labels on other users, so that in the aggregate these labels
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provide a crowdsourced user profile of the target user. For
example, Twitter Lists and LinkedIn’s Skill tags provide par-
tial perspective on what users are known for by aggregating
crowd labeling knowledge. However, the vast majority of
users have no crowd labels; their expertise are essentially
hidden from important applications such as personalized
recommendation, community detection, and expert mining.

In this paper, we aim to extend the reach of these crowd-
sourced methods, so as to construct robust user profiles
for the long-tail of users for whom we have incomplete
labels. A natural approach to extend the reach of these
crowd-generated labels is to apply existing tag recommenda-
tion methods (Brooks and Montanez 2006; Heymann, Ram-
age, and Garcia-Molina 2008; Sigurbjornsson and Van Zwol
2008; Tuarob, Pouchard, and Giles 2013; Xia et al. 2013).
However, many of these approaches have viewed tag rela-
tionships without regard for the local variations that are in-
herent in real-world crowdsourced labels of users. For ex-
ample, we find in a sample of Twitter Lists that the la-
bel energy in San Francisco is more associated with the
green movement, whereas in Houston it is more asso-
ciated with oil and gas. These spatial variations are a
critical component of crowdsourced labels and require care-
ful consideration. Beyond just the presence of different re-
lationships across locations, there is often a variation in the
strength of this relationship from location to location. For
example, stock and finance are more closely related
in New York City than in Portland. Further, there is even
a potential for varying location-specific senses of a tag (pol-
ysemy). For example, the tag rockets in the Houston area
may be associated with the local NBA team instead of other
senses of the word.

Hence, we explore the impact of spatial variation on the
construction of location-sensitive user profiles. Our main in-
tuition is that spatial variation over crowdsourced labels can
be modeled in a location-sensitive folksonomy to provide
a comprehensive and up-to-date picture of location-aware
topics, topic relations, and a fine-grained topic level view
of the social media corpus, which may mitigate the sparsity
inherent in the raw labels. Recent studies (Zhu et al. 2015;
Wang et al. 2015) have shown how hierarchical topic struc-
tures can improve ranking and recommendation, indicat-
ing the importance of folksonomies. Thus, we aim to study
the impact of location-sensitive hierarchical structures of



Figure 1: Overall approach: constructing location-sensitive user profiles from crowdsourced labels

crowdsourced tags on user profiling.
Concretely, we propose an approach for location-sensitive

user profiling as illustrated in Figure 1. First, we construct
a crowdsourced label similarity graph induced from crowd-
sourced labels, where each labeler and labelee are annotated
with a geographic coordinate; this similarity graph varies by
location to capture spatial variations of the kind identified
above (e.g., the similarity graph for San Francisco will link
energy with green movement). Second, we transform
this similarity graph into a directed weighted tree that im-
poses a hierarchical structure over these labels, such that
labels like sports are higher in the tree, whereas labels
like rockets are lower, thereby providing finer granularity
for building user profiles. Finally, we embed this location-
sensitive folksonomy into a user profile ranking algorithm
that outputs a ranked list of candidate labels for a partially
observed user profile. Through extensive experiments over a
Twitter list dataset, we demonstrate the effectiveness of this
location-sensitive user profile estimation.

Related Work
In this section, we highlight several research directions that
inform the work presented here.
User and Resource Profiling. User profiling is critical for
enabling effective information services. Many efforts are de-
voted to profile a user’s topic interest for applications in
personalized search (Qiu and Cho 2006), targeted advertise-
ment (Ahmed et al. 2011), social media (Zhao et al. 2015),
and expert search (Ribeiro et al. 2015). Many other research
efforts aim to reveal users’ demographic information like
age and gender (Ikeda et al. 2013; Li, Ritter, and Hovy 2014;
Li, Wang, and Chang 2014). For example, Li et al. (Li,
Wang, and Chang 2014) propose a co-profiling approach to
profile users’ attributes like employer, college, and circles of
friends in a joint fashion.

Meanwhile, another line of research focuses on recom-
mending tags to resources, targeting the sparsity of collabo-
rative tagging in order to construct comprehensive tag pro-
files (Sigurbjornsson and Van Zwol 2008; Tuarob, Pouchard,
and Giles 2013; Xia et al. 2013). Some proposed ap-
proaches are based on topic models, association rule mining,
and context information (Heymann, Ramage, and Garcia-
Molina 2008; Krestel, Fankhauser, and Nejdl 2009; Tuarob,
Pouchard, and Giles 2013). Later works construct hierarchi-
cal folkonomies to assist resource tag prediction (Song, Qiu,
and Farooq 2011; Verma et al. 2015). In our work, we lever-

age location-sensitive folksonomy for user profiling and we
adopt a learning to rank approach that automatically weighs
a group of factors to minimize the prediction error.

Folksonomy Construction. Considerable research has been
devoted to folksonomy generation (Heymann and Garcia-
Molina 2006; Plangprasopchok and Lerman 2009; Schmitz
2006; Rego, Marinho, and Pires 2015; Brooks and Montanez
2006; Liu et al. 2012b). Many approaches consider the co-
occurrence of tag pairs (Heymann and Garcia-Molina 2006;
Schmitz 2006; Song, Qiu, and Farooq 2011). Generally, they
first identify subsumption relations of tag pairs using unsu-
pervised approaches and then prune these relations into a
tree. Our method differs in two key aspects: (i) we are con-
structing a location-sensitive foklsonomy that models the
knowledge structures focused on a particular location; and
(ii) we propose to induce the folksonomy using an optimiza-
tion algorithm that best conserves the graph structure.

Geographic Influence. The impact of geographical dis-
tance has been widely studied for online social interactions
(Kaltenbrunner, Scellato, and others 2012; Scellato et al.
2011). Additionally, there are also studies of spatial vari-
ation over query logs and social media, e.g., (Backstrom
et al. 2008; Brodersen, Scellato, and Wattenhofer 2012;
Cheng, Caverlee, and Lee 2010; Hu, Sun, and Liu 2014;
Zhang et al. 2012). Our intuition is that due to the geo-
graphic, cultural, and structural differences among locations,
there could be corresponding differences reflecting how peo-
ple organize information in these locations.

Location-Sensitive User Profiling
Our overarching goal is to estimate high-quality user pro-
files that respect this observed spatial variation. We assume
some partial coverage of users via existing crowdsourced
tags (e.g., from Twitter Lists or LinkedIn’s Skill Tags), but
that many tags are unknown. That is, given a user u’s full
(but hidden) tag profile P (u), we have visibility only to
some portion of this profile Pk(u) where Pk(u) ⊂ P (u).
The goal is to estimate the unseen tags ti of u where ti ∈
P (u) − Pk(u). Our intuition is that the spatial variation
of how tags are applied can be carefully modeled to create
high-quality user profiles.

Spatial Variation in Crowdsourced Labels
In this section, we provide data-driven evidence for spatial
variation in crowdsourced labels from a collection of Twitter



Figure 2: Probability of tagging as a function of distance
between labeler and user.

lists (described more fully in Experiments). Twitter lists are
one form of crowdsourced tagging, whereby individual users
can add other users to a curated list annotated with a name.

How does distance impact tagging?
We begin by investigating in Figure 2 the impact of distance
on the probability that a list labeler will include another user
on a list. We observe that the probability of tagging is ex-
ponentially decaying with distance, which indicates a user
is less likely to be tagged by a labeler as the distance be-
tween them increases. This spatial locality is a well-known
property of many offline relationships and has been con-
firmed repeatedly even in online scenarios where distance is
not inherently a limiting factor. This locality of tagging sug-
gests that a method for user profile prediction that is induced
from these crowd-based tags should reflect local knowledge;
that is, since tags are not uniformly applied across distances,
there may exists local variations of interest.

Example location-sensitive relationships.
We consider the relationships between pairs of labels across
different locations in our dataset. Representing each tag as
a location-specific vector (see the following section for ad-
ditional details), we show in Figure 3 the relationships of
a group of tag pairs at multiple locations using cosine sim-
ilarity. The x-axis shows each tag pair and each color bar
represents the similarity at a location. We observe that the
magnitude of tag-pair relations varies across different loca-
tions. For example, we find the similarity between general
concepts like nba and basketball tends to be relatively
even across locations, with London having the lowest value;
finance and stock have highest confidence in New York
while lowest in Houston. Another typical example is the
similarity between energy with green and oil. Interest-
ingly, we notice energy and oil have the strongest rela-
tionship in Houston, while energy and green bond clos-
est in San Francisco. This fits our understanding of these lo-
cations, since Texas is a major oil and gas hub, while San
Francisco is a more eco-friendly community. These phe-
nomena suggest location-sensitive user profiling has poten-
tial to reflect the characteristics of these locations.

Next, we shed light on the three-step framework (as

Figure 3: Example Tag Pairs Similarity.

shown in Figure 1).

Crowdsourced Label Similarity Graph
Given a group of users U = {u1, u2, ..., un}, where each
user u is associated with a geographic coordinate lu and a
tag profile Pu which contains a variable number of (tag, fre-
quency) pairs {(t1, f1), (t2, f2), ...}. Our goal is to build a
location-sensitive tag similarity graph from these profiles.

We begin by proposing a distance weighting scheme
which weights the profile tags of a user according to how
far this user is from the target location. Our intuition is a
distant labeler is considered less knowledgeable about local
users. We adopt a model popularized in the GIS literature
– the zone of indifference model – for capturing this spatial
influence. The key idea is to combine the inverse distance
with a fixed distance band model. In this model, all users
within the distance band are considered equally important
and once beyond the threshold distance, a user’s influence
drops off quickly following an exponential rate. We empiri-
cally set the distance band as 50 miles for large cities, which
defines a circle area centered at the target location. Hence,
the weight of a user w.r.t the target location lt is

wu(lt) =

{
1 if d ≤50
(d−5050 )−α else

where d is the distance from a user’s location lu to lt and α
is a constant, set experimentally. Thus, we utilize the whole
dataset for constructing the location-sensitive folksonomy
for each location. This avoids the sparsity issues that may
arise (if we were to build a location-sensitive folksonomy
using only locally-available tags) and mitigates data imbal-
ances across locations (so a smaller city is not penalized in
folksonomy creation relative to a larger city). We represent
each tag ti at target location lt as a tf-idf vector of the users
who are labeled with the tag, and each user is weighted by
her corresponding influence wu(lt): t

′

i = ti ·wi. Tag vec-
tors vary in each location according to the users and weights.

With these tag vectors t
′

i, we then construct a directed tag
similarity graph. We compare four similarity measures for
tag pairs. Three are symmetric measures including cosine,
RBF kernel, and pointwise mutual information (PMI). The



fourth measure is imbalanced (meaning the strength of one
tag to a second tag is not necessarily the same as in the re-
verse situation) and based on a modified version of the tradi-
tional association rules notion of confidence (what we term
modified confidence, or MConf).

Modified confidence. Finally, we adopt the idea of confi-
dence from association rule mining which has been used for
inferring subsumption relations between tags. Since instead
of predicting very general tags, we would like to predict tags
that are as specific as possible. Thus we propose a modified
confidence metric (ti ⇒ tj):

MConf(ti ⇒ tj) =
C(ti, tj)

F (ti)
·(1− |log(F (tj))− log(F (ti))|

log(maxF )
)

where C(ti, tj) = min(f1, f2) is the co-occurrence fre-
quency of the tag pair, F (ti) =

∑
u fi is the overall fre-

quency of ti in the corpus and maxF is the overall fre-
quency of the most used tag in the corpus. Here we use con-
fidence as a criteria for ordering tags and we only consider
confidence for cases that conf(ti ⇒ tj) ≥ conf(tj ⇒ ti).
The reason of multiplying a weight is to avoid connecting
tags with large frequency difference as mentioned in the sec-
ond drawback. Even if confidence is high, there might be
some intermediate nodes that fit between the nodes. As tag
frequency versus number of tags follow a power law distri-
bution, we model frequency difference with damping factor
which is a fraction in log scale. When there is no frequency
difference, the factor is 1, when there is large frequency dif-
ference, the factor decays to 0.

Location-Sensitive Folksonomy Construction
Given these measures of tag similarity that capture both
user and location influences and similarity graph, we next
turn to induce a folksonomy bound to a target location l,
which is represented as directed rooted tree (arborescence)
T = (V, E), where each tag has a unique parent. The node
set V contains all unique tags that U has been labeled with,
and edge set E contains subsumption relations of tag pairs.
The abstractness of each tag is controlled by its level in the
tree. We can further assign weights to edges to capture the
similarity between tag pairs. Note that we will build a differ-
ent location-sensitive folksonomy for each location of inter-
est (e.g., one for Houston, one for Chicago).

In order to define an order of abstractness for the tags,
we calculate the closeness centrality of each tag, defined as:
Centrality(t) =

∑
j sim(t, tj), which sums up each tag’s

similarity with all other tags. This definition forces general
tags to have high centrality. Since the modified confidence
metric already assigns a direction for a pair of tags, this step
is exempted. Then we organize the tags and relations into a
directed weighted graph G. To do this, we initialize G with
a ROOT node and add an edge for the tag pair when the
similarity is above a pre-defined threshold (when 50% of
tag-pairs are related) in Algorithm 1 line 1-5. The weight
of the edge is set as the similarity value. Then, we assign
a direction for each tag pair from the high centrality node
to the low centrality node. As the graph is very likely not
connected, we make the ROOT node point to every other

node, with edge weight equal to the pre-defined threshold to
make the graph weakly connected.

A directed rooted tree has a root vertex and exactly one
directed path from root to any other vertex. A straight-
forward criteria is to find a tree that maximizes the edge
weights. In essence, this follows a greedy strategy which was
used previously by Heymann et al. (Heymann and Garcia-
Molina 2006). They proposed to iteratively add nodes in a
decreasing centrality order to a tree which maximizes sim-
ilarity. From a graph point of view, we can apply Chu-
Liu/Edmond’s algorithm(Chu and Liu 1965) over the sim-
ilarity graph. The core procedure is finding the edge incom-
ing to node t of highest weight (with ties broken arbitrarily)
for each t other than the ROOT. Since the edge order is pre-
defined according to centrality, the graph is guaranteed to
have no cycles and we can simplify the algorithm to forgo
this cycle check.

Algorithm 1: Mincost Tree Formation
Input: Tag vectors

1 Calculate similarity between each pair of node (ti, tj)
2 Initialize directed weighted graph G with ROOT node
3 Add an edge (ti, tj) when Sim(ti, tj) > threshold
4 Assign direction for edges following centrality order
5 Add an edge between ROOT and each node with

weight = threshold
6 while n(edge)>n-1 do
7 for each edge (ti, tj) do
8 G’← remove edge (ti, tj) from graph G
9 Find shortest path from ti to tj in G’

10 Calculate cost of deleting edge(ti, tj)
11 i=0
12 while edge not removed do
13 edge=increasing cost sequence[i]
14 if the edge is not the last incoming edge to tj

then remove edge from G and break;
15 i+=1

16 return G

Generalized Cost Function Although different metrics are
adopted for characterizing the relation between a pair of
tags, they share the similar greedy strategy of minimizing
the cost function

cost =
∑

e∈G
W (e)−

∑
t∈G

sim(t, tp)

where sim(t, tp) represents the similarity between a tag t
and its parent. Here we introduce a new minimum cost tree
formation algorithm which builds upon the simplified Chu-
Liu/Edmond’s algorithm that generalizes the cost function.
Concretely, the proposed folksonomy generation algorithm
can be formalized as Algorithm 1.

After constructing a directed weighted graph G, we next
convert this graph to a tree T with minimum cost, where the
cost here characterizes the structural change to G. We define
the cost for deleting the edge as sim(ti, tj) · di,j , where di,j
represent the shortest path length from ti to tj in the graph
which excludes the edge (ti, tj). After deleting an edge, the



two corresponding nodes are disconnected and we need to
identify a new shortest route that connect these two nodes.
The intuition is we want to maintain the coherence of the
structure after deleting edges such that more similar tags
tend to stay closer to each other. To do so, in each iteration,
we calculate the cost of deleting each remaining edge in the
graph G′, and then find an edge with minimum cost which
is not the last remaining edge pointing to the corresponding
child node (so the node is not isolated). The algorithm stops
when n − 1 edges are left, with each node having exactly
one parent. Thus our goal is to minimize the structure con-
servation cost function for converting G to a tree T :

cost =
∑

e∈G,e/∈T
sim(ti, tj) · di,j

However, this algorithm is computationally costly as when-
ever a new edge is deleted, it is required to recompute the
shortest path between each pair of nodes. This is an O(E2)
shortest path calculation. Hence, we provide an approxima-
tion for the calculation shown in algorithm 2, where we only
calculate the cost of deleting each edge in the original graph.
According to the cost from low to high, we iteratively delete
the edges until there is a unique parent for each node. Fi-
nally, the output is a location-sensitive folksonomy.

Algorithm 2: Approximation Algorithm
Input: Tag vectors

1 Constructing the Directed Weighed Graph G according
to lines in Algorithm 1

2 for each edge (ti, tj) do
3 G’← remove edge (ti, tj) from graph G
4 Find shortest path from ti to tj in G’
5 Calculate cost of deleting edge(ti, tj)
6 while n(edge)>n-1 do
7 for each edge in increasing cost do
8 if the edge is not the last incoming edge to tj

then Remove edge from G;

9 return G

Folksonomy-Informed Profiling
We turn in this section to apply the location-sensitive folk-
sonomy for profile construction. We begin by finding candi-
date tags from folksonomy, and then embedding these candi-
dates in a learning-to-rank framework for ordering the tags.

Finding Candidate Tags. Given a user’s seen tag profile
Ps(u), we first leverage the location-sensitive folksonomy
and select a set of candidate tags. To accomplish this, we
locate each seen tag in Ps(u) in the folksonomy and collect
parent, children, and sibling tags of this seen tag as candidate
tags. The hierarchical structure acts as a good filter and thus
controls the number and quality of candidate tags. Then we
order the candidate tags according to different strategies for
prediction. The formal definition for this problem is given
user u and a set of candidate tags Tc(u) = {t1, ..., tk}, we
aim to find a scoring function to rank tags in Tc(u) for u.

Features Descriptions
f(s) log scale overall frequency(freq) of the seed tag
f(t) log scale overall freq of the tag
fu(s) log scale unique user freq of the seed tag
fu(t) log scale unique user freq of the tag
Ssim similarity with seed tag
Hsim highest similarity with existing tags
Hfsim Hsim weighted by freq
Sumsim sum of similarity with all seen tags

Sw1
mv

sum of similarity with existing seed
tags weighted by f(s)

Sw2
mv

sum of similarity with existing seed
tags weighted by fu(s)

pcnt freq of the candidate tag being a parent
scnt freq of the candidate tag being a sibling
ccnt freq of the candidate tag being a child

Table 1: Features for ranking candidate tags from the
location-sensitive folksonomy.

Ranking Candidate Tags. We adopt a learning to rank
approach for personalized candidate tag ranking. The ad-
vantage is that it automatically assigns optimum weight
for each feature. We apply a pairwise learning algorithm
RankSVM(Joachims 2002). Here we consider each user as
a query and we assign each candidate tag an integer rank-
ing score in the range of 3 to 1 according to its actual count
in the user’s unseen profile. RankSVM first generates a set
of pairwise constraints and then transform the problem to
a two-class classification problem according to those con-
strains and an SVM model is learned. Finally, in the ranking
phase, rank scores are calculated according to the margin
value. Note that we train the model with the training set and
an L2 regularization term is added to prevent overfitting.

Here we introduce a set of features that we rely on to gen-
erate a preference order of the candidate tags for prediction
in Table 1. A total of 13 features are used for training the
model include features introduced above. Features can be
grouped into three categories: user specific features, tag fea-
tures, and folksonomy structure features. User specific fea-
tures include fu(s), fu(t), Hsim, Sumsim, Hfsim, Sw1

mv ,
Sw2
mv . These features are retrieved from a user’s seen profile,

which represents characteristics of the user. Tag features in-
cludes f(s), f(t), and Ssim. These features only provide in-
trinsic properties of candidate tags. And folksonomy struc-
ture features include pcnt, ccnt, scnt, which are uniquely de-
fined by the folksonomy to provide extra clues for making
good predictions. The intuition here is that predicting a par-
ent tag is more likely to be correct than a sibling or child,
as parent tags are more general, having the largest overlap
with the candidate. For example, inferring football to
parent sports is more likely to be correct than to sibling
volleyball and child football player.

Experiments
Data Preparation. We rely on a Twitter list dataset contain-
ing 15 million list relationships in which the geo-coordinates
of the labelers and users are known (Cheng et al. 2014). In
our experiments, the tags we included in the folksonomy



are extracted from each list name, and users in the list will
be endowed with the tags in their profile. These tags con-
tain multifaceted opinions of actual labelers, which means
they can be complex and noisy. Hence, we apply text pro-
cessing techniques such as case folding, stopword removal,
and noun singularization. We also separate the string pat-
tern like ‘FoodDrink’ into two words ‘food’ and ‘drink’.
We use language identification package (Lui and Baldwin
2012) to filter out non-English tags. To guarantee the infor-
mativeness and quality of the tags, we filter out infrequent
tags with fewer than 5 labelers and 10 labelees. Twitter has
a 25-character length limit for list names, and empirically
we find nearly all list names do not exceed three words. We
also include bigrams. Finally, the size of tagset is 10,489.

Profile Prediction Setup. For each of nine selected loca-
tions, a random sample of local users is held out. We con-
struct a location-sensitive folksonomy given the location
based on the rest of whole dataset. Following that we pre-
dict the user profiles for users in the hold-out data. For each
user, the seen tag set Pk(u) is a random 25% of his profile
P (u). Then we try to predict tags in the rest 75% unseen
tags.1 The result reported for every profiling experiment in
this paper, including baselines, are based on four-fold cross
validation and averaged over the nine locations.

Baselines. We consider two approaches based on collabora-
tive filtering and Bayesian personalized ranking as baselines.

Collaborative Filtering-K Nearest Neighbor(CF-KNN). In
CF-based profiling approach, we first identify the top-k lo-
cal users that share the most similar tags with the target user.
To maintain consistency with other approaches, we assume
each user profile only contains 1/4 of the tags). Here, we ap-
ply cosine similarity to measure user similarity. Then, we ag-
gregate the tags of the 50 nearest neighboring users weighted
by their similarity and make predictions based on decreasing
tag frequency in the collective neighbor profile.

Bayesian Personalized Ranking-Matrix Factorization(BPR-
MF). We consider these tags as implicit feedback and our
goal is identifying an optimal preference ranking of tags
for each user. We thus experiment with two variations of
state-of-the-art Bayesian personalized ranking criteria (Ren-
dle et al. 2009). In the first setting, we train a unique model
for each location by only considering its local users, de-
noted as “LBPR”. We model a user i’s affinity to tag j as
rij = piqj + bj , where pi and qj represent latent factor of
user and tag, respectively. bj represents the overall prefer-
ence of tag j. In the second setting, we train with whole
dataset and explicitly model location-aware preferences, de-
noted as “LABPR”. We define a user i’s affinity to tag j as as
rij = piqj + gl(i)j + bj , where latent factor gl(i)j represents
the regional popularity of tag j at the user i’s home location
(Lu and Caverlee 2015). For reproducibility, the number of
negative samples, number of iterations, number of user and
tag latent factors are set as 200, 80, 20 respectively. Regu-
larization weights are set as 0.02.

1We only consider users with overall more than 10 tags.

Methods P@1 P@5 AF@1 AF@5
Highest similarity 0.333† 0.285† 4.82† 4.24†
Freq. & similarity 0.507† 0.360† 14.6† 6.87†
Overall popularity 0.607† 0.501† 25.9 15.1†
Sumsimilarity 0.651† 0.552† 25.3† 18.5
Learning to rank 0.763 0.677 26.5 19.2

Table 2: Comparing Tag Ranking Approaches. We observe
that the LTR based approach results in the best preci-
sion, and also identifies the tags used most often (AF). ’†’
marks statistical significant difference with LTR according
to paired t-test at 0.05.

Evaluation Metrics. The evaluation metrics we use are Pre-
cision@k (P@K) and Actual Frequency@k (AF@k). P@k
measures how reliable predictions can be made. A high P@k
value implies users have been labeled with the predicted tag,
while high AF@k represents that users have been labeled
many times with the predicted tags. Both measurements re-
ported later are averaged over the test data. We consider the
quality of prediction for the top-1 tag as well as top-5 tags.
AF@k is defined as AF@k =

∑
k fu(tk)/k, where tk is the

kth predicted tag.
We now turn to the task of user profile construction based

on location-sensitive folksonomies. We first compare the
performance based on different ranking strategies, followed
by profiling performance across different folksonomy gen-
eration approaches and local and general versions. Finally,
we compare location-sensitive folksonomy informed profil-
ing with the other baselines.

Comparing Ranking Strategies
Given the candidate tags identified from the folksonomy, our
goal is to generate a personalized ranking over these tags so
that the actual tags rank top. Here we compare the learning-
to-rank (LTR) based approach with several baselines in Ta-
ble 2, i). rank the candidate tags according to the decreas-
ing order of similarity with the seen tag which subsumes the
candidate tag. ii). rank with a hierarchical criteria, primar-
ily according to the frequency of corresponding seen tag as-
sociated with the user and secondarily by decreasing order
of similarity with the corresponding seen tag. iii). rank by
overall tag popularity. iv). rank according to the aggregated
similarity with the seen tag set.

We observe the LTR based approach outperforms all base-
lines in terms of precision, indicating high rank tags are
more likely to be actual tags. Moreover, we find a similar
trend in terms of AF@5, which represents the actual number
of predicted tags that a user possesses. All these results im-
ply the effectiveness of proposed features and feature weight
scheme. Among the baselines, we find the “overall popular-
ity” and “Sumsimilarity” are relatively strong predictors.

Location Sensitive vs General Folksonomy
In Table 3, we compare the location-sensitive folksonomy
versus the general folksonomy over all design choices for the
application of profile construction. For each design choice,
we acquire both location-sensitive and general version for



Methods LS F. G F. LS F. G F.
P@1 P@5 P@1 P@5 AF AF

MS-MC 0.754 0.663 0.653 0.571 19.2 15.2
SC-MC 0.763 0.677 0.656 0.571 19.2 15.4

MS-COS 0.751 0.656 0.662 0.521 16.4 11.9
SC-COS 0.756 0.663 0.662 0.531 18.1 12.8
MS-PMI 0.389 0.349 0.352 0.320 1.24 1.53
SC-PMI 0.402 0.362 0.363 0.332 1.21 1.62
MS-RBF 0.566 0.413 0.471 0.422 9.94 8.22
SC-RBF 0.581 0.430 0.465 0.410 10.1 12.0

Table 3: Comparing Location-Sensitive and General Folk-
sonomies in Profile Tag Prediction. All location-sensitive
versions are statistical significantly different with general
versions according to paired t-test at 0.05.

each of the 9 locations mentioned in Table 3. The gen-
eral folksonomy is constructed using the whole dataset ex-
cluding distance and location factors. The reported result
is based on averaging 9 locations. We observe that over-
all, location-sensitive versions always beat its general coun-
terpart in terms of precision@k and AF@5, regardless of
design choice. The priority in terms of P@5 is around
0.1 and AF@5 is above by 20%. This result justifies the
location-sensitive folksonomy since it better captures the lo-
cal knowledge structures. It also demonstrates the effective-
ness of how we model distance influence. Moreover, we find
that the performance is consistent across locations.

We next compare the four similarity metrics used for con-
structing the tag similarity graph at the heart of location-
sensitive folksonomy construction. Design choices with
modified confidence (MC) perform best in terms of P@k,
and AF@5, with folksonomy-informed version built on top
of cosine similarity slightly lower, followed by RBF kernel
and PMI. The extremely low performance of PMI indicates
it may not be suitable for this scenario. After inspecting
the folksonomy, we observe many of the hierarchical rela-
tions are incorrect or meaningless. PMI only considers co-
occurrence of tags without taking the relative frequency dif-
ference into account. In our experiment design, as we don’t
set a minimum tag occurrence for each user to avoid spar-
sity, many tags only show up once on a user and it creates
noise for an approach like PMI.

Last but not least, we evaluate the proposed structure
conservation cost function (SC) against maximum similar-
ity (MS) baseline. SC aims to construct a folksonomy that
makes the smallest change to the similarity graph. We ob-
serve in Table 3 that applying SC leads to an incremen-
tal change in profile construction. For example, in the co-
sine case, we notice the P@5 and AF@5 are slightly better
for SC. We notice about 9.5% of the relations are different
among folksonomy generated using the two cost functions,
meaning that the SC approach made some structure adjust-
ments with some sacrifice in connecting most similar first
strategy. Considering the limited difference in the two folk-
sonomies, this increase in performance can be attributed to
a better macro-structure.

Methods P@1 P@5 AF@1 AF@5 tfidf@5
CF-KNN 0.656† 0.542† 25.6 18.0† 36.1†
LBPR 0.731† 0.650† 22.6† 12.3† 30.2†
LABPR 0.771 0.673 24.1† 16.2† 34.6†
LS Folk. 0.763 0.677 26.5 19.2 42.6

Table 4: Comparing Tag Prediction Approaches. ’†’ marks
statistical significant difference with LS-Folk. approach ac-
cording to paired t-test at 0.05.

Evaluate User Profiling
Finally, we compare location-sensitive folksonomy-
informed user profiling with the CF-KNN and BPR-MF
baselines. As we observe in Table 4, the proposed approach
outperforms the CF-KNN and locally trained BPR-MF
(LBPR) in both P@k and AF@k and exhibits similar
performance compared with the location-aware BPR-MF
(LABPR) approach. Even though LABPR does not consider
frequency which is also important, the latent factors effec-
tively capture user preferences over tags and location-based
preference for tags. However, BPR-MF based approach is
computationally costly as the dimension of user and tag
increase. The CF-KNN approach is not robust in sparse
condition, for example, when there are few similar users,
the prediction made by CF-KNN could be very inaccurate.

We leverage average TFIDF score for top five predicted
tags as a metric to reflect how important and informative
the predicted tag is to a user in the actual tag collection.
The score is averaged for users and locations. We notice
the proposed LS-Folk yield the highest TFIDF@5, showing
the capability of identifying uniquely important tag for the
user. We notice that CF-KNN and BPR-MF based approach
have a strong tendency to predict general high frequency
tags. For CF-KNN, highly general tags are very likely to
rank top in the sequence. For BPR-MF, the implicit feed-
back formulation neglects the difference in importance of
the seen tags and has a tendency to predict tags that are
seen on many users. These tags are often on a high abstrac-
tion level and thus provide only vague insight to a user. For
example, if the predicted tag is peep which is short for
“people”, there is little new information contributed to the
target user. In order to precisely profile a user, we expect
to have concrete and specific tags, additionally, we wish to
have a diverse tag space. In contrast, we observe that the
location-sensitive folksonomy-informed approach performs
much better in predicting diverse specific tags.

Conclusion
In this work, we explored the impact of spatial varia-
tion on the construction of location-sensitive user profile.
Concretely, we proposed an location-sensitive folksonomy-
informed framework toward the goal of improved user pro-
filing. Through extensive experiments, we have demon-
strated such location-sensitive folksonomy is more effective
in identifying relevant tags, and learning to rank strategy
is helpful for optimizing feature weights and leads to high
quality user profile tags.
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