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Algorithm 9xx: SuiteSparse:GraphBLAS: graph algorithms in
the language of sparse linear algebra

TIMOTHY A. DAVIS, Texas A&M University, USA

SuiteSparse:GraphBLAS is a full implementation of the GraphBLAS standard, which defines a set of sparse
matrix operations on an extended algebra of semirings using an almost unlimited variety of operators and
types. When applied to sparse adjacency matrices, these algebraic operations are equivalent to computations
on graphs. GraphBLAS provides a powerful and expressive framework for creating graph algorithms based
on the elegant mathematics of sparse matrix operations on a semiring. An overview of the GraphBLAS
specification is given, followed by a description of the key features and performance of its implementation in
the SuiteSparse:GraphBLAS package.

CCS Concepts: • Mathematics of computing→ Graph algorithms; Mathematical software;

Additional Key Words and Phrases: Graph algorithms, sparse matrices, GraphBLAS

ACM Reference Format:
Timothy A. Davis. 2018. Algorithm 9xx: SuiteSparse:GraphBLAS: graph algorithms in the language of sparse
linear algebra. ACM Trans. Math. Softw. 1, 1, Article 1 (January 2018), 24 pages. https://doi.org/0000001.0000001

1 INTRODUCTION
The GraphBLAS standard [5] defines sparse matrix and vector operations on an extended algebra
of semirings. The operations are useful for creating a wide range of graph algorithms.

For example, consider the matrix-matrix multiplication, C = AB. Suppose A and B are sparse n-
by-n Boolean adjacency matrices of two undirected graphs. If the matrix multiplication is redefined
to use logical AND instead of scalar multiply, and if it uses the logical OR instead of add, then the
matrix C is the sparse Boolean adjacency matrix of a graph that has an edge (i, j) if node i in A
and node j in B share any neighbor in common. The OR-AND pair forms an algebraic semiring,
and many graph operations like this one can be succinctly represented by matrix operations with
different semirings and different numerical types. GraphBLAS provides a wide range of built-in
types and operators, and allows the user application to create new types and operators. Expressing
graph algorithms in the language of linear algebra provides:

• a powerful way of expressing graph algorithms with large, bulk operations on adjacency
matrices with no need to iterate over individual nodes and edges,

• composable graph operations, e.g. (AB)C = A(BC),
• simpler graph algorithms in user-code,
• simple objects for complex problems – a sparse matrix with nearly any data type,
• a well-defined graph object, closed under operations,
• and high performance: the bulk graph/matrix operations allow a serial, parallel, or GPU-based
library to optimize the graph operations.
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A full and precise definition of the GraphBLAS specification is provided in The GraphBLAS C
API Specification [5], based on the mathematical foundations discussed in [15, 16].
SuiteSparse:GraphBLAS is the first reference implementation of the GraphBLAS standard, and

has been rigorously tested to ensure full conformance with the specification. It is currently a purely
sequential package meant to serve as a guide, framework, and testing platform against which
parallel implementations can be compared and benchmarked. It is already a complex package,
requiring 25,435 of code (and 20,942 lines of comments) in the main library, and 25,465 lines
of test code (excluding comments) that verify its compliance with the specification. Including
parallelism in this foundational implementation of GraphBLAS would greatly increase its code
complexity, making it harder for developers of parallel implementations to use it as a baseline. With
the sequential baseline established, the goal for the future is to incorporate parallel methods into
SuiteSparse:GraphBLAS, via OpenMP, MPI, and on the GPU.
The remainder of this paper is structured as follows. Section 2 gives an overview of the Graph-

BLAS concept of writing graph algorithms in the language of linear algebra with sparse matrices
and semirings. Section 3 provides an overview of the objects, methods, and operations in the Graph-
BLAS specification. Key features of the implementation of GraphBLAS are discussed in Section 4.
Section 5 gives examples of two graph algorithms written in GraphBLAS. These algorithms and
more appear in the Demo folder in the software package. Section 6 highlights the performance of
SuiteSparse:GraphBLAS, followed by final comments and code availability in Section 7.

2 BASIC CONCEPTS
2.1 Graphs and sparse matrices
Many applications give rise to large graphs, but the are typically very sparse, with n nodes but only
e = O(n) edges. Some graphs are hypersparse with e << n.

Any graph G = (V ,E) can be considered as a sparse adjacency matrix A, either square or
rectangular. The square case of an n-by-n sparse matrix is useful for representing a directed or
undirected graph with n nodes, where either the matrix entry ai j or aji represents the edge (i, j).
In the rectangular case, anm-by-n sparse matrix can be used to represent a bipartite graph, or a
hypergraph, depending on the context in which the matrix is used. Edges that do not appear in G
are not represented in the data structure of the sparse matrix A. A sparse matrix data structure
allows huge graphs to be represented. A dense adjacency matrix for a graph of n nodes would take
O(n2) memory, which is impossible when n is large, whereas a sparse adjacency matrix can be
stored in O(n + e) space, or O(e) if stored in a hypersparse format, where e is the number of edges
present in the graph. The notation e = |A| denotes the number of entries in the matrix A.

Values of entries not stored in the sparse data structure have some implicit value. In conventional
linear algebra, this implicit value is zero, but it differs with different semirings. Explicit values
are called entries and they appear in the data structure. The pattern of a matrix defines where its
explicit entries appear, and can be represented as either a set of indices (i, j), or as a Boolean matrix
S where si j = 1 if ai j is an explicit entry in the sparse matrix A. The entries in the pattern of A can
take on any value, including the implicit value, whatever it happens to be. It need not be the value
zero. For example, in the max-plus tropical algebra, the implicit value is negative infinity, and zero
has a different meaning.

2.2 Semirings and their use in graph algorithms
Graph Algorithms in the Language on Linear Algebra [18] provides a framework for understanding
how graph algorithms can be expressed as matrix computations. For additional background on
sparse matrix algorithms, see also [7] and a recent survey paper, [10].
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All graph algorithms can be expressed in terms of sparse adjacency matrices, and nearly all can
also be written in terms of linear algebraic operations on those matrices, using different semirings.
Two examples are given in Section 5: breadth-first search and Luby’s method for finding an inde-
pendent set. Both are modified from the examples in the GraphBLAS C API Specification. Additional
examples are provide in the Demo and Extras folders of SuiteSparse:GraphBLAS, including triangle
counting, k-truss, and PageRank [21].

Finding the neighbors of a set X of nodes in a graph, for example, is identical to multiplying the
sparse adjacency matrix A with a sparse vector x that has one entry for each node in the set X,
or y = A′x if ai j is the edge (i, j). In conventional linear algebra, this matrix-vector multiplication
would sum the entries to give a non-binary vector y:

yi =
∑
j

ajix j .

What is needed instead is the logical OR instead of the summation; this forms the additive operator
of the monoid of the semiring. Instead of a multiply operator, a logical AND is needed instead. This
is the multiplicative operator of the semiring. The result is the expression

yi =
∨
j

aji ∧ x j ,

where yi is true if node i is a neighbor of one or more nodes in X. The structure of a sparse
matrix-vector multiply is the same as the logical expression above; just the operators are different.

In many graph operations, the innermost loop also has a if-test. For example, in the breadth-first
search problem, a node that has already been visited should be excluded from the set of nodes
at the next level. This is done in GraphBLAS as a mask operation, y⟨m⟩ = A′x, where yi can be
modified only if the mask entrymi is true.

Changing the semiring allows the expressiveness of linear algebra over semirings to be applied
to graph algorithms. Matrix expressions can be rearranged with standard linear algebra, such as
(AB)′ = B′A′ andA(B + C) = AB + AC, giving the graph algorithm developer a simple yet powerful
method for writing a succinct graph algorithm and to reason about it. Methods such as matrix
multiply, addition, transpose, submatrix extraction and assignment, and the mask also provide a set
of bulk operations that can be given to a library to implement, with many operations to perform,
as opposed to scalar operations such as a query to a graph to return an edge or a set of neighbors
of a node. These bulk operations provide excellent scope for highly-tuned implementations inside
a library such as SuiteSparse:GraphBLAS to obtain high performance, whether single-threaded,
multi-threaded, distributed, or on the GPU. This approach has proven to be an effective method for
accelerating real applications such as the RedisGraph graph database module of Redis (Section 6).

2.3 Related work
SuiteSparse:GraphBLAS is the first fully compliant implementation of the GraphBLAS C API
Specification, and acts as the primary reference implementation (http://graphblas.org). At least six
other projects are developing implementations of the GraphBLAS specification. One of them was
recently completed: the GraphBLAS Template Library developed by Carnegie Mellon University,
Indiana University, and the Pacific Northwest National Lab. The list includes:

• C++ CombBLAS: https://people.eecs.berkeley.edu/~aydin/CombBLAS/html/ [4].
• Java Graphulo: http://graphulo.mit.edu/ [14].
• MATLAB/Octave D4M: http://d4m.mit.edu/ [17].
• GPI (IBM) [11].
• GraphPad (Intel) [1, 22].
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Table 1. SuiteSparse:GraphBLAS Objects

object description
GrB_Type a scalar data type
GrB_UnaryOp a unary operator z = f (x), where z and x are scalars
GrB_BinaryOp a binary operator z = f (x ,y), where z, x , and y are scalars
GxB_SelectOp a unary operator for constructing subgraphs
GrB_Monoid an associative and commutative binary operator

and its identity value
GrB_Semiring a monoid that defines the “plus” and a binary operator

that defines the “multiply” for an algebraic semiring
GrB_Matrix a 2D sparse matrix of any type
GrB_Vector a 1D sparse column vector of any type
GrB_Descriptor parameters that modify an operation

• Gunrock: https://github.com/gunrock/gunrock-grb [23].
• GraphBLAS Template Library (Carnegie Mellon Univ., Indiana Univ., and PNNL): https:
//github.com/cmu-sei/gbtl. The implementation of the sequential version of the GraphBLAS
Template Library meets the GraphBLAS C API Specification, but is currently focused on
correctness over performance. However, it provides amuchwider range of example algorithms
using the GraphBLAS API than what is available with SuiteSparse:GraphBLAS, including
breadth-first search, single-source shortest-path methods, all-pairs shortest paths, three
centrality metrics, clustering, triangle counting, k-truss enumeration, PageRank, maximal
independent set, minimum spanning tree, max flow, and various other graph analytics.
All of these algorithms can be executed in both the GraphBLAS Template Library and
SuiteSparse:GraphBLAS.

3 SUITESPARSE:GRAPHBLAS METHODS AND OPERATIONS
3.1 Overview
SuiteSparse:GraphBLAS provides a collection of methods to create, query, and free each of its
nine different types of objects: sparse matrices, sparse vectors, types, binary and unary operators,
selection operators, monoids, semirings, and a descriptor object used for parameter settings. These
are listed in Table 1. Once these objects are created they can be used in mathematical operations
(not to be confused with the how the term operator is used in GraphBLAS). The GxB_ prefix is used
for all SuiteSparse extensions to the GraphBLAS API.

The GraphBLAS API makes a distinction betweenmethods and operations. A method is a function
that works on a GraphBLAS object, creating it, destroying it, or querying its contents. An operation
(not to be confused with an operator) acts on matrices and/or vectors in a semiring. Each object is
described below.

3.1.1 Types. A GraphBLAS type (GrB_Type) can be any of 11 built-in types (Boolean, integer
and unsigned integers of sizes 8, 16, 32, and 64 bits, and single and double precision floating point).
In addition, user-defined scalar types can be created from nearly any C typedef, as long as the
entire type fits in a fixed-size contiguous block of memory (of arbitrary size). All of these types
can be used to create GraphBLAS sparse matrices or vectors. All built-in types can typecasted as
needed; user-defined types cannot.
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3.1.2 Unary operators. A unary operator (GrB_UnaryOp) is a function z = f (x). SuiteSparse:
GraphBLAS comes with 67 built-in unary operators, such as z = 1/x and z = −x , with variants for
each built-in type. The user application can also create its own user-defined unary operators.

3.1.3 Binary operators. Likewise, a binary operator (GrB_BinaryOp) is a function z = f (x ,y),
such as z = x + y or z = xy. SuiteSparse:GraphBLAS provides 256 built-in binary operators, with
variants for each built-in type. User-defined binary operators can also be created.

3.1.4 Select operators. The GxB_SelectOp operator is a SuiteSparse extension to the GraphBLAS
API. It is used in the GxB_select operation to select a subset of entries from amatrix, like L=tril(A)
in MATLAB. Its syntax is z = f (i, j,m,n,ai j ,k) where ai j is the numerical value of the entry in
row i and column j in anm-by-n matrix. The parameter k is optional, and is used for operations
analogous to the MATLAB statement L=tril(A,k), where entries on or below the kth diagonal
are kept and the rest discarded. The output z is true if the entry is to be kept, and false otherwise.

3.1.5 Monoids. The scalar addition of conventional matrix multiplication is replaced with a
monoid. A monoid (GrB_Monoid) is an associative and commutative binary operator z = f (x ,y)
where all three domains are the same (the types of x , y, z), and where the operator has an identity
value o such that f (x ,o) = f (o,x) = x . Performing matrix multiplication with a semiring uses a
monoid in place of the “add” operator, scalar addition being just one of many possible monoids.
The identity value of addition is zero, since x + 0 = 0 + x = x . GraphBLAS includes eight built-in
operators suitable for use as a monoid: min (with an identity value of positive infinity), max (whose
identity is negative infinity), add (identity is zero) multiply (with an identity of one), and four
logical operators: AND, OR, exclusive-OR, and Boolean equality. User-created monoids can be
defined with any associative and commutative operator with an identity value.
A monoid can also be used in a reduction operation, like s=sum(A) in MATLAB. MATLAB

provides the plus, times, min, and max reductions of a real or complex sparse matrix as s=sum(A),
s=prod(A), s=min(A), and s=max(A), respectively. In GraphBLAS, any monoid can be used (min,
max, plus, times, AND, OR, exclusive-OR, equality, or any user-defined monoid, on any user-defined
type).

3.1.6 Semirings. A semiring (GrB_Semiring) consists of an additive monoid and a multiplicative
operator. Together, these operations define the matrix multiplication C = AB, where the monoid
is used as the additive operator and the semiring’s multiplicative operator is used in place of the
conventional scalar multiplication in standard matrix multiplication via the plus-times semiring. A
user application can define its own monoids and semirings.

A semiring can use any built-in or user-defined binary operator z = f (x ,y) as its multiplicative
operator, as long as the type of its output, z matches the type of the semiring’s monoid. The user
application can create any semiring based on any types, monoids, and multiply operators, as long
these few rules are followed.
Just considering built-in types and operators, SuiteSparse:GraphBLAS can perform C=A*B in

960 unique semirings. With typecasting, any of these 960 semirings can be applied to matrices C,
A, and B of any of the 11 types, in any combination. In addition, each of the four matrices in the
masked matrix multiplication C⟨M⟩ = C ⊙ AB can be in any of four formats (standard CSR and
CSC, and hypersparse CSR and CSC). This gives 960 × 113 × 256 = 327, 106, 560 possible kinds
of sparse matrix multiplication supported by SuiteSparse:GraphBLAS, and this is counting just
built-in types, operators, and data formats. By contrast, MATLAB provides just one data format
(standard CSC), and two semirings for its sparse matrix multiplication C=A*B: plus-times-double
and plus-times-complex, not counting the typecasting that MATLAB does when multiplying a real
matrix times a complex matrix. All of the 327 million forms of matrix multiplication methods in
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SuiteSparse:GraphBLAS are typically just as fast as computing C=A*B in MATLAB using its own
native sparse matrix multiplication methods. (Caveat: this author wrote the built-in C=A*B in the
current version of MATLAB when A and/or B are sparse.)

3.1.7 Descriptor. A descriptor object, GrB_Descriptor, provides a set of parameter settings that
modify the behavior of GraphBLAS operations, such as transposing an input matrix or comple-
menting a Mask matrix (see Section 3.1.9 for details).

3.1.8 Non-blocking mode. GraphBLAS includes a non-blocking mode where operations can
be left pending, and saved for later. This is very useful for submatrix assignment (C(I,J)=A in
MATLAB notation, where I and J are integer vectors), or or scalar assignment (C(i,j)=x where
i and j are scalar integers). Because of how MATLAB stores its matrices, adding and deleting
individual entries is very costly. By contrast, this is very fast in SuiteSparse:GraphBLAS, taking
only O(e log e) time:

GrB_Matrix A ;
GrB_Matrix_new (&A, GrB_FP64, m, n) ;
for (int k = 0 ; k < e ; k++)
{

compute a value x, row index i, and column index j
// A (i,j) = x
GrB_Matrix_setElement (A, x, i, j) ;

}

but the equivalent method in MATLAB takes O(e2) time:

A = sparse (m,n) ; % an empty sparse matrix
for k = 1:e

compute a value x, row index i, and column index j
A (i,j) = x ;

end

Building a matrix all at once via GrB_Matrix_build in SuiteSparse:GraphBLAS and via sparse
in MATLAB is equally fast; both methods below take O(e log e) time, in SuiteSparse:GraphBLAS:

for (int k = 0 ; k < e ; k++)
{

compute a value x, row index i, and column index j
I [k] = i ;
J [k] = j ;
X [k] = x ;

}
GrB_Matrix A ;
GrB_Matrix_new (&A, GrB_FP64, m, n) ;
GrB_Matrix_build (A, I, J, X, e, GrB_SECOND_FP64) ;

And in MATLAB:

for k = 1:e
compute a value x, row index i, and column index j
I (k) = i ;
J (k) = j ;
X (k) = x ;

end
A = sparse (I,J,X,m,n) ;
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Exploiting non-blocking mode, SuiteSparse:GraphBLAS can do both incremental and all-at-once
methods equally fast, but in MATLAB only the all-at-once method is efficient. Allowing for fast
incremental updates allows the user to write simpler code to construct a matrix, and enables much
faster incremental updates to a matrix that has already been constructed.

3.1.9 The accumulator and the mask. Most GraphBLAS operations can be modified via trans-
posing input matrices, using an accumulator operator, applying a mask or its complement, and
by clearing all entries the matrix C after using it in the accumulator operator but before the final
results are written back into it. All of these steps are optional, and are controlled by a descriptor
object that holds parameter settings that control the following options:

• the input matrices A and/or B can be transposed first.
• an accumulator operator can be used, like the plus in the MATLAB statement C=C+A*B. The
accumulator operator can be any binary operator, and an element-wise “add” (set-union) is
performed using the operator.

• an optional mask can be used to selectively write the results to the output. The mask is a
sparse Boolean matrix Mask whose size is the same size as the result. If Mask(i,j) is true,
then the corresponding entry in the output can be modified by the computation. If Mask(i,j)
is false, then the corresponding entry in the output is protected and cannot be modified
by the computation. The Mask matrix acts exactly like logical matrix indexing in MATLAB,
with one minor difference: in GraphBLAS notation, the mask operation is C⟨M⟩ = Z, where
the maskM appears only on the left-hand side. In MATLAB, it would appear on both sides
as C(Mask)=Z(Mask). If no mask is provided, the Mask matrix is implicitly all true. This
is indicated by passing the value GrB_NULL in place of the Mask argument in GraphBLAS
operations.

This process can be described in mathematical notation as:

A = A′, if requested via descriptor (first input option)
B = B′, if requested via descriptor (second input option)
T is computed according to the specific operation
C⟨M⟩ = C ⊙ T, accumulating and writing the results back via the mask M

The application of the mask and the accumulator operator is written as C⟨M⟩ = C ⊙ T where
Z = C ⊙ T denotes the application of the accumulator operator, and C⟨M⟩ = Z denotes the masked
assignment via the Boolean matrix M. The expression C⟨M⟩ = C ⊙ T is computed as follows:

if no accumulator operator, Z = T; otherwise Z = C ⊙ T
if requested via descriptor (replace option), all entries cleared from C
if Mask is NULL

C = Z if Mask is not complemented; otherwise C is not modified
else

C⟨M⟩ = Z if Mask is not complemented;
otherwise C⟨¬M⟩ = Z

The accumulator operator (⊙) acts like a sparse matrix addition, except that any operator can be
used. The pattern of C ⊙ T is the set-union of the patterns of C and T, and the operator is applied
only on the set-intersection of C and T. Entries in neither the pattern of C nor T do not appear in
the pattern of Z. That is:

for all entries (i, j) in C ∩ T (that is, entries in both C and T)
zi j = ci j ⊙ ti j

for all entries (i, j) in C \ T (that is, entries in C but not T)
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Table 2. SuiteSparse:GraphBLAS Operations

function name description GraphBLAS notation
GrB_mxm matrix-matrix mult. C⟨M⟩ = C ⊙ AB
GrB_vxm vector-matrix mult. w′⟨m′⟩ = w′ ⊙ u′A
GrB_mxv matrix-vector mult. w⟨m⟩ = w ⊙ Au
GrB_eWiseMult element-wise, C⟨M⟩ = C ⊙ (A ⊗ B)

set-union w⟨m⟩ = w ⊙ (u ⊗ v)
GrB_eWiseAdd element-wise, C⟨M⟩ = C ⊙ (A ⊕ B)

set-intersection w⟨m⟩ = w ⊙ (u ⊕ v)
GrB_extract extract submatrix C⟨M⟩ = C ⊙ A(i, j)

w⟨m⟩ = w ⊙ u(i)
GrB_assign assign submatrix C⟨M⟩(i, j) = C(i, j) ⊙ A

w⟨m⟩(i) = w(i) ⊙ u
GxB_subassign assign submatrix C(i, j)⟨M⟩ = C(i, j) ⊙ A

w(i)⟨m⟩ = w(i) ⊙ u
GrB_apply apply unary op. C⟨M⟩ = C⊙ f (A)

w⟨m⟩ = w⊙ f (u)
GxB_select apply select op. C⟨M⟩ = C⊙ f (A, k)

w⟨m⟩ = w⊙ f (u, k)
GrB_reduce reduce to vector w⟨m⟩ = w⊙[⊕jA(:, j)]

reduce to scalar s = s ⊙ [⊕i jA(i, j)]
GrB_transpose transpose C⟨M⟩ = C ⊙ A′

GxB_kron Kronecker product C⟨M⟩ = C ⊙ kron(A,B)

zi j = ci j
for all entries (i, j) in T \ C (that is, entries in T but not C)

zi j = ti j

3.2 GraphBLAS methods and operations
The matrix (GrB_Matrix) and vector (GrB_Vector) objects include additional methods for setting
a single entry, extracting a single entry, making a copy, and constructing an entire matrix or
vector from a list of tuples. The tuples are held as three arrays I, J, and X, which work the same as
A=sparse(I,J,X) in MATLAB, except that any type matrix or vector can be constructed, and any
operator can be used to combine duplicates. A complete list of methods can be found in the User
Guide provided with the software package.

Table 2 lists all SuiteSparse:GraphBLAS operations in the GraphBLAS notation whereAB denotes
the multiplication of two matrices over a semiring. Upper case letters denote a matrix, and lower
case letters are vectors. Each operation takes an optional GrB_Descriptor argument that modifies
the operation. The input matrices A and B can be optionally transposed, the mask M can be
complemented, and C can be cleared of its entries after it is used in Z = C ⊙ T but before the
C⟨M⟩ = Z assignment. Vectors are never transposed via the descriptor.
The notation A ⊕ B denotes the element-wise operator that produces a set-union pattern (like

A+B in MATLAB). The notation A ⊗ B denotes the element-wise operator that produces a set-
intersection (like A.*B in MATLAB). Reduction of a matrix A to a vector reduces the ith row of A
to a scalarwi , like w=sum(A') in MATLAB.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2018.



SuiteSparse:GraphBLAS, graph algorithms via sparse linear algebra 1:9

4 SUITESPARSE:GRAPHBLAS IMPLEMENTATION
The GraphBLAS API provides a great deal of flexibility in its implementation details. All of its
objects are opaque, and their contents can only be modified by calling GraphBLAS functions. This
section describes how the GraphBLAS API is implemented in the SuiteSparse:GraphBLAS software
package. As a reference implementation, the library is entirely self-contained, relying no other
matrix or graph library except for a threading library (OpenMP or POSIX) for the thread-safety of
user threads, and the standard C library functions (such as malloc, memcpy, printf, etc).

4.1 Matrix and vector data structure
The GraphBLAS matrix and vector objects are opaque to the end-user, and can only be accessed
via GraphBLAS methods and operations. Their implementation has a significant impact on the
performance of GraphBLAS, so an overview of the data structure is given here.

In SuiteSparse:GraphBLAS (version 2.2.0), a GraphBLAS matrix (the GrB_Matrix object) is stored
in one of four different formats: compressed-sparse column (standard CSC), compressed-sparse
row (standard CSR), and hypersparse versions of these two formats (hyper CSR and hyper CSC). A
GrB_Vector is always stored in standard CSC format, as a single column vector.
The basics of the standard CSC data structure are identical to the MATLAB sparse matrix [12],

and also the sparse matrix format used in CSparse [7]. For a matrix A of size m-by-n, an integer array
A.p of size n+1 holds the column “pointers”, which are references to locations in the A.i and A.x
arrays, each of which are of size equal to, or greater, than the number of entries in the matrix. The
row indices of entries in column j of A are held in A.i[A.p[j]...A.p[j+1]-1], and the values
are held in the same positions in the A.x array. Row and column indices are zero-based, which
matches the internal data structure of a MATLAB sparse matrix. The MATLAB user is provided
the illusion of 1-based indexing in a MATLAB M-file, whereas the GraphBLAS user sees a 0-based
indexing. To facilitate submatrix extraction (C=A(I,J)) and assignment (C(I,J)=A), row indices
are always kept sorted, just like MATLAB. No duplicate entries are held in this format. The total
memory space for the standard CSC format is O(n + e) if the matrix ism-by-n with e entries.

The standard CSR format is identical to the standard CSC format, except it stores the matrix as a
set of sparse row vectors. The CSR format (either standard or hypersparse) is the default format
for all GrB_Matrix objects. This is because most graph algorithms for directed graphs traverse the
outgoing edges of a node, and A(i,j) is natural to use for the edge (i, j). The total memory space
for the standard CSR format is O(m + e) if the matrix ism-by-n with e entries.
Both of these standard formats require memory space that is proportional to one of the matrix

dimensions. This is fine for numerical computations, since a matrix with fewer than n orm entries
would be singular. However, graphs and sub-graphs can often be hypersparse, with fewer entries
than the number of nodes (e << min(m,n)). To accommodate this, the package includes hypersparse
forms of the CSC and CSR formats [3]. In a hypersparse format, the pointer array A.p itself becomes
sparse. It is replaced with two arrays: A.p and A.h of length A.plen+1, where A.p is a pointer for
each non-empty vector (row vectors for hyper CSR or column vectors for hyper CSC), and A.h is a
list of indices of row or column vectors that contain at least one entry. Both the hyper CSR and
hyper CSC formats require only O(e) memory.

SuiteSparse:GraphBLAS always uses the CSR format, unless the user application requests a CSC
format. It selects automatically between hypersparse or standard CSR, based on the number of
non-empty rows, and converts between the two as needed. The user application can modify this
heuristic, either for all matrices or for selected matrices. It can modify the default format for all
matrices, and it can force all matrices or any particular matrix to always remain in standard or
hypersparse format.
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The type of the entries of A can be almost anything. GraphBLAS provides 11 built-in types
(boolean, integers and unsigned integers of size 8, 16, 32, and 64 bits, and single and double
precision floating-point). In addition, a user application can define any new type, without requiring
a recompilation of the GraphBLAS library. The only restriction on the type is that it must have
a constant size, and it must be possible to copy a value with a single memcpy. MATLAB provides
sparse logical, double, and complex double. GraphBLAS can be easily extended to handle complex
double sparse matrices via a user-defined complex type; an example is given in the Demo folder of
SuiteSparse:GraphBLAS.

MATLAB drops its entries with a numerical value of zero, but this is never done in GraphBLAS.
A “zero” is simply an entry that is not stored in the data structure, and the value of this implicit
entry depends on the semiring. If the matrix is used in the conventional plus-times semiring, the
implicit value is zero. If used in max-plus, the implicit entry is −∞. This value is not stored in A; it
depends on the semiring, and any matrix can be used in any semiring. Thus, dropping a numerical
entry whose value happens to be zero cannot be automatically done in GraphBLAS. It can of course
be done as an operation executed in a user application, if desired.
SuiteSparse:GraphBLAS adds an additional set of features to this data structure: zombies and

pending tuples, which enable fast insertion and deletion of entries. These features enable submatrix
assignment to be many times faster the equivalent operations in MATLAB, even when blocking
mode is used.
A zombie is an entry in the data structure that has been marked for deletion. This is done by

“negating” the row index of the entry. More precisely, its row index i is changed to (-i-2), to
accommodate zero-based row indices. Zombies allow for fast deletion, and they also permit binary
searches of a sparse vector to performed, even if it contains zombies.

A pending tuple is an entry that has not yet been added to the compressed-sparse vector part of
the data structure. Pending tuples are held in an unsorted list of row indices, column indices, and
values. Duplicates may appear in this list. The matrix also keeps track of a single operator to be
used to combine duplicate entries. A matrix can have both zombies and pending tuples.

Temporary matrices, internal in SuiteSparse:GraphBLAS, need not have their own p, h, i, and/or
x arrays. Any or all of these can be shallow pointers to the components of other matrices. This
feature facilitates operations such as typecasting a user input matrix to a required type. In this case,
only x needs to be constructed for the temporary typecasted matrix, while the pattern (p, h, and i)
are shallow copies of the input matrix.

A final component of the GrB_Matrix and GrB_Vector is an optional workspace that is allocated
if C is created via C=A*B when using Gustavson’s method for sparse matrix-matrix multiply [13].
The space is O(n) for the CSR format, or O(m) for the CSC format. This space is essential for
obtaining the right asymptotic time complexity, particular when multiplying a sparse matrix times
a sparse vector. The first time C=A*B is computed, the time taken is Ω(n) (for CSR) or Ω(m) (for
CSC) to allocate and initialize this space. Subsequent computations of C=A*B do not have this n or
m component in their time complexity.

A GraphBLAS vector (GrB_Vector) is simply held as an n-by-1 matrix, although the two types
(GrB_Matrix and GrB_Vector) are different and unique types in the user-level application. Inter-
nally, any GrB_Vector can be typecasted into a GrB_Matrix, and while this is technically available
to the GraphBLAS user application, it is not documented, not guaranteed to work in all future
versions of the library, and not part of the GraphBLAS C API Specification.

4.2 Matrix operations
Details of the matrix multiply, element-wise, submatrix extraction, and submatrix assignment oper-
ations are given below. Unless specified otherwise, the matrix C ism-by-n. For this discussion, the
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matrices are assumed to be in CSC format, either standard or hypersparse. The CSR versions of the
algorithms are the transpose of the CSC algorithms. The GrB_apply, GrB_reduce, GrB_transpose,
GxB_select, and GxB_kron operations are not described here since their implementation is fairly
straight-forward.
All methods can operate on all four matrix formats in any combination. For example, the four

matrices for C⟨M⟩ = AB give rise to 256 variants of the sparse matrix-matrix multiply. The user
interface for all variants is the same, and the user application need not know or care what formats are
being used internally, other than to experience their impact on performance of the user application.

4.2.1 Matrix multiply. Multiplying two sparse matrices (GrB_mxm), matrix-vector multiply
(GrB_mxv), or vector-matrix multiply (GrB_vxm) rely on three methods:

(1) a variant of Gustavson’s algorithm [13],
(2) a heap-based method [3], and
(3) a dot-product formulation.
Each of the methods has a masked variant that computes C⟨M⟩ = AB, and variants that operate

on hypersparse matrices. The methods operate on both CSR and CSC format, but the discussion
below assumes the CSC format.
In the first method, when no mask is present, the work is split into a symbolic analysis phase

that finds the pattern of C and a numerical phase that computes its values. To multiply C = AB
where C ism-by-n, A ism-by-k and B is k-by-n, both phases take only O(n + f ) time, assuming all
matrices are in CSC format, and assuming the O(m) workspace is already allocated and initialized,
where f is the number of “multiply-adds” computed (in the semiring). If the O(m) workspace has
already been allocated by a prior matrix multiplication, the termsm and k do not appear in the
time complexity, which is very important when n and f are both much less thanm or k .

A breadth-first search, for example, must compute c = Ab where b is a sparse vector. The result c
is the set of neighbors of all nodes i where bi is true. This set of neighbors is much smaller than the
number of nodes,m, in the graph. Assuming the workspace of sizeO(m) has already been allocated
and initialized, the time to compute this set is simply O(f ), or the sum total of the adjacency sets
for all nodes in the current level, represented by b (a column vector, so n = 1).
To obtain this time O(f ) that does not depend onm, SuiteSparse:GraphBLAS maintains two of

pre-allocated workspaces of sizem, used internally and reused for subsequent operations. One is
uninitialized, and used for numerical gather/scatter operations in the numerical phase. The other
is an initialized integer array, mark, that is used for the set-union computation in the symbolic
phase, and for the mask M in the numerical phase. The entire space is cleared in constant time.
When initialized, mark[i]<flag holds for all i; to set mark[i] as true, mark[i]=flag is done,
and clearing the entire mark array simply requires flag to be incremented. Both workspaces are
allocated if they are not present, this is be done just once for the entire breadth-first search, for
example. Thus, in an amortized sense, these sizem arrays do not contribute an O(m) component
to the time complexity of computing C = AB in each iteration. The O(m) work appears just once
in the entire breadth-first search algorithm. Ifm is large compared with |A| + |B|, Gustavson’s
method is not used, and the heap-based method is used instead.
Both C and B have n columns, and even if many of those columns are entirely empty, the time

complexity of O(n + f ) still depends on n, if the matrices are in standard format. A hypersparse
format need only operate on the non-empty columns of B and C, however, so the time complexity
drops to O(n̄B + f ) where n̄B < n is the number of non-empty columns of B.

Constructing C takes Ω(n) time and space if it is stored in standard compressed sparse-column
form with a pointer array C.p of size n + 1. The term n could dominate in some cases, if n is much
larger than f . Thus SuiteSparse:GraphBLAS stores its matrices in hypersparse format if n̄ < n/16.
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The result of computing the matrix product AB may be written into C via a mask, M, via
C⟨M⟩ = AB. If the mask is present (and not complemented), only the subset of entries appearing
in the mask are computed. This greatly reduces the time and memory usage. In this method, the
symbolic analysis is skipped. A matrix T = AB is computed whose pattern is assumed to be a subset
of the mask matrix M. Entries in AB outside the mask need not be computed, and are discarded if
they are computed.

For example, if L is the strictly lower triangular part of an unweighted graph A, then C⟨L⟩ = L2

finds the number of triangles in the graph, where ci j is the number of triangles the containing the
edge (i, j) [2]. Not all of L2 is computed or stored, but only the entries corresponding to entries in
the mask, L. This greatly reduces the time and memory complexity of the masked matrix multiply,
as compared with computing all of L2 first and then applying the mask, as would be done in the
MATLAB expression C=(L^2).*L.

The O(m) workspace required for Gustavson’s method is kept in the output matrix C. It could be
kept outside the matrix, in global workspace or in thread-local workspace, and reused for different
matrices, but using a global workspace would mean that GraphBLAS would not be thread-safe if the
user application is multithreaded. Thread-local workspace adds complexity to the implementation,
and would be more space if more than one user thread were to operate on the matrix. It is thus
kept in matrix C. It can be freed by the user application if desired.

When this initialized workspace is available, Gustavson’s method takes O(n̄ + f ) time when the
matrices are hypersparse, or O(n + f ) when they are in standard CSC format. The O(m) size of
the workspace is prohibitive if e << m, however. Thus, a heap-based method is also implemented
[3]. It constructs each non-empty column j of the output C as a k-way merge, if column B∗j has k
entries. The merge is managed with a heap of size k , where k << m typically holds. As a result,
the workspace of the heap-based method is very small. The time complexity to compute a single
column C∗j is no more than O(fj log fj ), if computing this column takes O(fj ) numeric operations.
Thus, the total work is O(f log f ) which can be much smaller than O(n + f ) if f << n, and the
memory space is much smaller. None of the matrix dimensionsm or n appear in the time or memory
complexity of the heap-based method. As a result, a matrices of size 260-by-260 can easily be created
and operated on in as little as O(1) time and space, if the matrices have O(1) entries.
SuiteSparse:GraphBLAS uses a complex heuristic to select between these three methods. Gus-

tavson’s method works best when the matrices are not hypersparse and if itsO(m) workspace does
not dominate the memory space required. The heap-based method is best for hypersparse matrices,
or when A or B are diagonal or permutation matrices. The dot product formulation is useful in very
specific cases. It can be very fast if C is small compared to A and B, or if C⟨M⟩ = AB is computed
with a very sparse mask. Since it is difficult to always make the best choice automatically, the user
application can also select the method to be used via the GrB_Descriptor.

Currently, matrix multiply and submatrix assignment (GrB_mxm, GrB_mxv, GrB_vxm, GrB_assign,
and GxB_subassign) are the only operations that exploit the mask during computations. All other
operations compute their result and only then do they write their results into the output matrix via
the mask. Future versions of SuiteSparse:GraphBLAS may exploit the mask more fully to reduce
the time and space required.

4.2.2 Element-wise operations. Element-wise operations in GraphBLAS can use any binary op-
erator. They are applied in either a set-union (GrB_eWiseAdd) or set-intersection (GrB_eWiseMult)
manner. The set-union is like a sparse matrix addition in MATLAB, C=A+B. If an entry appears in
just A or B, the value is copied into C without applying the binary operator. The set-intersection is
like C=A.*B in MATLAB, which is the Hadamard matrix product if the binary multiply operator is
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used. For both methods, however, any binary operator can be used, which is only applied to entries
in the set-intersection.

The implementation of GrB_eWiseAdd is straightforward, taking O(n + |A| + |B|) time where n
is the number of columns in the three matrices, if the matrices are in standard CSC format. Each
column of C is computed with a merge of the corresponding columns of A and B, since columns
are always kept with sorted row indices. Unless the matrices have fewer than O(n) entries, this
time is optimal. The time is optimal for the hypersparse case: O(|A| + |B|).
The GrB_eWiseMult operation is more subtle, since the lower bound on the ideal time is the

size of the set-intersection, Ω(|C|), which is smaller than either |A| or |B|. For each column j, if
the number of nonzeros in A∗j and B∗j are similar, then a conventional merge is used, taking
O(|A∗j |+ |B∗j |) time. This is just like set-union “add,” except that entries outside the set-intersection
are not copied into C. Suppose instead that the jth column of A has far fewer entries than the jth
column of B. In this case, during the merge, each entry ai j is examined and a trimmed binary search
is used to find the corresponding entry in B∗j . The search is trimmed since B∗j is sorted, and once
an entry i is found this result is used to reduce the search for subsequent row indices i ′ > i .
Additional tests for special cases reduce the time even further. For example, if the last entry in

column A∗j comes before the first entry in B∗j , then the intersection is empty and no traversal is
done of either A∗j or B∗j .
These tests are performed column-by-column. In the extreme case, if A is very sparse and B is

completely dense, the time complexity of GrB_eWiseMult isO(n + |A| logm). This is much smaller
than the O(n2) time that would result if a simple merge is used, like the set-union “add” method
used in GrB_eWiseAdd. For the hypersparse case, the O(n) term drops from the time complexity,
and is replaced with O(n̄A + n̄B ) if n̄A and n̄B are the number of non-empty columns of A and B.

4.2.3 Submatrix extraction. GrB_extract extracts a submatrix, C = A(i, j) where i and j are
integer vectors, like C=A(I,J) in MATLAB notation. It is a meta-algorithm that selects different
methods for traversing the matrix A, depending on the length |i| of the row index list i and the
number of entries in a given column of the matrix A. The eleven cases are shown in Table 3.

A CSC matrix C is built one column C(:,k) at a time, by examining A(:,j) where j=J[k]. Let
a = |A∗j | be the number of entries in the jth column of A, and let c = |C∗k | be the number of entries
in the kth column of C. If I has duplicate entries, then c > a is possible; otherwise c ≤ a must hold.
The GraphBLAS standard allows for two different ways of specifying the index sets I and J.

An index set can either be an explicit list of integers (one per index), or it can be a special value
GrB_ALL, which acts just like the colon in A(:,j) in MATLAB.
This can be problematic if A is hypersparse. Suppose A has dimension n-by-n with n = 260, but

contains only a million entries. Extracting the top left submatrix, C=A(1:n/2,1:n/2), would require
the creation of an index list I of sizen/2, which is impossible. Thus, SuiteSparse:GraphBLAS provides
a mechanism similar to the MATLAB colon notation, lo:stride:hi, which can be specified with
only three integers and can thus be used for arbitrarily large matrices.

If I is a large explicit list of sizem/256 or larger, then a multiset inverse of I is created inO(m+ |i|)
workspace, wherem is the number of rows of A, taking O(m + |i|) time. The inverse is a multiset if
I contains duplicate entries. This workspace is needed only for cases 9 to 11, below. This is the
only workspace needed for GrB_extract, and it is not allocated until the first time cases 9 to 11
are triggered.

Except for cases 1, 2, and 4, the method starts with a binary search for the first row index, I[0],
taking at most O(loga) time. The method then considers eleven cases for each column of C and A;
the first case that holds for a particular column j is utilized. The time shown in Table 3 excludes
the time to invert I for cases 9 to 11. There is no simple expression for the total time to construct
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Table 3. Meta-algorithm for C(:,k)=A(I,j)

case description O(...)
1 A(:,j) is dense and I is GrB_ALL (the colon A(:,j) in MATLAB notation):

the entire column is copied.
c

2 A(:,j) is dense and I has any form: C(:,k)=A(I,j), by scanning each
index in I

c

3 I is a single row index: the entry is extracted in O(1) time. loga
4 A(:,j) is sparse and I is GrB_ALL: the entire column is copied. c
5 I is a contiguous list of stride 1 (C(:,k)=A(imin:imax,j)): the entire col-

umn is copied starting at imin until reaching imax.
loga + c

6 The inverse of I is too costly to compute, or the size of I is small compared
with the number of entries in A(:,j): a binary search in A(:,j) is performed
for each entry in I. If found, the entry is appended to C(:,k). No sort is
needed. Case 6 is faster than cases 9 to 11 when |i| is smaller than a.

|i| loga

7 I is given using a colon-like notation, I=imin:stride:imax, with stride
>= 0. Each entry in A(:,j) is scanned. Testing if this row index appears
in I and finding the new row index in C(:,k), takes O(1) time. No sort is
needed.

a

8 The same as case 7, except stride < 0. The entries in A(:,j) are scanned
in reverse order. No sort is needed.

a

9 The list I is not in order (and may include duplicates): all of A(:,j) is
examined. If A(i,j) is nonzero, then all row indices t for which t=I[k]
(if any) are appended to the column C(:,k), along with their positions in
A(:,j). This traversal relies on the multi-inverse of I. Once the traversal of
the pattern of A(:,j) is completed, the row indices and positions in C(:,k)
are sorted. Next, the corresponding numerical values are copied from A(I,j)
to C(:,k). The time to invert I isO(m + |i|) time, but this is done only once.

c log c + a

10 The list I is sorted but has duplicates: all of A(:,j) is examined. This method
is just like case (9), except that no sort is needed, and it is done in a single
pass.

c + a

11 the list I is sorted, with no duplicates (a simplified version of case (10)). a

all of C = A(i, j), since each column is treated differently in one of the above eleven cases. The
lower bound of Ω(|C|) can be obtained for some simple cases under modest assumptions. Other
cases such as C=A(imin:imax,J) are nearly optimal, taking no more than O(|C| + |j| log maxa)
time, where maxa is the number of entries in the densest column of A(:,J), and where the list J
can have any format (GrB_ALL, a colon-like expression, or an explicit list).

4.2.4 Submatrix assignments. The GrB_assign and GxB_subassign operations modify a subma-
trix of C. The GraphBLAS operation GrB_assign computes C⟨M⟩(i, j) = C(i, j) ⊙ A, where the mask
matrix M has the same size as C. SuiteSparse:GraphBLAS adds an extension to the GraphBLAS
specification, via the operation GxB_subassign, which computes C(i, j)⟨M⟩ = C(i, j) ⊙ A. In this
case, the mask matrix is the same size as the submatrix C(i, j). Details of the two operations are
shown in Table 4.

These two operations are the most intricate operations in SuiteSparse:GraphBLAS, taking 3,908
lines of C to implement and 3,984 lines of comments to describe (not including support functions
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Table 4. GrB_assign and GxB_subassign

Step GrB_assign GxB_subassign
1 S = C(I, J) S = C(I, J)
2 S = S ⊙ A S⟨M⟩ = S ⊙ A
3 Z = C C(I, J) = S
4 Z(I, J) = S
5 C⟨M⟩ = Z

also used for other operations, such as typecasting). They fully exploit non-blocking mode to obtain
high performance.

If a sequence of assignments uses the same accumulator operator, portions of the assignment are
postponed, via zombies and pending tuples. In most cases, the method starts with a specialized
form of submatrix extraction, S = C(i, j), where the scalar entries in S are pointers to where the
entries reside in C. Next S = S ⊙ A is computed, where entries that appear in both S and A are
modified directly in C (if such an entry appears as a zombie in C, it comes back to life). Entries that
appear in S but not A become zombies in C. Entries that appear in A but not S become pending
tuples in C.
No workspace is required beyond that needed by the submatrix extraction to compute S. As

a result, if C ism-by-n, in most cases no sizem or size n workspace is needed (unless S is built,
using cases 9 to 10 of Table 3). This makes the method much more efficient for very large, very
sparse matrices, as compared to C(I,J)=A in MATLAB, even when the non-blocking mode is not
exploited. In particular, for one square matrix C of dimension 3 million, containing 14.3 million
nonzeros, C(I,J)=A takes 87 seconds in MATLAB on a MacBook Pro but only 0.74 seconds in
SuiteSparse:GraphBLAS (where A is 5500-by-7000 with 38,500 nonzeros, and I and J are randomly
generated). This 0.74 seconds includes the time to return the result back to MATLAB as a valid
MATLAB sparse matrix with all zombies and pending tuples removed.
The fast incremental update of a matrix is one of the reasons RedisGraph obtains such high

performance (see Section 6). A common use case for graph analytics is to add a batch of updates
to a matrix/graph, by modifying, adding, and deleting edges. With the algorithm used in Suite-
Sparse:GraphBLAS, each scalar update to a sparse vector of length k takes just O(logk) time, with
the rest of the update of the entire matrix left pending. Eventually when the matrix needs to be
completed with all zombies deleted and pending tuples assembled, the extra work is no more than
O(n + e + p logp), where e is the number of entries in the original matrix (prior to any updates)
and p is the number of pending tuples waiting to be added, assuming the matrix is in standard CSC
or CSR form. The O(n) component does not appear if the matrix is hypersparse.
The GrB_Matrix_setElement method modifies a single entry, C(i,j)=x where i and j are

scalars. It first performs a binary search of column C(:,j) to see if the entry is present. If so, the
value is modified; a zombie may come back to life in this case. If it is not present, the entry is added
to the list of pending tuples.

4.3 Compile-time user-defined objects
The nine different objects in Table 1 are all created at run-time. This provides a great deal of
flexibility for constructing new types and semirings, but it comes at the cost of performance. For
example, computing C=A*B with sparse double precision matrices is about 10% faster than the same
computation in MATLAB, using the GrB_FP64 built-in type. GraphBLAS does not have a built-in
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#ifdef GxB_USER_INCLUDE
#include <complex.h>
static inline void my_complex_plus (double complex *z,

const double complex *x, const double complex *y)
{

(*z) = (*x) + (*y) ;
}
static inline void my_complex_times (double complex *z,

const double complex *x, const double complex *y)
{

(*z) = (*x) * (*y) ;
}

#endif

// the complex type: My_Complex, based on the ANSI C11 double complex type
GxB_Type_define(My_Complex, double complex) ;

// My_Complex_plus: add two complex values
GxB_BinaryOp_define(My_Complex_plus, my_complex_plus, My_Complex, My_Complex, My_Complex) ;

// My_Complex_plus: multiply two complex values
GxB_BinaryOp_define(My_Complex_times, my_complex_times, My_Complex, My_Complex, My_Complex) ;

// My_Complex_plus_monoid: complex addition, with an identity of 0+0*i
GxB_Monoid_define(My_Complex_plus_monoid, My_Complex_plus, CMPLX(0,0)) ;

// My_Complex_plus_times: the complex-plus-times semiring
GxB_Semiring_define(My_Complex_plus_times, My_Complex_plus_monoid, My_Complex_times) ; }

Fig. 1. Compile-time construction of the double complex plus-times semiring

complex type. It can be constructed at run-time, but the resulting C=A*B computation in GxB_mxm
is 2 to 3 times slower than the same computation in MATLAB.

To address this problem, SuiteSparse:GraphBLAS includes a mechanism for creating user-defined
types, operators, monoids, and semirings when SuiteSparse:GraphBLAS is compiled (the first six
objects in Table 1). Matrix, vectors, and descriptors cannot be defined at compile time. The user
simply writes a short m4 script using six m4 macros of the form GxB_*_define, which mimic the
GrB_*_new functions that construct these objects at run-time.

An example is shown in Figure 1. With this mechanism, sparse complex double precision matrices
can be computed in GraphBLAS just as quickly as they can in MATLAB, or slightly faster. The
operation C=A*B with the pre-defined complex plus-times semiring in GraphBLAS is about 10%
faster than C=A*B in MATLAB, as compared to 2x to 3x slower when the same complex plus-times
semiring is created a run-time.

An alternative strategy would be to use C++ templates, but the GraphBLAS API is in C, not C++.

4.4 Testing
Testing is a vital component of SuiteSparse:GraphBLAS. SuiteSparse:GraphBLAS includes a Test
folder that contains a full MATLAB implementation of the GraphBLAS API Specification, so that
each method and operation in the C-callable SuiteSparse:GraphBLAS can be tested and their results
compared with the GraphBLAS specification. The tests must ensure correct results and the correct
asymptotic performance of the algorithms, for three reasons:
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• SuiteSparse:GraphBLAS is meant to be a robust and high-performance sequential implemen-
tation that is suitable for inclusion in a final application. The package already appears in
Debian and Ubuntu Linux distributions and forms the basis of the RedisGraph module of
Redis, a commercial graph database package. It must be well-tested so that its results can be
relied upon in production use.

• It provides a high-performance sequential baseline, with the right asymptotic performance,
against which the performance of future parallel implementations can be compared. There
is little point in a creating a parallel GraphBLAS that is slower than a good sequential
implementation.

• It provides an exact implementation of the GraphBLAS C API Specification, so that future
parallel implementations can check their results for correctness.

To accomplish these goals, each GraphBLAS method and operation is written as a very simple
and short MATLAB function that can be visually inspected to conform to the GraphBLAS C
API Specification. MATLAB has high-performance sparse matrix computations, but the MATLAB
implementation is not meant to be fast. It is meant as a perfectly compliant implementation of the
specification.

MATLAB supports all of the built-in types of GraphBLAS in its dense matrix data structure, but
MATLAB sparse matrices can only be double or complex. As a result, the MATLAB implemen-
tation in the Test folder uses two dense matrices for each GraphBLAS matrix: one to hold the
numerical values (in varying sizes of integers and floating-point values) and a dense binary matrix
(logical in MATLAB) to hold the pattern. This is of course very slow for large problems, so the
performance of this dense-matrix-based MATLAB implementation should not be compared with
SuiteSparse:GraphBLAS.

The MATLAB functions that implement the GraphBLAS C API Specification are the GB_spec_*.m
files, and are a total of 1,330 lines of MATLAB and another 1,384 lines of comments. They are
carefully commented so they can be compared with the GraphBLAS API to ensure their compliance.

For example, GrB_assign and the related function GrB_extract take a total of 3,908 lines of C to
implement in SuiteSparse:GraphBLAS and 3,984 lines of comments to describe. The same functions
in the concise GB_spec_*.m functions take only 161 lines of code and 208 lines of comments. Of the
161 lines of m-file code, 33 lines are error checks that are not necessary to illustrate and implement
the method.

The testing framework includes a MATLAB mexFunction interface to each GraphBLAS function
(written in C), so that any computation can be done twice, in C and in MATLAB. The results are
then compared with the fast C implementation of SuiteSparse:GraphBLAS. Most of the tests check
for exactly identical results, even the same roundoff error for floating-point computations. Since
the MATLAB implementation relies on dense matrices, these tests can only be done for small test
problems.
This approach adds a challenge to the test coverage question. A test framework must ensure

accurate results while at the same time ensuring 100% test coverage. However, test coverage tools for
C such as gcov cannot be used in a MATLAB mexFunction. MATLAB has a test coverage reporting
mechanism, but it can only evaluate the test coverage of MATLAB m-files, not mexFunctions in C.
To meet this challenge, SuiteSparse:GraphBLAS includes its own implementation of a test

coverage mechanism. To test the code, a code preprocessor analyzes the C version of the package
and emits a test version with code coverage statements inserted. The mexFunction interface then
calls this annotated version of the C-callable library, and collects statement coverage counts as the
tests proceed.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article 1. Publication date: January 2018.



1:18 Timothy A. Davis

At 25,465 lines of C and MATLAB (excluding 11,990 lines of comments), the testing framework
is longer than the C code of the SuiteSparse:GraphBLAS library itself. Only 1,330 lines of the
testing framework are the GB_spec_*.m files, which provide a simple, elegant, and easy-to-read
implementation that is almost a line-by-line transliteration of the GraphBLAS specification. This
provides a powerful means to ensure its compliance with the spec.
The entire testing framework is thus extremely rigorous. Fortunately, it only needs to be done

once. Now that SuiteSparse:GraphBLAS is available, and has been rigorously shown to exactly
implement the Specification, future parallel implementations do not have to write such rigorous
tests. They can simply compare their results with SuiteSparse:GraphBLAS.

5 EXAMPLE GRAPH ALGORITHMS IN GRAPHBLAS
This section describes two of the graph algorithms provided as demos in the SuiteSparse:GraphBLAS
package: breadth-first search, and Luby’s method for finding a maximal independent set. Both are
modified versions of examples that appear in the GraphBLAS specification [5].

5.1 Breadth-first search
Figure 2 gives an algorithm in GraphBLAS for computing the breadth-first search of a graph.
Each step consists of a matrix-vector multiplication, which finds the nodes in the next level of
the traversal. Space does not permit all the details of the C API syntax to be described, so the
algorithm is repeated in pseudo-MATLAB notation in Figure 3. The single call to GrB_vxm computes
a masked matrix-vector product using the logical OR-AND semiring. Internally, it first computes
t'=q'*A using the Boolean OR-AND semiring. It then clears all entries in q, via the GrB_REPLACE
parameter in the descriptor. Finally, it assigns t to q using a complemented mask, which is q(~v)=t
in MATLAB notation.

5.2 Luby’s maximal independent set algorithm
A second algorithm provided with SuiteSparse:GraphBLAS is an implementation of Luby’s parallel
method for finding amaximal independent set [20]. SuiteSparse:GraphBLAS is currently a sequential
package, but it expresses the algorithm using whole-graph operations that could be implemented
in parallel in future versions.
The maximal independent set problem is to find a set of nodes S such that no two nodes in S

are adjacent to each other (an independent set), and all nodes not in S are adjacent to at least one
node in S (and thus S is maximal since it cannot be augmented by any node while remaining an
independent set).

In each phase, all candidate nodes are given a random score. If a node has a score higher than all
its neighbors, then it is added to the independent set. All new nodes added to the set cause their
neighbors to be removed from the set of candidates. The process must be repeated for multiple
phases until no new nodes can be added. This is because in one phase, a node i might not be added
because one of its neighbors j has a higher score, yet that neighbor j might not be added because
one of its neighbors k is added to the independent set instead. The node j is no longer a candidate
and can never be added to the independent set, but node i could be added to S in a subsequent
phase.

Each phase of Luby’s algorithm consists of nine calls to GraphBLAS operations. The inner loop
of Luby’s method is shown in Figure 4. The descriptor r_desc causes the result to be cleared first,
and sr_desc selects that option in addition to complementing the mask.

The two matrix-vector multiplications are the important parts and also take the most time. They
also make interesting use of semirings and masks. The first one discussed here computes the largest
score of all the neighbors of each node in the candidate set:
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GrB_Info bfs // BFS of a graph (using vector assign & reduce)
(

GrB_Vector *v_output, // v [i] is the BFS level of node i in the graph
const GrB_Matrix A, // input graph, treated as if boolean in semiring
GrB_Index s // starting node of the BFS

)
{

GrB_Index n ; // # of nodes in the graph
GrB_Vector q = NULL ; // nodes visited at each level
GrB_Vector v = NULL ; // result vector
GrB_Descriptor desc = NULL ; // Descriptor for vxm
GrB_Matrix_nrows (&n, A) ; // n = # of rows of A
GrB_Vector_new (&v, GrB_INT32, n) ; // Vector<int32_t> v(n) = 0
GrB_Vector_new (&q, GrB_BOOL, n) ; // Vector<bool> q(n) = false
GrB_Vector_setElement (q, true, s) ; // q[s] = true, false elsewhere
GrB_Descriptor_new (&desc) ;
GrB_Descriptor_set (desc, GrB_MASK, GrB_SCMP) ; // invert the mask
GrB_Descriptor_set (desc, GrB_OUTP, GrB_REPLACE) ; // clear q first

bool successor = true ; // true when some successor found
for (int32_t level = 1 ; successor && level <= n ; level++)
{

// v<q> = level, using vector assign with q as the mask
GrB_assign (v, q, NULL, level, GrB_ALL, n, NULL) ;
// q<!v> = A ||.&& q ; finds all the unvisited
// successors from current q, using !v as the mask
GrB_vxm (q, v, NULL, GrB_LOR_LAND_BOOL, q, A, desc) ;
// successor = ||(q)
GrB_reduce (&successor, NULL, GrB_LOR_BOOL_MONOID, q, NULL) ;

}
*v_output = v ; // return result
GrB_free (&q) ;
GrB_free (&desc) ;
return (GrB_SUCCESS) ;

}

Fig. 2. GraphBLAS breadth-first search: given an adjacency matrix A and a source node s, perform a BFS
traversal of the graph, setting v[i] to the level in which node i is visited.

v = zeros (1,n) ; % v(k) is the BFS level (1 for source node s)
q = false (1,n) ; % boolean vector of size n
q (s) = true ; % q(k) is true if node k is in current level
for level = 1:n

v (q) = level ; % set v(i)=level where q(i) is true
% new q = all unvisited neighbors of current q:
t = A'*q ; % where '*' is the OR-AND semiring
q = false (1,n) ; % clear q of all entries
q (~v) = t ; % q (i) = t (i) but only where v(i) is zero
if (~any (q)) break ;

end

Fig. 3. Breadth-first search using pseudo-MATLAB notation. The only aspect of this code fragment that is
not pure MATLAB is the computation of A’*q, since MATLAB does provide matrix multiplication with the
OR-AND semiring. The graphic shows the computation of t=A’*q using the OR-AND semiring, where q is at
level three (nodes 2 and 6). Level 4 will be nodes 5 and 7; node 3 is excluded since v is used as a complemented
mask and v[3] is nonzero.
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// Iterate while there are candidates to check.
GrB_Index nvals ;
GrB_Vector_nvals (&nvals, candidates) ;
int64_t last_nvals = nvals ;

while (nvals > 0)
{

// compute a random probability scaled by inverse of degree
GrB_apply (prob, candidates, NULL, set_random, degrees, r_desc) ;

// compute the max probability of all neighbors
GrB_vxm (neighbor_max, candidates, NULL, GxB_MAX_FIRST_FP32, prob, A, r_desc) ;

// select node if its probability is > than all its active neighbors
GrB_eWiseAdd (new_members, NULL, NULL, GrB_GT_FP64, prob, neighbor_max, NULL) ;

// add new members to independent set.
GrB_eWiseAdd (iset, NULL, NULL, GrB_LOR, iset, new_members, NULL) ;

// remove new members from set of candidates c = c & !new
GrB_apply (candidates, new_members, NULL, GrB_IDENTITY_BOOL, candidates, sr_desc) ;

GrB_Vector_nvals (&nvals, candidates) ;
if (nvals == 0) { break ; } // early exit condition

// Neighbors of new members can also be removed from candidates
GrB_vxm (new_neighbors, candidates, NULL, GxB_LOR_LAND_BOOL, new_members, A, NULL) ;
GrB_apply (candidates, new_neighbors, NULL, GrB_IDENTITY_BOOL, candidates, sr_desc) ;

GrB_Vector_nvals (&nvals, candidates) ;

// this will not occur, unless the input is corrupted somehow
if (last_nvals == nvals) { printf ("stall!\n") ; exit (1) ; }
last_nvals = nvals ;

}

Fig. 4. Luby’s maximal independent set method in GraphBLAS

// compute the max probability of all neighbors
GrB_vxm (neighbor_max, candidates, NULL, GxB_MAX_FIRST_FP32, prob, A, r_desc) ;

A is a symmetric Boolean matrix and prob is a sparse real vector of type FP32, which is a float
in C. prob(j) is nonzero only if node j is a candidate. The pre-defined GxB_MAX_FIRST_FP32
semiring uses z=FIRST(x,y)=x as the “multiply” operator. Column A(:,j) is the adjacency of
node j, and the dot product prob'*A(:,j) applies the FIRST operator on all entries that appear in
the intersection of prob and A(:,j), z=FIRST(prob(i),A(i,j)), which is just prob(i) if A(i,j)
is present. If A(i,j) is not an explicit entry in the matrix, then this term is not computed and does
not take part in the reduction by the MAX monoid.

Thus, each term z=FIRST(prob(i),A(i,j)) is the score, prob(i), of all neighbors i of node j
that have a score. Node i does not have a score if it is not also a candidate and so this is skipped.
These terms are then “summed” up by taking the maximum score, using MAX as the additive monoid.

Finally, the results of this matrix-vector multiply are written to the result, neighbor_max. The
r_desc descriptor has the REPLACE option enabled. Since neighbor_max does not also take part in
the computation prob'*A, it is simply cleared first. Next, is it modified only in those positions i
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Table 5. Performance of triangle counting on an IBM Minsky system, 20 Power8 cores, 8 hardware threads
per core. Performance is in terms of 106 edges/sec (higher is better).

matrix performance (106 edges/sec)
nodes edges Graph without GraphBLAS

name 103 106 BLAS simple fast parallel
loc-brightkite_edges .06 0.2 13.2 6.2 33.8 138.1
soc-Epinions1 .08 0.4 6.5 3.3 20.0 124.2
email-EuAll .27 0.4 11.4 1.4 26.0 132.8
cit-HepPh .04 0.4 10.3 5.1 30.9 177.8
soc-Slashdot0902 .08 0.5 8.4 3.6 21.1 101.4
amazon0302 .26 0.9 16.2 11.0 36.0 273.5
loc-gowalla_edges .20 1.0 5.0 2.4 14.8 99.6
roadNet-TX 1.38 1.9 12.7 12.9 25.4 275.7
flickrEdges .11 2.3 2.3 1.7 4.0 40.6
cit-Patents 3.77 16.5 6.0 4.9 4.5 104.3
friendster 119.43 1,800.0 5.7 2.1 2.6 56.3
g-16764930 4.19 16.8 24.5 18.9 9.0 282.1
g-268386306 67.11 268.4 24.3 20.2 15.7 271.3

where candidates(i) is true, using candidates as a mask. This sets the neighbor_max only for
candidate nodes, and leaves the other components of neighbor_max as zero (implicit values not in
the pattern of the vector).
All of the above work is done in a single matrix-vector multiply, with an elegant use of the

max-first semiring coupled with a mask. The matrix-vector multiplication is described above as if
it uses dot products of the row vector prob' with columns of A, but SuiteSparse:GraphBLAS does
not compute it that way. Sparse dot products are typically much slower than the optimal method
for multiplying a sparse matrix times a sparse vector, except in special cases. The result is the same,
however.

6 PERFORMANCE
GraphBLAS allows a user application to express its graph algorithms in a powerful, expressive, and
simple manner. Details of the graph data structure and the implementation of the basic methods
can be left to the author of the GraphBLAS library. The key question, however, is whether or
not performance of such an application can match that of a graph algorithm written without
GraphBLAS.

In [8], two algorithms were written in GraphBLAS, and without GraphBLAS (both sequentially
and in parallel). The first algorithm is to count the number of triangles in a graph, which is the
number of unique cliques of size 3 in the graph. The second is construct the k-truss of a graph. In a
3-truss, all edges in the graph are removed except for those in one or more triangles. In a k-truss,
each edge that remains must appear in at least k − 2 triangles. Both codes are very simple to write
using GraphBLAS.
The methods were tested on a large set of graphs from the MIT GraphChallenge (https://

graphchallenge.mit.edu). Table 5 lists the performance of triangle counting algorithm in GraphBLAS,
and three implementations without GraphBLAS: a simple sequential implementation, a highly-
tuned sequential code (the column “fast”), and a highly-tuned code in OpenMP. The results show
that triangle counting in SuiteSparse:GraphBLAS is competitive with a highly-tuned sequential
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Table 6. 3-truss performance (106 edges/sec, higher is better)

matrix performance (106 edges/sec)
nodes edges Graph without GraphBLAS

name 103 106 BLAS sequential parallel
loc-brightkite_edges 0.06 0.2 1.4 2.3 10.5
soc-Epinions1 0.08 0.4 0.5 1.1 6.6
email-EuAll 0.27 0.4 0.4 0.7 7.4
cit-HepPh 0.04 0.4 1.0 1.9 14.4
soc-Slashdot0902 0.08 0.5 0.8 1.6 8.6
amazon0302 0.26 0.9 2.2 3.9 29.7
loc-gowalla_edges 0.20 1.0 0.4 0.8 9.2
roadNet-TX 1.38 1.9 10.8 15.1 56.6
flickrEdges 0.11 2.3 0.2 0.4 3.5
cit-Patents 3.77 16.5 0.9 1.4 11.5
friendster 119.43 1800.0 0.1 0.2 1.0
GenBank/A2a 170.73 180.3 6.2 8.5 35.1
GenBank/V1r 214.01 232.7 11.5 18.5 60.2
g-268386306 67.11 268.4 10.2 38.9 190.7
g-1073643522 268.44 1073.6 10.1 38.6 199.9

method (“fast”), and even faster for some larger graphs. An asymptotically optimal yet simple
C implementation of triangle counting (“simple”) is much slower than an implementation using
SuiteSparse:GraphBLAS.
Performance results of the k-truss methods with k = 3 are shown in Table 6. K-truss in Suite-

Sparse:GraphBLAS is also simple and the performance is competitive with a highly optimized
and complex algorithm in pure C, rarely taking more than twice the time as the highly-optimized,
sequential versions in pure C. These results demonstrate that GraphBLAS can be an efficient
library that allows end users to write simple yet fast code. Full details of this experiment are
available in [8]. The code for these experiments is in Extras folder of the software bundle, and at
http://suitesparse.com.
SuiteSparse:GraphBLAS has been released as part of the RedisGraph database module of the

Redis database systems, by RedisLabs, Inc [6]; Roi Lipman is the primary developer. Based on
SuiteSparse:GraphBLAS Version 1.2.0, RedisGraph 1.0 is 6 to 600 times faster than competing graph
databases.

Two graphs were used for the experiment reported in [6], and the results are summarized here:
graph500 with 2.4 million nodes and 64 million edges, from http://graph500.org, and twitter with
41.6 million nodes and 1.47 billion edges, from http://an.kaist.ac.kr/traces/WWW2010.html. The
twitter graph appears as the SNAP/twitter7matrix from the SNAP collection at Stanford [19], and
also appears in the SuiteSparse Matrix Collection (http://sparse.tamu.edu/SNAP/twitter7) [9]. The
results were obtained on a 32-core system with 244 GB of RAM. Table 7 reports the results of a
breadth-first search in RedisGraph and five other graph databases. The experiment tests a one-hop
breadth-first search for 300 source nodes (that is, find the neighbors of 300 nodes in a graph).
Table 8 reports the tests for 300 two-hop breadth-first searches for 300 source nodes. These results
demonstrate that SuiteSparse:GraphBLAS provides competitive performance against these other
commercial graph database systems, even though SuiteSparse:GraphBLAS is still a single-threaded
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Table 7. RedisGraph compared with other graph databases: 1-hop path query time. Normalized is relative to
the time for RedisGraph (lower is better)

Matrix Measure RedisGraph TigerGraph Neo4j Neptune JanusGraph ArangoDB
graph500 time (msec) 0.39 6.3 21.0 13.5 27.2 91.9

normalized 1 16.2 53.8 34.6 69.7 235.6
twitter time (msec) 0.80 24.1 205.0 289.2 394.8 1,674.7

normalized 1 30.1 256.3 361.5 493.5 2,093.4

Table 8. RedisGraph compared with other graph databases: 2-hop path query time. Normalized is relative to
the time for RedisGraph (lower is better)

Matrix Measure RedisGraph TigerGraph Neo4j Neptune JanusGraph ArangoDB
graph500 time (msec) 30.7 71.0 4,180.0 8,250.0 24,050.0 16,650.0

normalized 1 2.3 136.2 268.7 783.4 542.3
twitter time (msec) 503.0 460.0 18,340.0 27,400.0 27,780.0 28,980.0

normalized 1 0.9 36.5 54.5 55.2 57.6

package. Version 2.2.0 of the package is faster than the Version 1.2.0 used in these experiments, as
well.

Another benchmark performed by RedisLabs compared the time to perform a bulk insertion of
3 million edges into a graph of 1.1 million nodes in 0.53 seconds in RedisGraph. The next fastest
graph database (Neo4j) took 24.7 seconds to do the same work; the Titan graph database took 104
seconds, and OrientDB took 252 seconds. This benchmark illustrates the power of the non-blocking
mode in GraphBLAS and how it is exploited in SuiteSparse:GraphBLAS (see Section 4.2.4).

7 SUMMARY
The SuiteSparse:GraphBLAS library provides an efficient and highly optimized single-threaded
implementation of the GraphBLAS API standard [5]. It allows users to write powerful and expressive
graph algorithms with simple user-level code, whose performance is competitive with a highly-
tuned code written by an expert. The package is available as Collected Algorithm 9xx of the
ACM, at http://suitesparse.com, as part of the RedisGraph distribution, and is also available as a
pre-packaged Debian and Ubuntu Linux distro in the suitesparse package.
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