
THE FACTORIZE OBJECT for solving
linear systems

Table of Contents
Rule Number One: never multiply by the inverse, inv(A) .. 1
Rule Number Two: never break Rule Number One .. 1
How to use BACKSLASH to solve A*x=b .. 1
BACKSLASH versus INV ... let the battle begin ... 2
LU and LINSOLVE are fast and accurate but complicated to use ... 3
INV is easy to use, but slow and inaccurate .. 4
So the winner is ... nobody .. 4
The FACTORIZE object to the rescue ... 5
Least-squares problems .. 5
Underdetermined systems ... 6
Computing selected entries in the inverse or pseudo-inverse .. 7
Computing the entire inverse or pseudo-inverse .. 7
Update/downdate of a dense Cholesky factorization ... 7
Caveat Executor .. 8
Summary ... 8

Copyright 2011-2012, Timothy A. Davis, <mailto:DrTimothyAldenDavis@gmail.com DrTimothy-
AldenDavis@gmail.com>

This is a demonstration of the FACTORIZE object for solving linear systems and least-squares prob-
lems, and for computations with the matrix inverse and pseudo-inverse.

Rule Number One: never multiply by the in-
verse, inv(A)

Use backslash or a matrix factorization instead (LU, CHOL, or QR).

Rule Number Two: never break Rule Number
One

However, the problem with Rule Number One is that it can be hard to figure out which matrix factoriza-
tion to use and how to use it. Using LU, CHOL, or QR is complicated, particularly if you want the best
performance. BACKSLASH (MLDIVIDE) is great, but it can't be reused when solving multiple systems
(x=A\b and y=A\c). Its syntax doesn't match the use of the inverse in mathematical expressions, either.

The goal of the FACTORIZE object is to solve this problem ...

"Don't let that INV go past your eyes; to solve that system, FACTORIZE!"

How to use BACKSLASH to solve A*x=b

1

http://www.suitesparse.com
http://www.suitesparse.com

First, let's create a square matrix A and a right-hand-side b for a linear system A*x=b. There are many
ways to solve this system. The best way is to use x=A\b. The residual r is a vector of what's left over in
each equation, and its norm tells you how accurately the system was solved.

format compact ;
A = rand (3)
b = rand (3,1)
x = A\b
r = b-A*x ;
norm (r)

A =
0.1749 0.2984 0.6591
0.3449 0.9549 0.7990
0.8991 0.7803 0.1677

b =
0.9437
0.5626
0.1107

x =
0.8051
-1.1604
1.7434

ans =
2.2888e-16

BACKSLASH versus INV ... let the battle begin
The backslash operation x=A\b is mathematically the same as x=inv(A)*b. However, backslash is faster
and more accurate since it uses a matrix factorization instead of multiplying by the inverse. Even though
your linear algebra textbook might write x=A^(-1)*b as the solution to the system A*x=b, your textbook
author never means for you to compute the inverse.

These next statements give the same answer, so what's the big deal?

S = inv(A) ;
x = S*b
x = A\b

x =
0.8051
-1.1604
1.7434

x =
0.8051
-1.1604
1.7434

The big deal is that you should care about speed and you should care even more about accuracy. BACK-
SLASH relies on matrix factorization (LU, CHOL, QR, or other specialized methods). It's faster and
more reliable than multiplying by the inverse, particularly for large matrices and sparse matrices. Here's
an illustration of how pathetic inv(A)*b can be.

A = gallery ('frank',16) ; xtrue = ones (16,1) ; b = A*xtrue ;

x = inv(A)*b ; norm (b-A*x)
x = A\b ; norm (b-A*x)

THE FACTORIZE OBJECT for solving linear
systems

2

ans =
0.0145

ans =
1.7764e-15

The performance difference between BACKSLASH and INV for even small sparse matrices is striking.

load west0479 ;
A = west0479 ;
n = size (A,1)
b = rand (n,1) ;
tic ; x = A\b ; toc
norm (b-A*x)
tic ; x = inv(A)*b ; toc
norm (b-A*x)

n =
479

Elapsed time is 0.002675 seconds.
ans =

8.6474e-11
Elapsed time is 0.118341 seconds.
ans =

1.2993e-09

What if you want to solve multiple systems? Use a matrix factorization. But which one? And how do
you use it? Here are some alternatives using LU for the sparse west0479 matrix, but some are faster than
others.

tic ; [L,U] = lu(A) ; x1 = U \ (L \ b) ; t1=toc ; nz1=nnz(L+U);
tic ; [L,U,P] = lu(A) ; x2 = U \ (L \ P*b) ; t2=toc ; nz2=nnz(L+U);
tic ; [L,U,P,Q] = lu(A) ; x3 = Q * (U \ (L \ P*b)) ; t3=toc ; nz3=nnz(L+U);

fprintf ('1: nnz(L+U): %5d time: %8.4f resid: %e\n', nz1,t1, norm(b-A*x1));
fprintf ('2: nnz(L+U): %5d time: %8.4f resid: %e\n', nz2,t2, norm(b-A*x2));
fprintf ('3: nnz(L+U): %5d time: %8.4f resid: %e\n', nz3,t3, norm(b-A*x3));

1: nnz(L+U): 16151 time: 0.0056 resid: 4.165736e-11
2: nnz(L+U): 15826 time: 0.0148 resid: 4.095139e-11
3: nnz(L+U): 3704 time: 0.0051 resid: 8.448665e-11

LU and LINSOLVE are fast and accurate but
complicated to use

A quick look at ``help lu'' will scroll off your screen. For full matrices, [L,U,p] = lu (A,'vector') is fast-
est. Then for the forward/backsolves, use LINSOLVE instead of BACKSLASH for even faster perform-
ance. But for sparse matrices, use the optional 'Q' output of LU so you get a good fill-reducing ordering.
But you can't use 'Q' if the matrix is full. But LINSOLVE doesn't work on sparse matrices.

But ... Ack! That's getting complicated ...

Here's the best way to solve A*x=b and A*y=c when A is full and unsymmetric:

n = 1000 ;

THE FACTORIZE OBJECT for solving linear
systems

3

A = rand (n) ;
b = rand (n,1) ;
c = rand (n,1) ;
tic ; [L,U,p] = lu (A, 'vector') ; LUtime = toc

tic ; x = U \ (L \ b (p,:)) ;
y = U \ (L \ c (p,:)) ; toc

tic ; opL = struct ('LT', true) ;
opU = struct ('UT', true) ;
x = linsolve (U, linsolve (L, b(p,:), opL), opU) ;
y = linsolve (U, linsolve (L, c(p,:), opL), opU) ; toc

LUtime =
0.3089

Elapsed time is 0.014098 seconds.
Elapsed time is 0.006360 seconds.

INV is easy to use, but slow and inaccurate
Oh bother! Using LU and LINSOLVE is too complicated. You just want to solve your system. Let's just
compute inv(A) and use it twice. Easy to write, but slower and less accurate ...

S = inv (A) ;
x = S*b ; norm (b-A*x)
y = S*c ; norm (c-A*y)

ans =
1.3524e-09

ans =
1.1603e-09

Sometimes using the inverse seems inevitable. For example, your textbook might show the Schur com-
plement formula as S = A-B*inv(D)*C. This can be done without inv(D) in one of two ways: SLASH or
BACKSLASH (MRDIVIDE or MLDIVIDE to be precise).

inv(A)*B and A\B are mathematically equivalent, as are B*inv(A) and B/A, so these three methods give
the same results (ignoring computational errors, which are worse for inv(D)). Only the first equation
looks like the equation in your textbook, however.

A = rand (200) ; B = rand (200) ; C = rand (200) ; D = rand (200) ;

tic ; S1 = A - B*inv(D)*C ; toc ;
tic ; S2 = A - B*(D\C) ; toc ;
tic ; S3 = A - (B/D)*C ; toc ;

Elapsed time is 0.019662 seconds.
Elapsed time is 0.015572 seconds.
Elapsed time is 0.016489 seconds.

So the winner is ... nobody
BACKSLASH: mostly simple to use (except remember that Schur complement formula?). Fast and ac-
curate ... but slow if you want to solve two linear systems with the same matrix A.

THE FACTORIZE OBJECT for solving linear
systems

4

LU, QR, CHOL: fast and accurate. Awful syntax to use. Drag out your linear algebra textbook if you
want to use these in MATLAB. Whenever I use them I have to derive them from scratch, even though I
wrote most of the sparse factorizations used in MATLAB!

INV: slow and inaccurate. Wins big on ease-of-use, though, since it's a direct plug-in for all your nice
mathematical formulas.

No method is best on all three criterion: speed, accuracy, and ease of use.

Is there a solution? Yes ... keeping reading ...

The FACTORIZE object to the rescue
The FACTORIZE method is just as easy to use as INV, but just as fast and accurate as BACKSLASH,
LU, QR, CHOL, and LINSOLVE.

F = factorize(A) computes the factorization of A and returns it as an object that you can reuse to solve a
linear system with x=F\b. It picks LU, QR, or Cholesky for you, just like BACKSLASH.

S = inverse(A) is simpler yet. It does NOT compute inv(A), but factorizes A. When multiplying S*b, it
doesn't mulitply by the inverse, but uses the correct forward/backsolve equations to solve the linear sys-
tem.

n = 1000 ;
A = rand (n) ;
b = rand (n,1) ;
c = rand (n,1) ;

tic ; x = A\b ; y = A\c ; toc
tic ; S = inv(A) ; x = S*b ; y = S*c ; toc
tic ; F = factorize(A) ; x = F\b ; y = F\c ; toc
tic ; S = inverse(A) ; x = S*b ; y = S*c ; toc

Elapsed time is 0.642287 seconds.
Elapsed time is 0.795646 seconds.
Elapsed time is 0.329723 seconds.
Elapsed time is 0.326143 seconds.

Least-squares problems
Here are some different methods for solving a least-squares problem when your system is over-
determined. The last two methods are the same.

A = rand (1000,200) ;
b = rand (1000,1) ;

tic ; x = A\b ; toc, norm (A'*A*x-A'*b)
tic ; x = pinv(A)*b ; toc, norm (A'*A*x-A'*b)
tic ; x = inverse(A)*b ; toc, norm (A'*A*x-A'*b)
tic ; x = factorize(A)\b ; toc, norm (A'*A*x-A'*b)

Elapsed time is 0.055699 seconds.
ans =

4.4927e-12
Elapsed time is 0.332105 seconds.
ans =

THE FACTORIZE OBJECT for solving linear
systems

5

4.5453e-12
Elapsed time is 0.080377 seconds.
ans =

3.0146e-12
Elapsed time is 0.079140 seconds.
ans =

3.0146e-12

FACTORIZE is better than BACKSLASH because you can reuse the factorization for different right-
hand-sides. For full-rank matrices, it's better than PINV because it's faster (and PINV fails for sparse
matrices).

A = rand (1000,200) ;
b = rand (1000,1) ;
c = rand (1000,1) ;

tic ; ; x = A\b ; y = A\c ; toc
tic ; S = pinv(A) ; x = S*b ; y = S*c ; toc
tic ; S = inverse(A) ; x = S*b ; y = S*c ; toc
tic ; F = factorize(A) ; x = F\b ; y = F\c ; toc

Elapsed time is 0.112907 seconds.
Elapsed time is 0.350427 seconds.
Elapsed time is 0.081508 seconds.
Elapsed time is 0.082359 seconds.

Underdetermined systems
The under-determined system A*x=b where A has more columns than rows has many solutions. x=A\b
finds a basic solution (some of the entries in x are zero). pinv(A)*b finds a minimum 2-norm solution,
but it's slow. QR factorization will do the same if A has full rank. That's what the factorize(A) and in-
verse(A) methods do.

A = rand (200,1000) ;
b = rand (200,1) ;

tic ; x = A\b ; toc, norm (x)
tic ; x = pinv(A)*b ; toc, norm (x)
tic ; x = inverse(A)*b ; toc, norm (x)
tic ; x = factorize(A)\b ; toc, norm (x)

Elapsed time is 0.075303 seconds.
ans =

3.5652
Elapsed time is 0.353567 seconds.
ans =

0.5197
Elapsed time is 0.082330 seconds.
ans =

0.5197
Elapsed time is 0.081730 seconds.
ans =

0.5197

Computing selected entries in the inverse or

THE FACTORIZE OBJECT for solving linear
systems

6

pseudo-inverse
If you want just a few entries from the inverse, it's still better to formulate the problem as a system of
linear equations and use a matrix factorization instead of computing inv(A). The FACTORIZE object
does this for you, by overloading the subsref operator.

A = rand (1000) ;

tic ; S = inv (A) ; S (2:3,4), toc
tic ; S = inverse (A) ; S (2:3,4), toc

ans =
-0.0825
-0.1414

Elapsed time is 0.792377 seconds.
ans =

-0.0825
-0.1414

Elapsed time is 0.328101 seconds.

Computing the entire inverse or pseudo-in-
verse

Rarely, and I mean RARELY, you really do need the inverse. More frequently what you want is the
pseudo-inverse. You can force a factorization to become a plain matrix by converting it to double. Note
that inverse(A) only handles full-rank matrices (either dense or sparse), whereas pinv(A) works for all
dense matrices (not sparse).

The explicit need for inv(A) (or S=A\eye(n), which is the same thing) is RARE. If you ever find your-
self multiplying by the inverse, then you know one thing for sure. You know with certainty that you
don't know what you're doing.

A = rand (500) ;
tic ; S1 = inv (A) ; ; toc
tic ; S2 = double (inverse (A)) ; toc
norm (S1-S2)

A = rand (500,400) ;
tic ; S1 = pinv (A) ; toc
tic ; S2 = double (inverse (A)) ; toc
norm (S1-S2)

Elapsed time is 0.106932 seconds.
Elapsed time is 0.147922 seconds.
ans =

1.2740e-12
Elapsed time is 1.700858 seconds.
Elapsed time is 0.224335 seconds.
ans =

3.3945e-14

Update/downdate of a dense Cholesky factoriz-
ation

THE FACTORIZE OBJECT for solving linear
systems

7

Wilkinson considered the update/downdate of a matrix factorization to be a key problem in computa-
tional linear algebra. The idea is that you first factorize a matrix. Next, make a low-rank change to A,
and patch up (or down...) the factorization so that it becomes the factorization of the new matrix. In
MATLAB, this only works for dense symmetric positive definite matrices, via cholupdate. This is much
faster than computing the new factorization from scratch.

n = 1000 ;
A = rand (n) ;
A = A*A' + n*eye (n) ;
w = rand (n,1) ; t = rand (n,1) ; b = rand (n,1) ;
F = factorize (A) ;

tic ; F = cholupdate (F,w,'+') ; x = F\b ; toc
tic ; y = (A+w*w')\b ; toc
norm (x-y)

tic ; F = cholupdate (F,t,'-') ; x = F\b ; toc
tic ; y = (A+w*w'-t*t')\b ; toc
norm (x-y)

Elapsed time is 0.036556 seconds.
Elapsed time is 0.191788 seconds.
ans =

3.3500e-17
Elapsed time is 0.039223 seconds.
Elapsed time is 0.211755 seconds.
ans =

3.2858e-17

Caveat Executor
One caveat: If you have a large number of very small systems to solve, the object-oriented overhead of
creating and using an object can dominate the run time, at least in MATLAB R2011a. For this case, if
you want the best performance, stick with BACKSLASH, or LU and LINSOLVE (just extract the ap-
propriate formulas from the M-files in the FACTORIZE package).

Hopefully the object-oriented overhead will drop in future versions of MATLAB, and you can ignore
this caveat.

A = rand (10) ; b = rand (10,1) ; F = factorize (A) ;

tic ; for k = 1:10000, x = F\b ; end ; toc

tic ; for k = 1:10000, x = A\b ; end ; toc

[L,U,p] = lu (A, 'vector') ;
opL = struct ('LT', true) ;
opU = struct ('UT', true) ;
tic ;
for k = 1:10000

x = linsolve (U, linsolve (L, b(p,:), opL), opU) ;
end
toc

Elapsed time is 2.962772 seconds.
Elapsed time is 0.351280 seconds.
Elapsed time is 0.125371 seconds.

THE FACTORIZE OBJECT for solving linear
systems

8

Summary
So ... don't use INV, and don't worry about how to use LU, CHOL, or QR factorization. Just install the
FACTORIZE package, and you're on your way. Assuming you are now in the Factorize/ directory, cut-
and-paste these commands into your command window:

addpath (pwd)
savepath

And remember ...

"Don't let that INV go past your eyes; to solve that system, FACTORIZE!"

Published with MATLAB® 7.9

THE FACTORIZE OBJECT for solving linear
systems

9

	Table of Contents
	Rule Number One: never multiply by the inverse, inv(A)
	Rule Number Two: never break Rule Number One
	How to use BACKSLASH to solve A*x=b
	BACKSLASH versus INV ... let the battle begin
	LU and LINSOLVE are fast and accurate but complicated to use
	INV is easy to use, but slow and inaccurate
	So the winner is ... nobody
	The FACTORIZE object to the rescue
	Least-squares problems
	Underdetermined systems
	Computing selected entries in the inverse or pseudo-inverse
	Computing the entire inverse or pseudo-inverse
	Update/downdate of a dense Cholesky factorization
	Caveat Executor
	Summary

