
User’s Guide for SuiteSparseQR, a multifrontal
multithreaded sparse QR factorization package (with

optional GPU acceleration)

Timothy A. Davis∗, Sencer Nuri Yeralan, and Sanjay Ranka

VERSION 2.0.5, Feb 1, 2016

Abstract

SuiteSparseQR is an implementation of the multifrontal sparse QR factorization
method. Parallelism is exploited both in the BLAS and across different frontal matrices
using Intel’s Threading Building Blocks, a shared-memory programming model for
modern multicore architectures. It can obtain a substantial fraction of the theoretical
peak performance of a multicore computer. The package is written in C++ with user
interfaces for MATLAB, C, and C++. Both real and complex sparse matrices are
supported.

1 Introduction

The algorithms used in SuiteSparseQR are discussed in a companion paper, [7], and an
overview of how to use the software is given in [6]. This document gives detailed information
on the installation and use of SuiteSparseQR.

2 Using SuiteSparseQR in MATLAB

The simplest way to use SuiteSparseQR is via MATLAB. Its syntax includes every feature of
the MATLAB qr in version R2009a and earlier [12], plus additional features not available in
MATLAB. It is also a replacement for x=A\b for least-squares problems and underdetermined
systems. In addition to substantial gains in performance (10x to 100x is not uncommon, up
to 10,000x has been observed), SuiteSparseQR adds new capabilities that are not present
in MATLAB. For example, it provides an efficient method for finding the minimum 2-norm
solution to an underdetermined system.

∗email: DrTimothyAldenDavis@gmail.com. http://www.suitesparse.com. Portions of this work were
supported by the National Science Foundation, under grants 0203270, 0620286, and 0619080.

1

2.1 Installing SuiteSparseQR for use in MATLAB

All packages in SuiteSparse, including SuiteSparseQR and the codes it relies on (AMD, CO-
LAMD, CHOLMOD, METIS, CCAMD, and CCOLAMD) are compiled with a single com-
mand typed into the MATLAB Command Window. SuiteSparseQR uses the LAPACK and
BLAS libraries provided with MATLAB; you do not need to do anything to use these. Below
are step-by-step instructions for compiling all of SuiteSparse (including SuiteSparseQR), and
optional instructions on using METIS and/or Intel’s Threading Building Blocks (TBB).

2.1.1 Required instructions for Windows

For Windows, you cannot use the lcc compiler that ships with MATLAB; it is not a C++
compiler. To compile SuiteSparseQR, you must obtain a C++ compiler; Microsoft Visual
Studio C++ Express Edition will work fine. Install this compiler from
http://www.microsoft.com/express/vc/ and then type mex -setup in the MATLAB Com-
mand Window.

2.1.2 Optional instructions on using METIS for any operating system

SuiteSparse now relies on METIS 5.1.0, which is distributed along with SuiteSparse itself.
Its use is optional, however. If you compile with -DNPARTITION, or if you delete or move the
SuiteSparse/metis-5.1.0 folder, then SuiteSparse will be compiled without it.

METIS tends to give orderings that are good for the parallelism exploited by TBB,
so its use with TBB is recommended. Note however that METIS is not bug-free; it can
occasionally cause segmentation faults, particularly if used when finding basic solutions to
underdetermined systems with many more columns than rows (SuiteSparseQR does not use
METIS, by default, for those systems). This (rare) faulty behavior has been confirmed with
valid inputs to the METIS test programs themselves; it is not a bug in the SuiteSparse
interface to METIS. Use METIS at your own risk.

2.1.3 Optional instructions for using TBB on Linux/Unix/Mac

If you are using a Debian-based Linux system (such as Ubuntu), you’re in luck! You can
install TBB via the Synaptic Package Manager. Just search for TBB, select it, and click
Apply. This will place the right files in /usr/lib and it will create the /usr/include/tbb

directory. It’s by far the simplest way to install TBB. If you do this, skip the rest of this
section.

Alternatively, obtain a copy of TBB from http://www.threadingbuildingblocks.org as a
tbb*.tgz file appropriate for your version of Linux/Unix. If you install via the tbb_*.tgz

file, make sure the libtbb*.so* and libtbbmalloc*.so* files are placed in the /usr/lib

directory. Make sure the tbb directory containing all of the include files is placed in
/usr/include (for example, the /usr/include/tbb/task_scheduler_init.h file must ex-
ist).

If you do not have permission to install TBB properly into the /usr/lib and /usr/include

directories, you can place it in your own directory and modify the tbb_path variable in

2

http://www.microsoft.com/express/vc/
http://www.threadingbuildingblocks.org

spqr_make.m to specify the location of your own copy of TBB (refer to that file for in-
structions). You must also set your LD_LIBRARY_PATH environment variable to include the
directory containing the libtbb*so files. You need to first determine which subdirectory
of the TBB distribution contains the libraries appropriate for your system; in the examples
below this is just called /path. It must be an absolute path, starting with the / character.
There must be no spaces in the path name.

For Linux use this command at the system command line before starting MATLAB,
where /path should be replaced with the actual full path of the TBB lib directory:

setenv LD_LIBRARY_PATH /path:$LD_LIBRARY_PATH

If you use the csh shell, place the command in your ~/.cshrc file so you don’t have to
type it each time you start MATLAB.

For the Mac, edit the /etc/profile file and add this line to the end of the file:

export DYLD_LIBRARY_PATH=/path:$DYLD_LIBRARY_PATH

For example, using the 64-bit Linux version placed in my home directory, this command
would be placed in my ~/.cshrc file, prior to starting MATLAB.

setenv LD_LIBRARY_PATH /home/davis/tbb21_009oss/em64t/cc4.1.0_libc2.4_kernel2.6.16.21/lib:$LD_LIBRARY_PATH

Then, before starting MATLAB, make sure this variable is set by typing this command
at the system command line (you only have to do this for this session; whenever you start a
new command shell this will be done automatically):

source ~/.cshrc

For this example, my spqr_make.m file would contain this line:

tbb_path = ’/home/davis/tbb21_009oss’ ;

2.1.4 Optional instructions for using TBB on Windows

Obtain a copy of TBB from http://www.threadingbuildingblocks.org ; for TBB Version 2.1
this file is tbb21_009oss_win.zip.

Create a folder and place the tbb21_009oss_win.zip file there, and extract the file. In
the example below, I extracted to C:\TBB\tbb21_009oss (if you do the same then you do
not have to edit spqr_make.m). There should be no spaces in the path (for example, placing
TBB under the Program Files directory will not work).

In Windows XP, right-click My Computer and select Properties. Click the Advanced

tab. Click Environment Variables. Under System variables, edit the Path to append the
name of the folder containing the TBB bin folder appropriate for your system, preceded by
a semicolon. For example, in a 32-bit Windows system if TBB is installed in C:\TBB you
would append the string ;C:\TBB\tbb21_009oss\ia32\vc9\bin\ to the end of your system
Path variable.

3

http://www.threadingbuildingblocks.org

For Vista, the instructions are the same, except that you choose Computer instead of
My Computer, and you click the Advanced System Settings tab instead of the Advanced

tab.
Next, edit the SPQR\MATLAB\spqr_make.m file. Change the tbb_path variable to point

to your copy of TBB. For example, if you installed TBB into C:\TBB your spqr_make.m file
would contain this line:

tbb_path = ’C:\TBB\tbb21_009oss’ ;

That line is already in spqr_make.m, so if you choose to install TBB in that location,
you do not have to edit the file.

2.1.5 Now you’re ready to compile (on any operating system)

Type these commands in the MATLAB window:

cd SuiteSparse

SuiteSparse_install

You will be asked if you want to run some demos. I recommend that you do this to ensure
your functions have been installed correctly. Next type the command

pathtool

and examine your MATLAB path. The various SuiteSparse directories have been placed in
your path. Click “save” to save this path for future MATLAB sessions. If this fails, you do
not have permission to modify the pathdef.m file (it is shared by all users). An alternative
is to type the command:

path

and cut-and-paste the paths displayed there into your own startup.m file, prepending the
command addpath to each line. For example, if I installed SuiteSparse into my home direc-
tory (/home/davis) then my startup.m file should look like this:

addpath /home/davis/SuiteSparse/SPQR/MATLAB
addpath /home/davis/SuiteSparse/RBio
addpath /home/davis/SuiteSparse/MATLAB_Tools/spok
addpath /home/davis/SuiteSparse/MATLAB_Tools/waitmex
addpath /home/davis/SuiteSparse/MATLAB_Tools/shellgui
addpath /home/davis/SuiteSparse/MATLAB_Tools/GEE
addpath /home/davis/SuiteSparse/LINFACTOR
addpath /home/davis/SuiteSparse/MESHND
addpath /home/davis/SuiteSparse/UFcollection
addpath /home/davis/SuiteSparse/SSMULT
addpath /home/davis/SuiteSparse/KLU/MATLAB
addpath /home/davis/SuiteSparse/BTF/MATLAB
addpath /home/davis/SuiteSparse/LDL/MATLAB
addpath /home/davis/SuiteSparse/CXSparse/MATLAB/UFget
addpath /home/davis/SuiteSparse/CXSparse/MATLAB/Demo

4

addpath /home/davis/SuiteSparse/CXSparse/MATLAB/CSparse
addpath /home/davis/SuiteSparse/CAMD/MATLAB
addpath /home/davis/SuiteSparse/CCOLAMD/MATLAB
addpath /home/davis/SuiteSparse/COLAMD/MATLAB
addpath /home/davis/SuiteSparse/AMD/MATLAB
addpath /home/davis/SuiteSparse/CHOLMOD/MATLAB
addpath /home/davis/SuiteSparse/UMFPACK/MATLAB
addpath /home/davis/SuiteSparse
addpath /home/davis/SuiteSparse/MATLAB_Tools

On a Windows system, I might see paths like this instead in my startup.m file:

addpath C:\Documents and Settings\davis\My Documents\SuiteSparse\SPQR\MATLAB
...

Your startup.m file should appear in the directory in which MATLAB starts. Failing
that, every time you start MATLAB, find your startup.m file and run it. For more help,
type doc startup in MATLAB.

The SuiteSparse_install script works on any version of MATLAB (Linux/Unix, Mac,
or Windows) if you have a C++ compiler. The install script will detect if you have placed
the METIS directory in the right place, and will compile it for use with SuiteSparseQR if
it finds it there. Otherwise METIS will be skipped (the install script will tell you if it finds
METIS or not).

2.1.6 Optional instructions for using TBB on any system

If you have followed the steps above (as I recommend that you do), you have just compiled
SuiteSparseQR, but it will not yet be using TBB. To use TBB with SuiteSparseQR, first
install TBB as described above. Once TBB is installed, type the following commands in the
MATLAB Command Window (assuming you have METIS):

cd SuiteSparse/SPQR/MATLAB

spqr_make metis tbb

Or if you do not have METIS, do this instead:

cd SuiteSparse/SPQR/MATLAB

spqr_make nometis tbb

For more options, type help spqr_make.

2.2 Functions provided to the MATLAB user

Three primary functions are available:

1. spqr, a replacement for the MATLAB qr

5

2. spqr_solve, a replacement for x=A\b when A is sparse and rectangular. It works for
the square case, too, but x=A\b will be faster (using LU or Cholesky factorization).
spqr_solve is a good method for ill-conditioned or rank-deficient square matrices,
however.

3. spqr_qmult, which multiplies Q (stored in Householder vector form) times a matrix x.

Their syntax is described below in the table below. The permutation P is chosen to
reduce fill-in and to return R in upper trapezoidal form if A is estimated to have less than
full rank. The opts parameter provides non-default options (refer to the next section). The
output Q can be optionally returned in Householder form, which is far sparser than returning
Q as a sparse matrix.

R = spqr (A) Q-less QR factorization
R = spqr (A,0) economy variant (size(R,1) = min(m,n))
R = spqr (A,opts) as above, with non-default options
[Q,R] = spqr (A) A=Q*R factorization
[Q,R] = spqr (A,0) economy variant (size(Q,2) = size(R,1) = min(m,n))
[Q,R] = spqr (A,opts) A=Q*R, with non-default options
[Q,R,P] = spqr (A) A*P=Q*R where P reduces fill-in
[Q,R,P] = spqr (A,0) economy variant (size(Q,2) = size(R,1) = min(m,n))
[Q,R,P] = spqr (A,opts) as above, with non-default options
[C,R] = spqr (A,B) as R=spqr(A), also returns C=Q’*B
[C,R] = spqr (A,B,0) economy variant (size(C,1) = size(R,1) = min(m,n))
[C,R] = spqr (A,B,opts) as above, with non-default options
[C,R,P] = spqr (A,B) as R=spqr(A*P), also returns C=Q’*B
[C,R,P] = spqr (A,B,0) economy variant (size(C,1) = size(R,1) = min(m,n))
[C,R,P] = spqr (A,B,opts) as above, with non-default options
x = spqr_solve (A,B) x=A\B
[x,info] = spqr_solve (A,B,opts) as above, with statistics and non-default parameters
Y = spqr_qmult (Q,X,k) computes Q’*X, Q*X, X*Q’, or X*Q (selected with k)

2.3 The opts parameter

The opts struct provides control over non-default parameters for SuiteSparseQR. Entries
not present in opts are set to their defaults.

• opts.tol: columns that have 2-norm <= opts.tol are treated as zero. The default is
20*(m+n)*eps*sqrt(max(diag(A’*A))) where [m n]=size(A).

• opts.econ: number of rows of R and columns of Q to return. The default is m. Using
n gives the standard economy form (as in the MATLAB qr(A,0)). A value less than
the estimated rank r is set to r, so opts.econ=0 gives the “rank-sized” factorization,
where size(R,1)==nnz(diag(R))==r.

• opts.ordering: a string describing which column ordering method to use. Let
[m2 n2]=size(S) where S is obtained by removing singletons from A. The singleton
permutation places A*P in the form [A11 A12 ; 0 S] where A11 is upper triangular
with diagonal entries all greater than opts.tol.

6

The default is to use COLAMD if m2<=2*n2; otherwise try AMD. Let f be the flops for
chol((S*P)’*(S*P)) with the ordering P found by AMD. Then if f/nnz(R) >= 500

and nnz(R)/nnz(S) >= 5 then try METIS, and take the best ordering found (AMD
or METIS); otherwise use AMD without trying METIS. If METIS is not installed then
the default ordering is to use COLAMD if m2<=2*n2 and to use AMD otherwise.

The available orderings are:

’default’: the default ordering.

’amd’: use amd(S’*S).

’colamd’: use colamd(S).

’metis’: use metis(S’*S), only if METIS is installed.

’best’: try all three (AMD, COLAMD, METIS) and take the best.

’bestamd’: try AMD and COLAMD and take the best.

’fixed’: use P=I; this is the only option if P is not present in the output.

’natural’: singleton removal only.

• opts.Q: a string describing how Q is to be returned. The default is ’discard’ if
Q is not present in the output, or ’matrix’ otherwise. If Q is present and opts.Q

is ’discard’, then Q=[] is returned (thus R=spqr(A*P) is [Q,R,P]=spqr(A) where
spqr finds P but Q is discarded instead). The usage opts.Q=’matrix’ returns Q as a
sparse matrix where A=Q*R or A*P=Q*R. Using opts.Q=’Householder’ returns Q as a
struct containing the Householder reflections applied to A to obtain R, resulting in a
far sparser Q than the ’matrix’ option.

• opts.permutation: a string describing how P is to be returned. The default is
’matrix’, so that A*P=Q*R. Using ’vector’ gives A(:,P)=Q*R instead.

• opts.spumoni: an integer k that acts just like spparms(’spumoni’,k).

• opts.min2norm: used by spqr_solve; you can use ’basic’ (the default), or ’min2norm’.
Determines the kind of solution that spqr_solve computes for underdetermined sys-
tems. Has no effect for least-squares problems; ignored by spqr itself.

• opts.grain, opts.small, opts.nthreads: multitasking control (if compiled with
TBB). Let f be the total flop count. The analysis phase tries to ensure that all
parallel tasks have at least max(total_flops/opts.grain,opts.small) flops. No
TBB parallelism is exploited if opts.grain <= 1. The parameter opts.nthreads

gives the number of threads to use for TBB (which is different than the number of
threads used by the BLAS). Setting opts.nthreads <= 0 means to let TBB deter-
mine the number of threads (normally equal to the number of cores); otherwise, exactly
opts.nthreads threads are used. The defaults are opts.grain=1, opts.small=1e6,
and opts.nthreads=0, respectively. That is, TBB is disabled by default since it con-
flicts with BLAS multithreading. If you enable TBB, be sure to disable BLAS multi-
threading with the MATLAB command maxNumCompThreads(1), or choose

7

opts.nthreads=k and maxNumCompThreads(b) so that the product k*b is equal to the
number of cores. Note that these recommendations may change for future versions of
TBB. A good value of opts.grain is twice that of opts.nthreads. If TBB parallelism
is enabled, the METIS ordering normally gives the best speedup for large problems.

2.4 Examples on how to use the MATLAB interface

To solve a least-squares problem, or to find the basic solution to an underdetermined system,
just use x = spqr_solve(A,b) in place of x=A\b. To compute the QR factorization, use
[Q,R]=spqr(A) instead of [Q,R]=qr(A). Better results can be obtained by discarding Q with
the usage R=spqr(A) (in place of R=qr(A)), or by requesting Q in Householder form with
[Q,R]=spqr(A,opts) where opts.Q=’Householder’. The latter option is not available in
MATLAB. To use a fill-reducing ordering, simply use any of the syntaxes above with P as
an output parameter.

The least-squares solution of an overdetermined system A*x=b with m>n (where A has
rank n) can be found in one of at least seven ways (in increasing order of efficiency, in time
and memory):

x = pinv(full(A)) * b ; impossible for large A
[Q,R] = spqr (A) ; high fill-in in R,
x = R\(Q’*b) ; Q costly in matrix form
[Q,R,P] = spqr (A) ; low fill-in in R,
x = P*(R\(Q’*b)) ; Q costly in matrix form
[Q,R,P] = spqr (A,struct(’Q’,’Householder’)) ; low fill-in in R,
x = P*(R\spqr_qmult (Q,b,0)) ; Q in efficient Householder form
[c,R,P] = spqr (A,b) ; Q not kept,
x = P*(R\c) ; P a permutation matrix
[c,R,p] = spqr (A,b,0) ; Q not kept,
y = (R\c) ; x(p) = y p a permutation vector
x = spqr_solve (A,b) ; less memory and better handling

of rank-deficient matrices

The minimum-norm solution of an underdetermined system A*x=b with m<n can be found
in one of five ways (in increasing order of efficiency, in time and memory):

x = pinv(full(A)) * b ; impossible for large A
[Q,R] = spqr (A’) ; high fill-in in R,
x = Q*(R’\b) ; Q costly in matrix form
[Q,R,P] = spqr (A’) ; low fill-in in R,
x = Q*(R’\(P’*b)) ; Q costly in matrix form
[Q,R,P] = spqr (A’,struct(’Q’,’Householder’)) ; low fill-in in R,
x = spqr_qmult (Q,R’\(P’*b),1) ; Q in efficient Householder form
opts.solution = ’min2norm’ ; as 4th option above, but faster,
x = spqr_solve (A,b,opts) ; less memory, and better handling

of rank-deficient matrices
Note that spqr_solve uses a fill-reducing ordering, by default. It can be disabled or

modified using a non-default opts parameter (opts.ordering, specifically).

8

3 Using SuiteSparseQR in C and C++

SuiteSparseQR relies on CHOLMOD for its basic sparse matrix data structure, a compressed
sparse column format. CHOLMOD provides interfaces to the AMD, COLAMD, and METIS
ordering methods, supernodal symbolic Cholesky factorization (namely, symbfact in MAT-
LAB), functions for converting between different data structures, and for basic operations
such as transpose, matrix multiply, reading a matrix from a file, writing a matrix to a file,
and many other functions.

3.1 Installing the C/C++ library on Linux/Unix

Before you compile the SuiteSparseQR library and demo programs, you may wish to edit
the SuiteSparse/SuiteSparse_config/SuiteSparse_config.mk configuration file. The
defaults should be fine on most Linux/Unix systems and on the Mac. It automatically
detects what system you have and sets compile parameters accordingly.

Next, type make at the Linux/Unix command line, in either the SuiteSparse directory
(which compiles all of SuiteSparse) or in the SuiteSparse/SPQR directory (which just com-
piles SuiteSparseQR and the libraries it requires). SuiteSparseQR will be compiled, and a
set of simple demos will be run (including the one in the next section).

The configuration file defines where the LAPACK and BLAS libraries are to be found.
Selecting the right BLAS is critical. There is no standard naming scheme for the name and
location of these libraries. The defaults in the SuiteSparse_config.mk file use -llapack

and -lblas; the latter may link against the standard Fortran reference BLAS, which will
not provide optimal performance. For best results, you should use the OpenBLAS at open-
blas.net (based on the Goto BLAS) [13], or high-performance vendor-supplied BLAS such as
the Intel MKL, AMD ACML, or the Sun Performance Library. Selection of LAPACK and
the BLAS is done with the LAPACK= and BLAS= lines in the SuiteSparse_config.mk file.

Four compile-time options can be used to modify how SuiteSparseQR is compiled. Select
these via the SPQR_CONFIG= line in the SuiteSparse_config.mk file.

• -DNPARTITION: do not compile with METIS, CAMD, or CCOLAMD. These packages
are included by default.

• -DNEXPERT: do not compile with the “expert” routines in SuiteSparseQR_expert.cpp.
The expert routines are included by default.

• -DHAVE_TBB: enable the Intel Threading Building Blocks, TBB. The use of TBB is
disabled by default. It is disabled because not all installations have TBB available.
The use of TBB is recommended, however, if you have a multicore computer.

To fully test 100% of the lines of SuiteSparseQR, go to the Tcov directory and type make.
This will work for Linux only.

To install the shared library into /usr/local/lib and /usr/local/include, do make install.
To uninstall, do make uninstall. For more options, see the SuiteSparse/README.txt file.

9

3.2 C/C++ Example

The C++ interface is written using templates for handling both real and complex matrices.
The simplest function computes the MATLAB equivalent of x=A\b and is almost as simple:

#include "SuiteSparseQR.hpp"
X = SuiteSparseQR <double> (A, B, cc) ;

The C version of this function is almost identical:

#include "SuiteSparseQR_C.h"
X = SuiteSparseQR_C_backslash_default (A, B, cc) ;

Below is a simple C++ program that illustrates the use of SuiteSparseQR. The program
reads in a least-squares problem from stdin in MatrixMarket format [4], solves it, and prints
the norm of the residual and the estimated rank of A. The comments reflect the MATLAB
equivalent statements. The C version of this program is identical except for the #include

statement and call to SuiteSparseQR which are replaced with the C version of the statement
above, and C-style comments.

#include "SuiteSparseQR.hpp"
int main (int argc, char **argv)
{

cholmod_common Common, *cc ;
cholmod_sparse *A ;
cholmod_dense *X, *B, *Residual ;
double rnorm, one [2] = {1,0}, minusone [2] = {-1,0} ;
int mtype ;

// start CHOLMOD
cc = &Common ;
cholmod_l_start (cc) ;

// load A
A = (cholmod_sparse *) cholmod_l_read_matrix (stdin, 1, &mtype, cc) ;

// B = ones (size (A,1),1)
B = cholmod_l_ones (A->nrow, 1, A->xtype, cc) ;

// X = A\B
X = SuiteSparseQR <double> (A, B, cc) ;

// rnorm = norm (B-A*X)
Residual = cholmod_l_copy_dense (B, cc) ;
cholmod_l_sdmult (A, 0, minusone, one, X, Residual, cc) ;
rnorm = cholmod_l_norm_dense (Residual, 2, cc) ;
printf ("2-norm of residual: %8.1e\n", rnorm) ;
printf ("rank %ld\n", cc->SPQR_istat [4]) ;

// free everything and finish CHOLMOD
cholmod_l_free_dense (&Residual, cc) ;
cholmod_l_free_sparse (&A, cc) ;
cholmod_l_free_dense (&X, cc) ;
cholmod_l_free_dense (&B, cc) ;

10

cholmod_l_finish (cc) ;
return (0) ;

}

3.3 C++ Syntax

All features available to the MATLAB user are also available to both the C and C++
interfaces using a syntax that is not much more complicated than the MATLAB syntax.
Additional features not available via the MATLAB interface include the ability to compute
the symbolic and numeric factorizations separately (for multiple matrices with the same
nonzero pattern but different numerical values). The following is a list of user-callable C++
functions and what they can do:

1. SuiteSparseQR: an overloaded function that provides functions equivalent to spqr and
spqr_solve in the SuiteSparseQR MATLAB interface.

2. SuiteSparseQR_factorize: performs both the symbolic and numeric factorizations
and returns a QR factorization object such that A*P=Q*R. It always exploits singletons.

3. SuiteSparseQR_symbolic: performs the symbolic factorization and returns a QR fac-
torization object to be passed to SuiteSparseQR_numeric. It does not exploit single-
tons.

4. SuiteSparseQR_numeric: performs the numeric factorization on a QR factorization
object, either one constructed by SuiteSparseQR_symbolic, or reusing one from a
prior call to SuiteSparseQR_numeric for a matrix A with the same pattern as the first
one, but with different numerical values.

5. SuiteSparseQR_solve: solves a linear system using the object returned by
SuiteSparseQR_factorize or SuiteSparseQR_numeric, namely x=R\b,
x=P*R\b, x=R’\b, or x=R’\(P’*b).

6. SuiteSparseQR_qmult: provides the same function as spqr_qmult in the MATLAB
interface, computing Q*x, Q’*x, x*Q, or x*Q’. It uses either a QR factorization in
MATLAB-style sparse matrix format, or the QR factorization object returned by
SuiteSparseQR_factorize or SuiteSparseQR_numeric.

7. SuiteSparseQR_min2norm: finds the minimum 2-norm solution to an underdetermined
linear system.

8. SuiteSparseQR_free: frees the QR factorization object.

3.4 Details of the C/C++ Syntax

For further details of how to use the C/C++ syntax, please refer to the definitions and
descriptions in the following files:

11

1. SuiteSparse/SPQR/Include/SuiteSparseQR.hpp describes each C++ function. Both
double and std::complex<double> matrices are supported.

2. SuiteSparse/SPQR/Include/SuiteSparseQR_definitions.h describes definitions
common to both C and C++ functions. For example, each of the ordering methods is
given a #define’d name. The default is ordering = SPQR_ORDERING_DEFAULT, and
the default tolerance is given by tol = SPQR_DEFAULT_TOL.

3. SuiteSparse/SPQR/Include/SuiteSparseQR_C.h describes the C-callable functions.

Most of the packages in SuiteSparse come in multiple versions with different sized in-
tegers. The first is the plain C/C++ int. The second the SuiteSparse_long integer,
defined in the SuiteSparse/SuiteSparse_config/SuiteSparse_config.h file. This inte-
ger is long except on a Windows-64 platform for which it is the __int64 type. The intent of
SuiteSparse_long is that it should be 32-bits on a 32-bit platform, and 64-bits on a 64-bit
platform.

By contrast, SuiteSparseQR only provides a SuiteSparse_long version. Most users
(except Windows-64) can simply use long as the basic integer type passed to and returned
from SuiteSparseQR.

The C/C++ options corresponding to the MATLAB opts parameters and the contents
of the optional info output of spqr_solve are described below. Let cc be the CHOLMOD
Common object, containing parameter settings and statistics. All are of type double, ex-
cept for SPQR_istat which is SuiteSparse_long, cc->memory_usage which is size_t, and
cc->SPQR_nthreads which is int. Parameters include:

cc->SPQR_grain the same as opts.grain in the MATLAB interface
cc->SPQR_small the same as opts.small in the MATLAB interface
cc->SPQR_nthreads the same as opts.nthreads in the MATLAB interface

Other parameters, such as opts.ordering and opts.tol, are input parameters to the
various C/C++ functions. Others such as opts.solution=’min2norm’ are separate func-
tions in the C/C++ interface. Refer to the files listed above for details. Output statistics
include:

cc->SPQR_flopcount_bound an upper bound on the flop count
cc->SPQR_tol_used the tolerance used (opts.tol)
cc->SPQR_istat [0] upper bound on nnz(R)
cc->SPQR_istat [1] upper bound on nnz(H)
cc->SPQR_istat [2] number of frontal matrices
cc->SPQR_istat [3] number of TBB tasks
cc->SPQR_istat [4] estimate of the rank of A
cc->SPQR_istat [5] number of column singletons
cc->SPQR_istat [6] number of row singletons
cc->SPQR_istat [7] ordering used
cc->memory_usage memory used, in bytes

The upper bound on the flop count is found in the analysis phase, which ignores the
numerical values of A (the same analysis phase operates on both real and complex matrices).
Thus, if you are factorizing a complex matrix, multiply this statistic by 4.

12

4 GPU acceleration

As of version 2.0.0, SuiteSparseQR now includes GPU acceleration. It can exploit a sin-
gle NVIDIA GPU, via CUDA. To enable GPU acceleration, you must compile SuiteS-
parseQR with non-default options. See the SuiteSparse_config_GPU_gcc.mk file in the
SuiteSparse_config directory for details. The packages SuiteSparse GPURuntime and
GPUQREngine are also required (they should appear in the SuiteSparse directory, along
with SPQR).

At run time, you must also enable the GPU by setting Common->useGPU to true. Before
calling any SuiteSparseQR function, you must poll the GPU to set the available memory.
Below is a sample code that initializes CHOLMOD and then polls the GPU for use in
SuiteSparseQR.

size_t total_mem, available_mem ;

cholmod_common *cc, Common ;

cc = &Common ;

cholmod_l_start (cc) ;

cc->useGPU = true ;

cholmod_l_gpu_memorysize (&total_mem, &available_mem, cc) ;

cc->gpuMemorySize = available_mem ;

if (cc->gpuMemorySize <= 1)

{

printf ("no GPU available\n") ;

}

// Subsequent calls to SuiteSparseQR will use the GPU, if available

See Demo/qrdemo_gpu.cpp for an extended example, which can be compiled via make gpu

in the Demo directory.
GPU acceleration is not yet available via the MATLAB mexFunction interface. We

expect to include this in a future release.
For a detailed technical report on the GPU-accelerated algorithm, see qrgpu_paper.pdf

in the Doc directory.

5 Requirements and Availability

SuiteSparseQR requires four prior Collected Algorithms of the ACM: CHOLMOD [5, 10]
(version 1.7 or later), AMD [1, 2], and COLAMD [8, 9] for its ordering/analysis phase and for
its basic sparse matrix data structure, and the BLAS [11] for dense matrix computations on
its frontal matrices; also required is LAPACK [3] for its Householder reflections. An efficient
implementation of the BLAS is strongly recommended, either vendor-provided (such as the
Intel MKL, the AMD ACML, or the Sun Performance Library) or other high-performance
BLAS such as those of [13].

The use of Intel’s Threading Building Blocks is optional [15], but without it, only par-
allelism within the BLAS can be exploited (if available). SuiteSparseQR can optionally use

13

METIS 4.0.1 [14] and two constrained minimum degree ordering algorithms, CCOLAMD and
CAMD [5], for its fill-reducing ordering options. SuiteSparseQR can be compiled without
these ordering methods and without TBB.

In addition to appearing as Collected Algorithm 8xx of the ACM, SuiteSparseQR is
available at http://www.suitesparse.com and at MATLAB Central in the user-contributed
File Exchange (http://www.mathworks.com/matlabcentral). SuiteSparseQR is licensed
under the GNU GPL. Commercial licenses are also available; contact the author for details.

References

[1] P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering
algorithm. SIAM J. Matrix Anal. Appl., 17(4):886–905, 1996.

[2] P. R. Amestoy, T. A. Davis, and I. S. Duff. Algorithm 837: AMD, an approximate
minimum degree ordering algorithm. ACM Trans. Math. Software, 30(3):381–388, 2004.

[3] E. Anderson, Z. Bai, C. H. Bischof, S. Blackford, J. W. Demmel, J. J. Dongarra, J. Du
Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. C. Sorensen. LAPACK
Users’ Guide. SIAM, Philadelphia, 3rd edition, 1999.

[4] R. F. Boisvert, R. Pozo, K. Remington, R. Barrett, and J. J. Dongarra. The Matrix
Market: A web resource for test matrix collections. In R. F. Boisvert, editor, Quality of
Numerical Software, Assessment and Enhancement, pages 125–137. Chapman & Hall,
London, 1997. (http://math.nist.gov/MatrixMarket).

[5] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam. Algorithm 887:
CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM
Trans. Math. Software, 35(3), 2009.

[6] T. A. Davis. Algorithm 8xx: SuiteSparseQR, a multifrontal multithreaded sparse qr
factorization package. ACM Trans. Math. Software, 2008. under submission.

[7] T. A. Davis. Multifrontal multithreaded rank-revealing sparse QR factorization. ACM
Trans. Math. Software, 2008. under submission.

[8] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng. Algorithm 836: COLAMD, a
column approximate minimum degree ordering algorithm. ACM Trans. Math. Software,
30(3):377–380, 2004.

[9] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng. A column approximate
minimum degree ordering algorithm. ACM Trans. Math. Software, 30(3):353–376, 2004.

[10] T. A. Davis and W. W. Hager. Dynamic supernodes in sparse Cholesky up-
date/downdate and triangular solves. ACM Trans. Math. Software, 35(4), 2009.

[11] J. J. Dongarra, J. J. Du Croz, I. S. Duff, and S. Hammarling. A set of Level 3 Basic
Linear Algebra Subprograms. ACM Trans. Math. Software, 16:1–17, 1990.

14

http://www.suitesparse.com
http://www.mathworks.com/matlabcentral

[12] J. R. Gilbert, C. Moler, and R. Schreiber. Sparse matrices in MATLAB: design and
implementation. SIAM J. Matrix Anal. Appl., 13(1):333–356, 1992.

[13] K. Goto and R. van de Geijn. High performance implementation of the level-3 BLAS.
ACM Trans. Math. Software, 35(1):4, July 2008. Article 4, 14 pages.

[14] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput., 20:359–392, 1998.

[15] J. Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor
Parallelism. O’Reilly Media, Sebastopol, CA, 2007.

15

	Introduction
	Using SuiteSparseQR in MATLAB
	Installing SuiteSparseQR for use in MATLAB
	Required instructions for Windows
	Optional instructions on using METIS for any operating system
	Optional instructions for using TBB on Linux/Unix/Mac
	Optional instructions for using TBB on Windows
	Now you're ready to compile (on any operating system)
	Optional instructions for using TBB on any system

	Functions provided to the MATLAB user
	The opts parameter
	Examples on how to use the MATLAB interface

	Using SuiteSparseQR in C and C++
	Installing the C/C++ library on Linux/Unix
	C/C++ Example
	C++ Syntax
	Details of the C/C++ Syntax

	GPU acceleration
	Requirements and Availability

