
Graph algorithms via SuiteSparse:GraphBLAS:
triangle counting and K-truss

Timothy A. Davis
Dept. of Computer Science and Engineering

Texas A&M University
College Station, TX, USA

davis@tamu.edu

Abstract—SuiteSparse:GraphBLAS is a full implementation of
the GraphBLAS standard, which defines a set of sparse matrix
operations on an extended algebra of semirings using an almost
unlimited variety of operators and types. When applied to sparse
adjacency matrices, these algebraic operations are equivalent to
computations on graphs. GraphBLAS provides a powerful and
expressive framework for creating graph algorithms based on the
elegant mathematics of sparse matrix operations on a semiring.
To illustrate GraphBLAS, two graph algorithms are constructed
in GraphBLAS and compared with efficient implementations
without GraphBLAS: triangle counting and constructing the k-
truss of a graph.

Index Terms—graph algorithms, sparse matrix computations

I. INTRODUCTION

The GraphBLAS standard [1] defines sparse matrix and
vector operations on an extended algebra of semirings. The
operations are useful for creating a wide range of graph
algorithms. Kepner and Gilbert [2] provide a framework for
understanding how graph algorithms can be expressed as
matrix computations.

For example, consider the matrix-matrix multiplication,
C = AB. Suppose A and B are sparse n-by-n Boolean
adjacency matrices of two undirected graphs. If the matrix
multiplication is redefined to use logical AND instead of scalar
multiply, and if it uses the logical OR instead of add, then
the matrix C is the sparse Boolean adjacency matrix of a
graph that has an edge (i, j) if node i in A and node j in B
share any neighbor in common. The OR-AND pair forms an
algebraic semiring, and many graph operations like this can
be succinctly represented by matrix operations with different
semirings and different numerical types. GraphBLAS provides
a wide range of built-in types and operators, and allows the
user application to create new types and operators without
needing to recompile the GraphBLAS library. Expressing
graph algorithms in the language of linear algebra provides:

• a powerful way of expressing graph algorithms with large,
bulk operations on adjacency matrices,

• composable graph operations, e.g. (AB)C = A(BC),
• simpler graph algorithms in user-code,
• simple objects for complex problems – a sparse matrix

with any data type, including user-defined types,
• a well-defined graph object, closed under operations,

With support from NSF CNS-1514406.

• and high performance: serial, parallel, or GPU, allowing
the library to optimize bulk graph/matrix operations.

A. Graphs and sparse matrices

Many applications give rise to large graphs, with many
nodes and edges. However, typical graphs are very sparse,
with n nodes but only O(n) edges.

Any graph G = (V,E) can be considered as a sparse
adjacency matrix A. The square case of an n-by-n sparse
matrix is useful for representing a directed or undirected
graph with n = |V | nodes, where either the matrix entry
aij or aji represents the edge (i, j). In the rectangular case,
an m-by-n sparse matrix can represent a bipartite graph, or
a hypergraph, depending on the context. Edges that do not
appear in G are not represented in the data structure of the
sparse matrix A. A sparse matrix data structure allows huge
graphs to be represented, requiring only O(n+ |E|) or O(|E|)
space, depending on the data structure used.

Values of entries not stored in the sparse data structure
have some implicit value. In conventional linear algebra, this
implicit value is zero, but it differs with different semirings.
Explicit values are called entries and they appear in the data
structure. The pattern of a matrix defines where its explicit
entries appear, and can be represented as either a set of indices
(i, j), or as a Boolean matrix S where sij = 1 if aij is an
explicit entry in the sparse matrix A.

The entries in the pattern of A can take on any value,
including the implicit value, whatever it happens to be. It need
not be the value zero. For example, in the max-plus tropical
algebra, the implicit value is negative infinity, and zero has a
different meaning.

II. OVERVIEW OF GRAPHBLAS OBJECTS, METHODS, AND
OPERATIONS

SuiteSparse:GraphBLAS provides a collection of methods
to create, query, and free each of its nine different types of
objects. Once these objects are created they can be used in
mathematical operations (not to be confused with the how the
term operator is used in GraphBLAS). The nine types are
described below.

(1) Types: A GraphBLAS type (GrB_Type) can be any of
11 built-in types (Boolean, integer and unsigned integers of
sizes 8, 16, 32, and 64 bits, and single and double precision

floating point). In addition, user-defined scalar types can be
created from nearly any C typedef, as long as the entire type
fits in a fixed-size contiguous block of memory (of arbitrary
size). All of these types can be used to create GraphBLAS
sparse matrices or vectors. All built-in types can typecasted
as needed; user-defined types cannot.

(2) Unary operators: A unary operator (GrB_UnaryOp) is
a function z = f(x). SuiteSparse: GraphBLAS comes with 67
built-in unary operators, such as z = 1/x and z = −x, with
variants for each built-in type. The user application can also
create its own user-defined unary operators.

(3) Binary operators: Likewise, a binary operator
(GrB_BinaryOp) is a function z = f(x, y), such as z =
x+ y or z = xy. SuiteSparse:GraphBLAS provides 256 built-
in binary operators, with variants for each built-in type. User-
defined binary operators can also be created.

(4) Select operators: The GxB_SelectOp operator is a
SuiteSparse extension to the GraphBLAS API. It is used in
the GxB_select operation to select a subset of entries from
a matrix, like L=tril(A) in MATLAB.

(5) Monoids: The scalar addition of conventional ma-
trix multiplication is replaced with a monoid. A monoid
(GrB_Monoid) is an associative and commutative binary
operator z = f(x, y) where all three domains are the same
(the types of x, y, and z) and where the operator has an
identity value o such that f(x, o) = f(o, x) = x. Performing
matrix multiplication with a semiring uses a monoid in place
of the “add” operator, scalar addition being just one of many
possible monoids. The identity value of addition is zero, since
x + 0 = 0 + x = x. User-created monoids can be defined
with any associative and commutative operator with an identity
value. A monoid can also be used in a reduction operation,
like s=sum(A) in MATLAB.

(6) Semirings: A semiring (GrB_Semiring) consists of a
monoid and a “multiply” operator. Together, these operations
define the matrix “multiplication” C = AB, where the
monoid is used as the additive operator and the semiring’s
“multiply” operator is used in place of the conventional scalar
multiplication in standard matrix multiplication via the plus-
times semiring. A user application can define its own monoids
and semirings.

(7) Descriptors: A descriptor object, GrB_Descriptor,
provides parameter settings that modify the behavior of Graph-
BLAS operations, such as transposing an input matrix or
complementing a mask matrix.

(8) Vectors: A sparse vector, GrB_Vector.
(9) Matrices: A sparse matrix, GrB_Matrix.

A. Non-blocking mode

GraphBLAS includes a non-blocking mode where opera-
tions can be left pending, and saved for later. This is very use-
ful for submatrix assignment (like C(I,J)=A in MATLAB
where I and J are integer vectors), or or scalar assignment
(C(i,j)=x where i and j are scalar integers). Because of
how MATLAB stores its matrices, adding and deleting individ-
ual entries is very costly. By contrast, SuiteSparse:GraphBLAS

TABLE I
SUITESPARSE:GRAPHBLAS OPERATIONS

function name description GraphBLAS notation
GrB_mxm matrix-matrix mult. C〈M〉 = C�AB
GrB_vxm vector-matrix mult. w′〈m′〉 = w′ � u′A
GrB_mxv matrix-vector mult. w〈m〉 = w �Au
GrB_eWiseMult element-wise, C〈M〉 = C� (A⊗B)

set-union w〈m〉 = w � (u⊗ v)
GrB_eWiseAdd element-wise, C〈M〉 = C� (A⊕B)

set-intersection w〈m〉 = w � (u⊕ v)
GrB_extract extract submatrix C〈M〉 = C�A(i, j)

w〈m〉 = w � u(i)
GrB_assign assign submatrix C〈M〉(i, j) = C(i, j)�A

w〈m〉(i) = w(i)� u
GxB_subassign assign submatrix C(i, j)〈M〉 = C(i, j)�A

w(i)〈m〉 = w(i)� u
GrB_apply apply unary op. C〈M〉 = C�f(A)

w〈m〉 = w�f(u)
GxB_select apply select op. C〈M〉 = C�f(A,k)

w〈m〉 = w�f(u,k)
GrB_reduce reduce to vector w〈m〉 = w�[⊕jA(:, j)]

reduce to scalar s = s� [⊕ijA(i, j)]
GrB_transpose transpose C〈M〉 = C�A′

exploits the non-blocking mode to allow for fast incremental
update of a matrix.

B. The accumulator and the mask

An optional accumulator operator (�) and mask matrix
(M) can be specified, written as C〈M〉 = C�T where
Z = C�T denotes the application of the accumulator opera-
tor, and C〈M〉 = Z denotes the mask operator via the Boolean
matrix M. The expression C〈M〉 = C�T is computed as
follows:

if no accumulator, Z = T; otherwise Z = C�T
if requested via descriptor, all entries cleared from C
if no mask M

C = Z if the mask is not complemented;
otherwise C is not modified

else
C〈M〉 = Z if the mask is not complemented
(where cij is modified if and only if mij is nonzero);
otherwise C〈¬M〉 = Z

The accumulator operator acts like a sparse matrix addition,
except that any operator can be used. The pattern of C�T
is the set-union of the patterns of C and T, and the operator
is applied only on the set-intersection of C and T.

C. GraphBLAS methods and operations

The matrix (GrB_Matrix) and vector (GrB_Vector)
objects include additional methods for setting a single entry,
extracting a single entry, making a copy, and constructing
an entire matrix or vector from a list of tuples. The tuples
are held as three arrays I, J, and X, which work the same
as A=sparse(I,J,X) in MATLAB, except that any type
matrix or vector can be constructed.

Table I lists all GraphBLAS operations in the GraphBLAS
notation where AB denotes the multiplication of two matrices
over a semiring. Upper case letters denote a matrix, and lower

case letters are vectors. Each operation takes an optional
GrB_Descriptor argument that modifies the operation.
The notation A⊕B denotes the element-wise operator that
produces a set-union pattern (like A+B in MATLAB). The no-
tation A⊗B denotes the element-wise operator that produces
a set-intersection (like A.*B in MATLAB). Reduction of a
matrix A to a vector reduces the ith row of A to a scalar wi,
like w=sum(A’) in MATLAB.

III. TRIANGLE COUNTING IN GRAPHBLAS
A triangle in a graph is a clique of size 3. There are many

matrix formulations of the method, but the simplest and fastest
one is by Wolf et al. [3], a variant of Cohen’s method [4]. See
also [5]. If A is a symmetric adjacency matrix of a graph,
then the MATLAB tricount.m function below computes
the number of triangles in the graph.

function ntri = tricount (A)
L = tril (A) ;
ntri = sum (sum ((L*L).*L)) ;

Consider the edge (i, j), so that A(i,j)=1, and suppose
i > j. Then C(i,j) is L(i,:)*L(:,j). Since L is strictly
lower triangular, L(i,:) is nonzero only in L(i,1:i-1),
and L(:,j) is nonzero only in L(j+1:n,j).
Combining these two sets gives the nonzero intersection,
C(i,j) = L(i,j+1:i-1)*L(j+1:i-1,j). Suppose
there is a node k in this range j+1:i-1, inclusive, that has
an edge to both i and j. That is, L(i,k)=L(k,j)=1.
This is a triangle (i, j, k), where j < k < i. Since these three
indices are strictly ordered, the triangle is counted only once,
and C(i,j) is the number of such triangles for all k. If
L(i,j)=0 then the result is not needed since (i, j, k) cannot
be a triangle, and thus the final ().*L step.

GraphBLAS can compute this with a masked matrix mul-
tiply, C〈L〉 = L2, as shown below. This is much faster and
uses much less memory since L*L in MATLAB contains many
more nonzeros than L. In GraphBLAS, only O(|L|) space is
needed. However, the C code using GraphBLAS is almost as
simple as the MATLAB tricount.m function above.
int64_t tricount (const GrB_Matrix L) // L=tril(A), input graph
{

int64_t ntri ;
GrB_Index n ;
GrB_Matrix C ;
// n = # of rows of L = # nodes in the graph A
GrB_Matrix_nrows (&n, L) ;
// C<L> = L*L
GrB_Matrix_new (&C, GrB_UINT32, n, n) ;
GrB_mxm (C, L, NULL, GxB_PLUS_TIMES_UINT32, L, L, NULL) ;
// ntri = sum (C), reduce to a scalar
GrB_reduce (&ntri, NULL, GxB_PLUS_INT64_MONOID, C, NULL) ;
return (ntri) ;

}

Graph algorithms such as triangle counting are simple and
expressive in GraphBLAS. However, the same author writing
the algorithm in pure C (without GraphBLAS) may be able to
obtain higher performance, because the resulting methods need
not conform to the GraphBLAS API. This section compares
the performance of the GraphBLAS implementation, above,
with four methods:

1) tri_simple: a simple sequential method,

2) tri_mark: similar to the implementation of GrB_mxm
in SuiteSparse:GraphBLAS, using C〈L〉 = L2. Each
thread uses a workspace of n bytes. Computing each
column C∗j can be done in parallel using a sparse saxpy-
based method [6].

3) tri_logm: similar to tri_mark, except that a binary
search is used. When computing the matrix product
C〈M〉 = AB, a binary search is used if the jth column
of the mask M is very sparse compared with the kth
column of A.

4) tri_bit: same as tri_mark, except that the
workspace is reduced to n bits.

5) tri_dot: using dot products, C〈L〉 = UTL where U
is the upper triangular part of A.

The “simple” method (tri_simple) is already a non-
trivial method. It requires expert knowledge of how Gus-
tavson’s method can be implemented efficiently, including a
reduction of the result to a single scalar. The full method
is shown below. The tri_mark method is much more
complex than this. Full details and code are available at
http://suitesparse.com.
int64_t tri_simple // # of triangles
(

const int64_t *restrict Ap, // column pointers, size n+1
const int64_t *restrict Ai, // row indices
const int64_t n // A is n-by-n

)
{

bool *restrict Mark = (bool *) calloc (n, sizeof (bool)) ;
if (Mark == NULL) return (-1) ;
int64_t ntri = 0 ;
for (int64_t j = 0 ; j < n ; j++)
{

// scatter A(:,j) into Mark
for (int64_t p = Ap [j] ; p < Ap [j+1] ; p++)
{

Mark [Ai [p]] = 1 ;
}
// sum(C(:,j)) where C(:,j) = (A * A(:,j)) .* Mark
for (int64_t p = Ap [j] ; p < Ap [j+1] ; p++)
{

const int64_t k = Ai [p] ;
// C(:,j) += (A(:,k) * A(k,j)) .* Mark
for (int64_t pa = Ap [k] ; pa < Ap [k+1] ; pa++)
{

// C(i,j) += (A(i,k) * A(k,j)) .* Mark
ntri += Mark [Ai [pa]] ;

}
}
for (int64_t p = Ap [j] ; p < Ap [j+1] ; p++)
{

Mark [Ai [p]] = 0 ;
}

}
free (Mark) ;
return (ntri) ;

}

Multicore parallelism via OpenMP is used for each of
the methods except tri_simple. SuiteSparse:GraphBLAS,
by contrast, is currently only single-threaded. The tri_*
functions can exploit the fact that the matrix C need not be
explicitly stored, saving time and space. This cannot be done in
GraphBLAS, even if non-blocking mode were to be exploited,
because GrB_reduce forces all pending operations to be
completed on its input matrix.

Experiments were performed on an IBM Minsky system,
with 1TB of RAM and 160 hardware threads (IBM Power8

8335-GTB, 4GHz, 20 hardware cores with 8-way threading
on each core, xlc v31.1.5 compiler). Table II reports the
rate of each method on all 63 graphs in the GraphChallenge
test set with 200,000 or more edges. The results for the
MATLAB tricount.m does not appear in Table II since
it is prohibitively slow and takes far too much memory.

The rate is 10−6e/t where e is the number edges in the
graph and t is the run time in seconds. The parallel codes
were tested with 1, 2, 4, 8, 16, 32, 64, 128, and 160 OpenMP
threads; fastest results for any of these runs are shown in the
table. Highest rates are shown in bold. All results include the
time to construct L=tril(A), and also U=triu(A) for the
dot product methods.

IV. K-TRUSS IN GRAPHBLAS

The k-truss C of a graph A is a subgraph with the same
number of nodes, but where each edge in the k-truss appears
in at least k − 2 triangles in A. The term cij is the number
of triangles containing the edge (i, j). The k-truss can be
computed in MATLAB, based on Burkhardt’s method [7]:

function C = ktruss (A,k)
last_cnz = nnz (A) ;
C = A ;
while (1)

C = (C*C) .* C ;
C = C .* (C >= k-2) ;
cnz = nnz (C) ;
if (cnz == last_cnz) return ; end
C = spones (C) ;
last_cnz = cnz ;

end

Below is the equivalent computation in GraphBLAS, almost
as elegant and much faster since C〈C〉 = C2 does not need
to form all of C2, but only those entries in the pattern of C.
// support function
bool sfunc (const GrB_Index i, const GrB_Index j,

const GrB_Index nrows, const GrB_Index ncols,
const int64_t *x, const int64_t *support)

{
return ((*x) >= (*support)) ;

}

GrB_Matrix ktruss_graphblas (GrB_Matrix A, int64_t k)
{

GxB_SelectOp supportop ;
GrB_Index n ;
GrB_Matrix C ;
GrB_Matrix_nrows (&n, A) ;
GrB_Matrix_new (&C, GrB_INT64, n, n) ;
// create the select operator
int64_t s = (k-2) ;
GxB_SelectOp_new (&supportop, sfunc, GrB_INT64) ;
// last_cnz = nnz (A)
GrB_Index cnz, last_cnz ;
GrB_Matrix_nvals (&last_cnz, A) ;

for (int64_t nsteps = 1 ; ; nsteps++)
{

// first step: C<A>=A*A ; subsequent steps: C<C>=C*C
GrB_Matrix T = (nsteps == 1) ? A : C ;
// note the PLUS-(Logical AND) semiring
GrB_mxm (C, T, NULL, GxB_PLUS_LAND_UINT64, T, T, NULL);
// drop entries in C less than k-2
GxB_select (C, NULL, NULL, supportop, C, &s, NULL) ;
// cnz = nnz (C)
GrB_Matrix_nvals (&cnz, C) ;
if (cnz == last_cnz) return (C) ;
last_cnz = cnz ;

}
}

If all non-empty k-trusses are desired, the kth truss can be
computed more quickly by starting with the (k − 1)st truss.
This can be done in GraphBLAS with little change to the
above code, resulting in an All-k-truss method. The methods
were implemented both in GraphBLAS and in pure C, without
using GraphBLAS. The pure-C methods exploit OpenMP
parallelism, and can exploit the fact that both C〈C〉 = C2

and the select step can be done in-place. Table III reports
the performance on the same system and the first 50 matrices
from Table II. In the table, k is the smallest k for which the
k-truss is empty. Since All-k-truss finds k−2 trusses, the rate
is 10−6(k − 2)e/t, to compare with the 3-truss results.

The Graph500 and MAWI sets are excluded from Table III.
The Graph500 matrices have many cliques and thus require
many passes of the all-k-truss methods. For the MAWI set,
the saxpy formulation is prohibitively slow as compared to
the dot-product methods. For this paper, only the saxpy-based
formulations of k-truss and all-k-truss have been implemented.

V. CONCLUSIONS

Triangle counting in SuiteSparse:GraphBLAS is competitive
with a highly optimized single-threaded method (tri_mark),
even faster for some larger graphs. The tri_simple method
is slower than GraphBLAS, yet the user-level algorithm in
GraphBLAS is much simpler code. K-truss in GraphBLAS is
also simple and the performance is competitive with a highly
optimized and complex algorithm in pure C; the GraphBLAS
3-truss and All-k-truss methods rarely take more than twice the
time as the sequential versions in pure C, and are sometimes
faster. These results demonstrate that GraphBLAS can be an
efficient library that allows end users to write simple yet fast
code. All codes used in this paper are at http://suitesparse.com.

A parallel SuiteSparse:GraphBLAS is in progress, and it
should be able to match the pure-C parallel versions of these
algorithms, or exceed them if a scalable heap-based parallel
sparse matrix-matrix multiply were adopted [8].

REFERENCES

[1] A. Buluç, T. Mattson, S. McMillan, J. Moreira, and C. Yang, “The
GraphBLAS C API specification,” Tech. Rep., 2017, http://graphblas.org/.

[2] J. Kepner and J. Gilbert, Graph Algorithms in the Language of Linear
Algebra. Philadelphia, PA: SIAM, 2011.

[3] M. M. Wolf, M. Deveci, J. W. Berry, S. D. Hammond, and S. Raja-
manickam, “Fast linear algebra-based triangle counting with KokkosKer-
nels,” in 2017 IEEE High Performance Extreme Computing Conference
(HPEC), Sept 2017, pp. 1–7.

[4] J. Cohen, “Graph twiddling in a map-reduce world,” Computing in
Science and Eng., vol. 11, no. 4, pp. 29–41, July 2009.

[5] A. Azad, A. Buluç, and J. Gilbert, “Parallel triangle counting and
enumeration using matrix algebra,” in 2015 IEEE Intl. Parallel and
Distributed Proc. Symp. Workshop, May 2015, pp. 804–811.

[6] F. G. Gustavson, “Two fast algorithms for sparse matrices: Multiplication
and permuted transposition,” ACM Trans. Math. Softw., vol. 4, no. 3, pp.
250–269, 1978.

[7] P. Burkhardt, “Graphing trillions of triangles,” Information Visualization,
vol. 16, no. 3, Sept 2017.

[8] A. Buluç and J. R. Gilbert, “On the representation and multiplication of
hypersparse matrices,” in IPDPS08: the IEEE International Symposium
on Parallel & Distributed Processing. IEEE Computer Society, 2008,
pp. 1–11.

TABLE II
TRIANGLE COUNTING PERFORMANCE (HIGHER IS BETTER), BEST SINGLE-THREADED AND MULTI-THREADED RESULTS IN BOLD FONT

Matrix single-threaded performance multi-threaded performance
nodes edges saxpy method dot product saxpy method dot

(n) (e) Graph tri tri tri tri Graph tri tri tri tri tri
name ×106 ×106 BLAS simple mark bit logm BLAS dot mark bit logm dot
Kronecker products (synthetic)
Theory-3-4-5-9-16-B1k 0.02 0.22 6.2 2.3 24.1 0.7 2.0 5.9 2.2 24.1 4.2 8.3 10.1
Theory-3-4-5-9-16-B2k 0.02 0.22 25.0 31.5 79.7 14.1 57.4 10.3 58.0 84.7 17.2 91.4 58.0
Theory-256-625-Bk 0.16 0.32 41.8 24.4 132.4 24.8 17.7 29.8 23.2 158.8 148.8 114.3 128.7
Theory-256-625-B1k 0.16 0.32 39.9 22.6 124.1 14.5 15.0 28.1 17.5 144.4 18.9 85.4 141.4
Theory-256-625-B2k 0.16 0.32 19.8 20.2 131.6 25.2 18.5 29.6 24.7 155.6 35.4 31.7 136.2
Theory-4-5-9-16-25-Bk 0.13 1.15 64.7 26.6 134.4 28.8 20.7 33.9 25.1 283.8 98.6 96.3 157.9
Theory-4-5-9-16-25-B1k 0.13 1.58 1.9 0.9 4.1 0.2 0.9 3.8 2.5 9.6 2.5 4.9 18.1
Theory-4-5-9-16-25-B2k 0.13 1.58 10.3 0.9 20.9 1.1 3.7 7.8 12.3 42.4 7.0 24.5 141.8
Theory-25-81-256-Bk 0.55 2.07 52.1 24.4 78.5 27.9 20.6 31.4 21.7 137.6 95.5 151.8 89.1
Theory-25-81-256-B1k 0.55 2.13 8.6 4.0 10.2 1.4 3.7 6.2 5.9 21.4 3.9 7.8 58.7
Theory-25-81-256-B2k 0.55 2.13 55.6 1.2 64.1 14.4 18.1 16.4 20.0 139.2 41.2 70.6 81.7
Theory-9-16-25-81-Bk 0.36 2.33 60.0 28.2 83.2 28.1 22.7 33.0 23.2 186.9 123.6 179.9 127.2
Theory-9-16-25-81-B1k 0.36 2.61 2.3 1.1 8.1 0.4 1.1 6.9 3.6 8.1 0.8 2.2 33.4
Theory-9-16-25-81-B2k 0.36 2.61 18.7 0.7 18.1 2.6 6.9 6.0 17.3 38.2 6.7 20.5 109.4
Theory-3-4-5-9-16-25-Bk 0.53 6.91 66.9 30.1 35.9 30.8 24.5 33.1 17.4 288.8 188.4 236.6 83.6
Theory-3-4-5-9-16-25-B1k 0.53 11.08 0.5 0.2 0.2 0.1 0.2 1.6 1.4 3.2 0.7 1.5 10.2
Theory-3-4-5-9-16-25-B2k 0.53 11.08 2.9 0.4 1.3 0.4 1.4 3.6 8.7 24.6 9.7 25.4 76.5
Theory-5-9-16-25-81-Bk 2.17 23.33 61.7 34.0 37.2 37.0 28.1 30.7 16.8 139.2 110.2 106.9 52.3
Theory-5-9-16-25-81-B1k 2.17 28.67 0.3 0.1 0.1 0.0 0.1 1.6 1.6 1.0 0.5 1.1 13.6
Theory-5-9-16-25-81-B2k 2.17 28.67 1.7 0.1 0.8 0.3 0.8 3.6 11.9 20.9 8.9 20.1 68.3
SNAP (various real graphs)
loc-brightkite edges 0.06 0.21 13.2 6.2 33.8 2.7 5.3 5.5 1.0 138.1 20.5 71.5 5.7
cit-HepTh 0.03 0.35 7.9 3.7 26.5 1.3 3.1 3.6 0.6 128.0 18.3 37.0 5.8
soc-Epinions1 0.08 0.41 6.5 3.3 20.0 1.0 3.2 2.3 0.3 124.2 17.0 47.2 2.8
email-EuAll 0.27 0.36 11.4 1.4 26.0 1.9 4.3 5.5 0.9 132.8 71.9 96.5 32.8
cit-HepPh 0.03 0.42 10.3 5.1 30.9 2.1 4.3 4.5 0.7 177.8 37.8 66.6 9.4
soc-Slashdot0811 0.08 0.47 8.5 3.6 21.5 1.2 3.4 3.0 0.4 80.2 22.4 81.1 3.4
soc-Slashdot0902 0.08 0.50 8.4 3.6 21.1 1.1 3.3 2.9 0.4 101.4 25.4 96.9 4.5
loc-gowalla edges 0.20 0.95 5.0 2.4 14.8 0.7 2.3 3.9 0.7 99.6 19.6 69.3 18.5
amazon0302 0.26 0.90 16.2 11.0 36.0 6.0 9.0 10.2 5.1 273.5 242.2 218.5 167.2
roadNet-PA 1.09 1.54 12.6 10.1 32.5 9.1 9.0 18.7 10.5 252.1 233.4 224.2 198.9
roadNet-TX 1.38 1.92 12.7 12.9 25.4 11.2 11.9 18.8 12.2 275.7 269.8 193.1 209.6
flickrEdges 0.11 2.32 2.3 1.7 4.0 0.5 1.6 1.0 0.1 40.6 20.0 26.6 3.2
amazon0312 0.40 2.35 11.2 8.5 12.8 4.1 6.9 6.4 2.7 231.7 239.7 222.9 125.4
amazon0505 0.41 2.44 11.3 9.2 13.5 4.8 7.9 6.4 2.7 256.2 286.4 233.6 133.1
amazon0601 0.40 2.44 11.3 8.5 14.1 3.9 6.5 6.3 2.2 237.6 161.3 234.6 95.6
roadNet-CA 1.97 2.77 11.8 12.6 18.1 9.7 9.6 17.2 9.9 280.2 221.1 201.2 153.8
cit-Patents 3.77 16.52 6.0 4.9 4.5 3.9 4.4 3.9 2.1 104.3 155.0 107.1 67.1
friendster 119.43 1800.00 5.7 2.1 2.6 2.6 2.4 3.7 1.2 56.3 61.3 55.7 61.8
GenBank (protein k-mers)
GenBank/V2a 55.04 58.61 9.7 9.6 9.8 9.6 9.2 13.0 7.0 114.4 144.0 113.8 59.1
GenBank/U1a 67.72 69.39 10.5 9.7 10.3 10.6 9.4 15.7 7.3 116.7 146.9 119.4 60.8
GenBank/P1a 139.35 148.91 10.1 9.5 10.3 10.5 9.3 14.5 7.3 111.5 133.9 111.8 58.1
GenBank/A2a 170.73 180.29 9.6 9.0 9.7 10.0 9.0 14.9 7.0 126.8 155.4 127.1 63.0
GenBank/V1r 214.01 232.71 13.9 13.2 12.9 12.8 11.8 19.0 9.2 143.5 174.9 142.6 72.7
image-grids
g-260610-65536 0.07 0.26 26.0 15.5 123.6 7.1 10.1 17.4 7.9 354.1 195.2 203.5 241.4
g-1045506-262144 0.26 1.05 25.6 14.9 117.1 7.8 10.2 17.6 7.8 418.1 233.8 306.9 324.6
g-4188162-1048576 1.05 4.19 24.8 16.8 16.5 7.6 11.2 17.3 6.8 395.6 282.6 330.0 198.2
g-16764930-4194304 4.19 16.76 24.5 18.9 9.0 7.4 11.2 17.2 5.3 282.1 265.8 303.1 113.5
g-67084290-16777216 16.78 67.08 24.4 21.2 16.6 11.6 15.0 17.2 9.2 298.8 277.3 277.2 145.8
g-268386306-67108864 67.11 268.39 24.3 20.2 15.7 10.5 13.7 17.1 8.3 271.3 294.1 266.4 151.3
g-1073643522-268435456 268.44 1073.64 23.9 19.9 15.7 12.2 14.8 17.0 8.6 300.5 315.9 294.2 168.2
Graph500 (synthetic)
graph500-scale18-ef16 0.17 3.80 1.2 0.6 2.5 0.3 0.6 0.5 0.1 25.5 5.3 9.4 0.7
graph500-scale19-ef16 0.34 7.73 0.9 0.5 0.7 0.2 0.4 0.4 0.1 7.1 3.7 6.8 0.7
graph500-scale20-ef16 0.65 15.68 0.6 0.3 0.3 0.1 0.3 0.3 0.0 4.9 2.9 5.0 1.1
graph500-scale21-ef16 1.24 31.73 0.4 0.2 0.2 0.1 0.2 0.2 0.0 6.8 4.5 6.3 1.1
graph500-scale22-ef16 2.39 64.10 0.3 0.1 0.1 0.1 0.1 0.2 0.0 4.6 4.8 5.0 0.5
graph500-scale23-ef16 4.61 129.25 0.2 0.1 0.1 0.1 0.1 0.1 0.0 1.9 3.7 1.9 1.0
graph500-scale24-ef16 8.86 260.26 0.1 0.1 0.1 0.0 0.1 0.1 0.0 1.0 3.4 1.1 0.4
graph500-scale25-ef16 17.04 523.47 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.6 1.9 0.7 0.4
MAWI internet traffic
mawi 201512012345 18.57 19.02 16.3 - 6.9 3.4 6.0 22.3 11.5 40.1 32.6 35.1 31.1
mawi 201512020000 35.99 37.24 8.8 - 3.8 1.7 3.5 19.0 11.7 37.3 34.6 32.7 21.8
mawi 201512020030 68.86 71.71 5.0 - 2.1 0.9 1.9 21.6 11.2 19.8 16.2 20.4 27.5
mawi 201512020130 128.57 135.12 2.7 - 1.2 0.5 1.1 18.5 10.6 16.3 13.1 16.9 25.1
mawi 201512020330 226.20 240.02 1.3 - 0.5 0.2 0.5 18.7 9.6 14.7 10.7 14.7 25.4

TABLE III
3-TRUSS AND ALL-k-TRUSS PERFORMANCE (HIGHER IS BETTER)

Matrix 3-truss All-k-truss
nodes edges Graph no GraphBLAS k Graph no GraphBLAS

name ×106 ×106 BLAS seq. para. BLAS seq. para.
Kronecker products (synthetic)
Theory-3-4-5-9-16-B1k 0.02 0.22 0.1 0.2 1.4 20 1.5 2.5 14.1
Theory-3-4-5-9-16-B2k 0.02 0.22 0.9 0.8 5.9 7 4.4 3.9 20.3
Theory-256-625-Bk 0.16 0.32 31.6 0.0 0.3 3 31.5 0.0 0.3
Theory-256-625-B1k 0.16 0.32 0.4 0.0 0.3 4 0.8 0.0 0.5
Theory-256-625-B2k 0.16 0.32 1.7 0.0 0.3 4 3.3 0.0 0.5
Theory-4-5-9-16-25-Bk 0.13 1.15 67.7 0.1 2.3 3 67.4 0.1 2.2
Theory-4-5-9-16-25-B1k 0.13 1.58 0.0 0.0 0.7 29 0.6 0.9 15.2
Theory-4-5-9-16-25-B2k 0.13 1.58 0.2 0.1 1.9 7 1.0 0.7 11.0
Theory-25-81-256-Bk 0.55 2.07 41.7 0.0 0.2 3 42.0 0.0 0.2
Theory-25-81-256-B1k 0.55 2.13 0.0 0.0 0.2 29 0.6 0.2 5.0
Theory-25-81-256-B2k 0.55 2.13 0.1 0.0 0.2 5 0.3 0.0 0.7
Theory-9-16-25-81-Bk 0.36 2.33 58.4 0.0 0.6 3 58.5 0.0 0.6
Theory-9-16-25-81-B1k 0.36 2.61 0.0 0.0 0.3 29 0.5 0.4 8.7
Theory-9-16-25-81-B2k 0.36 2.61 0.1 0.0 0.8 6 0.4 0.1 2.6
Theory-3-4-5-9-16-25-Bk 0.53 6.91 65.5 0.1 1.8 3 65.4 0.1 1.7
Theory-3-4-5-9-16-25-B1k 0.53 11.08 0.0 0.0 0.3 63 0.4 0.6 11.5
Theory-3-4-5-9-16-25-B2k 0.53 11.08 0.1 0.1 1.5 8 0.4 0.4 9.3
Theory-5-9-16-25-81-Bk 2.17 23.33 48.3 0.0 0.2 3 48.5 0.0 0.2
Theory-5-9-16-25-81-B1k 2.17 28.67 0.0 0.0 0.1 85 0.2 0.2 5.7
Theory-5-9-16-25-81-B2k 2.17 28.67 0.0 0.0 0.2 7 0.1 0.0 1.2
SNAP (various real graphs)
loc-brightkite edges 0.06 0.21 1.4 2.3 10.5 44 1.9 3.4 9.0
cit-HepTh 0.03 0.35 0.8 1.4 9.1 31 0.4 0.8 5.9
soc-Epinions1 0.08 0.41 0.5 1.1 6.6 34 0.4 0.8 6.0
email-EuAll 0.27 0.36 0.4 0.7 7.4 21 1.8 3.5 24.2
cit-HepPh 0.03 0.42 1.0 1.9 14.4 26 0.6 1.2 9.8
soc-Slashdot0811 0.08 0.47 0.9 1.7 9.5 36 2.1 3.9 21.4
soc-Slashdot0902 0.08 0.50 0.8 1.6 8.6 37 2.1 3.9 23.0
loc-gowalla edges 0.20 0.95 0.4 0.8 9.2 30 0.7 1.3 12.9
amazon0302 0.26 0.90 2.2 3.9 29.7 8 2.9 5.5 35.0
roadNet-PA 1.09 1.54 11.1 14.9 58.4 5 18.0 31.6 84.9
roadNet-TX 1.38 1.92 10.8 15.1 56.6 5 17.9 32.5 113.3
flickrEdges 0.11 2.32 0.2 0.4 3.5 575 0.2 0.3 4.3
amazon0312 0.40 2.35 1.3 2.3 21.6 12 1.0 1.7 12.8
amazon0505 0.41 2.44 1.2 2.3 20.3 12 0.9 1.7 13.7
amazon0601 0.40 2.44 1.2 2.3 21.2 12 1.1 2.0 16.5
roadNet-CA 1.97 2.77 10.5 15.0 57.7 5 17.3 32.5 113.5
cit-Patents 3.77 16.52 0.9 1.4 11.5 37 5.3 9.7 64.1
friendster 119.43 1800.00 0.1 0.2 1.0 6 0.5 0.7 3.9
GenBank (protein k-mers)
GenBank/V2a 55.04 58.61 6.3 9.6 30.9 4 9.5 16.6 59.3
GenBank/U1a 67.72 69.39 6.8 9.5 34.6 4 9.7 14.4 57.0
GenBank/P1a 139.35 148.91 6.6 8.4 31.3 4 9.8 15.0 56.7
GenBank/A2a 170.73 180.29 6.2 8.5 35.1 4 10.0 15.1 55.4
GenBank/V1r 214.01 232.71 11.5 18.5 60.2 4 14.8 29.3 87.1
image-grids
g-260610-65536 0.07 0.26 11.4 16.8 128.5 5 18.5 35.6 142.5
g-1045506-262144 0.26 1.05 11.4 29.5 149.4 5 18.2 50.3 144.3
g-4188162-1048576 1.05 4.19 11.0 36.6 168.6 5 17.7 56.8 156.7
g-16764930-4194304 4.19 16.76 10.5 36.9 166.0 5 17.5 58.8 162.0
g-67084290-16777216 16.78 67.08 11.0 39.5 199.7 5 16.8 58.7 153.6
g-268386306-67108864 67.11 268.39 10.2 38.9 190.7 5 17.5 57.3 148.4
g-1073643522-268435456 268.44 1073.64 10.1 38.6 199.9 5 17.0 55.5 149.5

