
Task Phasing: Automated Curriculum Learning from Demonstrations

Vaibhav Bajaj,1 Guni Sharon,1 Peter Stone2

1Texas A&M University
2The University of Texas at Austin and Sony AI

vaibhavbajaj@tamu.edu, guni@tamu.edu, pstone@cs.utexas.edu

Abstract

Applying reinforcement learning (RL) to sparse reward do-
mains is notoriously challenging due to insufficient guiding
signals. Common RL techniques for addressing such domains
include (1) learning from demonstrations and (2) curriculum
learning. While these two approaches have been studied in
detail, they have rarely been considered together. This pa-
per aims to do so by introducing a principled task phasing
approach that uses demonstrations to automatically gener-
ate a curriculum sequence. Using inverse RL from (subopti-
mal) demonstrations we define a simple initial task. Our task
phasing approach then provides a framework to gradually in-
crease the complexity of the task all the way to the target task,
while retuning the RL agent in each phasing iteration. Two
approaches for phasing are considered: (1) gradually increas-
ing the proportion of time steps an RL agent is in control, and
(2) phasing out a guiding informative reward function. We
present conditions that guarantee the convergence of these
approaches to an optimal policy. Experimental results on 3
sparse reward domains demonstrate that our task phasing ap-
proaches outperform state-of-the-art approaches with respect
to asymptotic performance.

1 Introduction
In domains with sparse reward signals, a reinforcement
learning (RL) agent (Portelas et al. 2020b; Narvekar et al.
2020) receives little to no signal regarding its performance.
This phenomenon results in a limited ability to train and
learn an optimized policy. As a result, a stream of publica-
tions (Nair et al. 2018; Burda et al. 2019; Salimans and Chen
2018; Reddy, Dragan, and Levine 2019; Ecoffet et al. 2019;
Zhu et al. 2022) presented various solutions towards effec-
tive RL in sparse reward settings. Two of the most common
approaches considered in such cases are curriculum learn-
ing (CL) (Bengio et al. 2009; Soviany et al. 2021; Wei et al.
2020; Narvekar et al. 2020) and learning from demonstra-
tions (Salimans and Chen 2018; Zhu et al. 2022; Nair et al.
2018). In this paper, we investigate the impact of combin-
ing these two general approaches toward a CL continuum
which is defined through demonstrations. We suggest apply-
ing inverse RL (IRL) to the provided demonstrations in or-
der to obtain a dense reward function and/or a demonstration

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

policy. The IRL outcomes are then used to define an initial
simple task for a curriculum along with a continuous cur-
riculum continuum. This continuum is defined by a convex
combination between the initial and target tasks. By training
an RL agent on the resulting CL continuum (with progres-
sively increasing complexity), we show—both theoretically
and empirically—that an RL agent can be effectively trained
to solve tasks that are challenging otherwise. We provide
theoretical guarantees that the proposed CL will return an
optimal policy under the assumption that the optimal policy
as a function of the task continuum is continuous.

Two domain-independent approaches are presented for
defining the task continuum, namely Temporal-Phasing and
Reward-Phasing. Temporal-Phasing is designed to provide
gradually increased control to the RL agent in lieu of a
demonstrator agent obtained using IRL. This approach is
shown to be especially effective in domains with no/few
catastrophic actions, i.e., they provide options for recover-
ing from actions that hinder performance. Reward-Phasing,
on the other hand, results in a task continuum where each
task is some convex combination of an informative dense
reward (provided by the IRL agent) and the target (sparse)
reward. This approach is shown to be especially effective in
domains where a meaningful guiding reward function can
be extracted from the provided demonstrations. The the-
ory provided in this paper proves that, under reasonable
assumptions, the curriculum defined by Reward-Phasing
produces a monotonically non-decreasing policy return in
expectation—a desirable outcome in many real-world envi-
ronments. Such theory is a novel addition to existing CL the-
ory, that otherwise focuses on the effects of different curricu-
lum strategies on the convergence rate of the policy (Wein-
shall, Cohen, and Amir 2018; Weinshall and Amir 2020;
Yengera et al. 2021).

Experimental results are provided for 3 continuous sparse
reward domains. The results suggest that our proposed ap-
proaches are successful in converging to an optimized pol-
icy, whereas baseline RL algorithms fail to do so. Moreover,
our proposed approaches also outperform prior approaches
that apply CL, learning from demonstrations, or both.

In summary, the contributions of this paper are:
1. Define two domain-independent Task Phasing ap-

proaches that utilize sub-optimal demonstrations.
2. Present state-of-the-art asymptotic performance for

sparse reward RL domains.
3. Present convergence guarantees for Task Phasing, under

reasonable assumptions.
4. Prove that the curriculum defined by Reward-Phasing

produces a monotonically non-decreasing policy return
in expectation.

2 Preliminaries
In reinforcement learning (RL) an agent is assumed to learn
through interactions with an underlying Markov decision
process (MDP) defined by: S – the state space, A – the
action space, P(st, a, st+1) – the transition function of the
form P : S × A × S 7→ [0, 1], R(s, a) – the reward func-
tion of the form R : S × A 7→ R, and γ – the discount
factor. The agent is assumed to follow an internal policy, π,
which maps states to actions, i.e., π : S 7→ A.1 The agent’s
chosen action (at) at the current state (st) affects the en-
vironment such that a new state emerges (st+1) as well as
some reward (rt) representing the immediate utility gained
from performing action at at state st, given by R(st, at).
We use τ to denote a finite horizon trajectory of the form
{s0, a0, r0, s1, ..., at−1, rt−1, st}.

In this paper, the MDP comprises of two parts, (a) the en-
vironment and (b) the task. The environment defines the state
space (S), action space (A), transition function (P), and dis-
count factor γ. The task defines the time steps when the RL
agent is given control (at such time steps at is determined
by the RL agent). The task also defines the reward function
R. Using this terminology allows sharing an environment
across MDPs, each corresponding to a different task.

The expected sum of discounted rewards for a given task,
K, is denoted by JK

π = Eτ∼π

∑
t γ

tRK(st, at) where RK

is the task reward function. The observed task rewards are
used to tune a policy such that JK

π , is maximized. The policy
argmaxπ[J

K
π] is the optimal policy and is denoted by π∗

K.2
In sparse reward domains a relatively high proportion of

the reward signals (rt) are similar, making it challenging to
obtain a meaningful gradient in JK

π with respect to π. Such
domains are notoriously challenging to solve (i.e., identify
an optimal policy for) (Nair et al. 2018).

2.1 Related work
Prior RL approaches for solving sparse reward domains can
be divided into three broad classes. (1) boosted exploration,
(2) demonstration guidance, and (3) curriculum learning.

Boosted exploration approaches Boosted exploration
approaches (Ecoffet et al. 2019; Burda et al. 2019; Zhao
et al. 2020; Nair et al. 2018; Durugkar et al. 2021) are
mostly domain-independent approaches to finding the op-
timal policy for a sparse reward task, by improving the man-
ner in which exploration is conducted in the target environ-
ment. These methods use intrinsic motivation (Barto 2013;
Oudeyer and Kaplan 2009, 2013) where the agent presents

1Policies can also be defined as stochastic (soft policy), i.e.,
mapping states to a distribution over actions.

2For some tasks argmaxπ[J
K
π] is not unique. In such cases,

π∗
K may refer to any optimal policy.

itself with exploration rewards that are different from those
of the given task-specific rewards. Despite their effective-
ness, the time to convergence for such approaches can be
significant, as they require significant exploration.

Demonstration-guided approaches This class of algo-
rithms (Ho and Ermon 2016a; Torabi, Warnell, and Stone
2018; Fu, Luo, and Levine 2017; Reddy, Dragan, and Levine
2019) attempt to learn policies that minimize the mismatch
between the RL state-action visitation distribution and a
demonstrator’s state-action visitation distribution. The per-
formance of the policies learned by such techniques is of-
ten limited by the demonstrator’s performance, as they aim
to only mimic the demonstrator and do not attempt to ex-
plore for better policies. On the other hand, Self-Adaptive
Imitation Learning (SAIL) (Zhu et al. 2022) proposed an
off-policy imitation learning approach that can surpass the
demonstrator by encouraging exploration along with distri-
bution matching and replacing sub-optimal demonstrations
with superior self-generated trajectories. Consequently, we
consider this approach for comparison in our experiments.

Curriculum learning This class of algorithms (Bengio
et al. 2009; Soviany et al. 2021; Narvekar et al. 2020) aims
to break down complex tasks into simpler tasks. CL ap-
proaches often require a human domain expert to divide the
task into simpler tasks and then design a curriculum that de-
cides the sequence in which those tasks are learnt (Ionescu
et al. 2016; Lotfian and Busso 2019; Pentina, Sharmanska,
and Lampert 2015; Jiménez-Sánchez et al. 2019). Recent
work on CL (Portelas et al. 2020b) aims to automate the
curriculum design, but still requires some domain knowl-
edge provided by a human expert, such as defining sub-
tasks (Portelas et al. 2020a; Matiisen et al. 2019), defining
sub-goal conditions (Zhao et al. 2020; Nair et al. 2018), or
scaling domain design features (Dennis et al. 2020).

Note: Transfer learning in RL (Taylor and Stone 2009) is
a subprocess of CL. As such, it is related to but not directly
comparable to CL. For further details refer Narvekar et al.
(2016).

3 Task phasing
Consider a sparse reward RL task defined by K and a given
environment. Assume thatK cannot be solved efficiently us-
ing common RL approaches (Haarnoja et al. 2018; Schul-
man et al. 2017) due to reward signal sparsity. Task Phasing
addresses this inefficiency by introducing a set of simplified
tasks with progressively increasing complexity (similar to
CL). In contrast to most past CL algorithms, it does not rely
on expert knowledge and/or domain-specific assumptions
for defining the simplified tasks but defines them through
demonstrations in a principled domain-independent way.

Assume some initial simplified task denoted Ks, that can
be efficiently solved by common RL algorithms, and a tar-
get (complex) task, Kf , that cannot be solved by common
RL algorithms. Next, consider a convex combination func-
tion Con(β,Ks,Kf) = βKs + (1 − β)Kf which provides
a task continuum, Kβ , with β ∈ [0, 1], between two given
tasks Ks,Kf . We can now define the general task phasing
curriculum procedure shown in Algorithm 1.

Algorithm 1: Task phasing curriculum learning.
Input: initial (simplified) task, Ks; target (complex) task,
Kf ; step size, α; initial policy, π
Output: optimized policy forKf , π∗

f

1: π∗ ← train(π,Ks)
2: Kβ ← Ks

3: β ← 0
4: while Kβ ̸= Kf do
5: β ← β + α
6: Kβ ← Con(β,Ks,Kf)
7: π∗ ← re-train(π∗,Kβ)
8: end while
9: return π∗

The ‘train’ (Line 1) and ‘re-train’ (Line 1) functions can
be implemented with any off-the-shelf RL algorithm (as-
suming sufficient exploration, see Sec 3.3 for details). Note
that this general approach only introduces a single hyper-
parameter over the underlying RL solver, the α step size. A
large value of α is desirable as it quickly leads to the opti-
mization of the RL policy on the target task, Kf . But, this
may lead to training instability due to a large shift in the
objective between consecutive tasks obtained from the task
continuum. Determining the dynamic upper bound on the
value of α, that maintains training stability, at any instance
of the Task Phasing process is an interesting problem that
we leave to future work. We found (empirically) that using
a larger value of α during the initial portion of phasing and
a smaller value as β → 1 results in stable training.

Algorithm 1 raises two questions that need to be ad-
dressed.
1. How can we obtain the initial simplified task (Ks) for a

general (domain-independent) MDP?
2. How can we define the task continuum, i.e.,

Con(β,Ks,Kf) for any β ∈ [0, 1]?
We address these questions by assuming a set of trajecto-

ries,D, obtained from a (sub-optimal) demonstrating policy.

3.1 Temporal Task Phasing
The Temporal-Phasing approach can be viewed as gradually
shifting the control from a demonstrating policy to a learned
RL policy. This approach assumes that a demonstrator pol-
icy, πd, can be retrieved from D, e.g., by using imitation
learning (Ho and Ermon 2016a; Fu, Luo, and Levine 2017).

Temporal-Phasing follows some internal logic for deter-
mining in which time steps the RL-agent is given control, in-
stead of the demonstrator, during online exploration. A sim-
ilar approach was previously proposed (Dey et al. 2021) for
smooth policy transitions. At any state, if the RL-agent is
in control, the chosen action follows the RL internal policy.
If, by contrast, the demonstrator is given control, then πd is
followed. Transitions that follow the demonstrator’s policy
might also be used to train the RL-agent if off-policy learn-
ing (Levine and Koltun 2013) is enabled.

Initial simplified task (Ks). Ks is defined by setting the
probability of providing control to the RL-agent at any state

to be 0.

task continuum (Con(β,Ks,Kf)). The environment
continuum is defined by setting the probability of provid-
ing control to the RL-agent at any state to be β. Relevant
protocols include:

V1: random step

∀t, πt =

{
πRL, U [0, 1) < β

πd, else

where U [0, 1) is a random value drawn from a uniform dis-
tribution in the range [0, 1).

V2: random m steps

∀t : (t mod m) = 0, πt:t+m−1 =

{
πRL, U [0, 1) < β

πd, else

V3: fixed steps

∀t, πt =

{
πd, (t mod βT) = 0

πRL, else

where T is the total number of steps for the episode.
We implemented and experimented with all three variants

and found ‘V1: random step’ to be superior in most cases.
Refer to Fig. A.2 in the Appendix for a comparison of the
performance of the Temporal-Phasing variants.

Limitations: Temporal-Phasing is expected to perform
poorly in domains where actions have unrecoverable out-
comes. For example, consider a robotic gripper arm task
where the goal is to carry an object from one location to an-
other. The demonstrator’s policy never opens the gripper’s
palm, steadily holding the object. An exploratory RL agent,
by contrast, will try various actions (including opening the
gripper’s palm) that result in unrecoverable situations and
reduced probability of reaching the goal state. This proba-
bility diminishes exponentially as the exploratory RL agent
is provided control in more time steps (factoring in the prob-
abilities of avoiding unrecoverable actions per step). This
phenomenon is especially harmful in sparse reward domains
as a guiding signal from the goal state is rarely observed.

3.2 Reward Task phasing
The Reward-Phasing approach can be viewed as gradually
shifting the Reward function from a dense, informative re-
ward signal to the true (sparse) reward. The dense reward
is initially used to guide the RL agent such that it learns to
imitate the demonstrator. Next, the dense reward is gradu-
ally phased out leaving the true reward as the only policy
guiding signal. Doing so allows the RL agent to learn opti-
mized policies that may diverge from the demonstrator. This
approach assumes that an initial dense reward function, Rd,
can be retrieved from D, e.g., by using inverse RL (Fu, Luo,
and Levine 2017; Abbeel and Ng 2004). It further assumes
that Rd and the target reward function are of similar scale.
This, however, is not a limiting assumption as Rd can be
scaled arbitrarily with no impact on the IRL efficiency.

Initial simplified task (Ks). Let Rd be the learnt dense
reward function and let Rf be the target (sparse) reward
function. Ks is defined by setting the reward function Rs =
Rd +Rf .

Task continuum (Con(β,Ks,Kf)). The task continuum,
Con(β,Ks,Kf)), is defined by a phased reward function
that is a combination of Rd and Rf . Relevant protocols in-
clude:

V1: constant phasing

Rβ = (1− β)Rd +Rf

V2: random phasing

Rβ =

{
Rd +Rf , U [0, 1) > β

Rf , else

We implemented and experimented with both variants and
found ‘V1: constant phasing’ to be superior in most cases.
Refer to Fig. A.4 and Fig. A.5 in the Appendix for a com-
parison of the performance of the Reward-Phasing variants.

Limitations: Reward-Phasing is expected to perform
poorly in domains where the initial dense reward function
directs the RL agent towards a locally optimal policy (with
respect to the target reward). For example in a capture-the-
flag game (e.g., our PyFlag domain as described in Ap-
pendix A.1), an initial reward that is biased towards guard-
ing the player’s flag will make it challenging to learn a pol-
icy that steals the enemy flag.This is less of an issue for
Temporal-Phasing as it trains a “demonstrator” surrogate
function that can be queried for states that lay outside of the
demonstration’s state distribution, allowing the RL agent to
explore further from the provided demonstrations.

3.3 Convergence condition
Definition 1 (RLϵ). Define RLϵ to be an RL algorithm
that explores and returns the optimal policy within some
bounded ϵ KL-divergence from a given stochastic policy, π.
That is, RLϵ will return

πb∗ = argmax
π′|Es∼π′ [KL(π(s),π′(s))]≤ϵ

Jπ

where πb∗ is the optimal policy within the exploration
bound.

For simplicity of presentation, KL(π, π′) is used to rep-
resent Es∼π[KL(π(s), π′(s))] hereafter.

Examples of RLϵ include Trust Region Policy Optimiza-
tion (Schulman et al. 2015) and Proximal Policy Optimiza-
tion (Schulman et al. 2017).

Consider two tasks K1 and K2 each with an affiliated op-
timal policy π∗

1 and π∗
2 . It is easy to see that RLϵ will return

π∗
2 ← re-train(π∗

1 ,K2) if KL(π∗
1 , π

∗
2)] ≤ ϵ. This is because

the optimal policy π∗
2 is within the exploration range from

the initial policy π∗
1 .

Consider applying Algorithm 1 for a given Ks, Kf , and
some RL algorithm, RLϵ. Assume that π∗

s is within the ini-
tial KL-divergence bound of RLϵ, yet π∗

f is not. Further as-
sume that, KL(π∗

s , π
∗
f) > ϵ. That is, RLϵ might fail to iden-

tify π∗
f ← re-train(π∗

s ,Kf).

Figure 1: An example MDP where both Temporal-Phasing
and Reward-Phasing using sub-optimal demonstrations re-
sult in a non-continuous policy space. The rewards shown in
the MDP represent the target reward, Rf . Temporal phas-
ing: assume πd([s0, sl]) = [ar, a1], for β < 0.5, π∗

β(s
0) =

ar yet for β > 0.5, π∗
β(s

0) = al. Reward phasing: as-
sume Rd([(s0, ar), (s0, al), (sl, a1), (sl, a2)]) = [2, 0, 0, 0]
and γ = 1. Using constant phasing, Rβ = (1− β)Rd +Rf ,
for β < 0.5, π∗

β(s
0) = ar yet for β > 0.5, π∗

β(s
0) = al.

Lemma 1 (Convergence). if the optimal policy, π∗
β , as a

function of β (the optimal policy for Kβ) is continuous for
β ∈ [0, 1] and a given Kβ = Con(β,Ks,Kf) function, then
Algorithm 1 with a small enough α, using RLϵ as the under-
lying solver, will converge on π∗

f within 1/α iterations.

Proof. If the optimal policy as a function of β is contin-
uous then there must exist a fine enough β = {β0 =
0, β1, ..., βn = 1} decomposition such that ∀i ∈ {0, ..., n−
1},KL(π∗

βi
, π∗

βi+1
) ≤ ϵ. Following Definition 1, RLϵ will

return π∗
βi
← re-train(π∗

βi−1
,Ki) for every i ∈ {1, ..., n}

where βn = 1, i.e., Kn = Kf . That is, RLϵ will find all op-
timal policies along the resulting curriculum, until π∗

f .

A continuous π∗
β function for both the Temporal-Phasing

(Sec 3.1) and Reward-Phasing (Sec 3.2) approaches does
not hold for the case of a sub-optimal demonstrator (from
which D is sampled). Figure 1 presents a counter examples
for both spaces (Temporal and Reward phasing). As a re-
sult, in the worst case, an arbitrary small step in the task
continuum can lead to a re-train procedure that is as hard
as training a policy from scratch. Fortunately, this issue can
be mitigated by considering a MaxEnt soft policy objec-
tive (Haarnoja et al. 2018) which smoothens the policy con-
tinuum, π∗

β resulting in a continuous shift between the poli-
cies in the re-train procedure. Reconsider the example from
Figure 1, with the addition of an entropy maximizing term.
That is, π∗

β =
∑

t rt+H(π(·|st)). The reader is encouraged
to validate that, in this case, the π∗

β function is indeed con-
tinuous. Hence, for the reported experiments we choose an
RLϵ algorithm that includes an entropy coefficient parame-
ter (see Section 4.1).

3.4 Theoretical results for Reward-Phasing
Next we show that Algorithm 1 results in monotonically
non-decreasing policy performance (assuming π∗

β+α ←
re-train(π∗

β ,Kβ+α) is found in each iteration). This result
is important and useful, since assuming the initial perfor-
mance is equivalent to that of the demonstrator, it guarantees

that the learned policy never underperforms the demonstra-
tor (in expectation). Note that this result relates to V1 (con-
stant Reward-Phasing). Nonetheless, the same result can be
extended to apply for V2 following the fact that the affiliated
reward functions are equal in expectation. That is, E[Rβ

V 2] =

(1− β)(Rd +Rf) + βRf = (1− β)Rd +Rf = Rβ
V 1.

DefineRd
π := Eτ∼π

∑
t γ

tRd(st, at).
DefineRf

π := Eτ∼π

∑
t γ

tRf (st, at).
Consequently, we can rewrite

π∗
β := argmax

π
(1− β)Rd

π +Rf
π

Theorem 1 (Monotonic improvement). Rf
π∗
β

is monotoni-
cally non-decreasing with β.

Proof. by contradiction, assume some π = π∗
β , π′ = π∗

β′ ,
with β < β′, for whichRf

π > Rf
π′

Case 1:Rd
π ≥ Rd

π′

This would imply that (1−β′)Rd
π′+Rf

π′ < (1−β′)Rd
π+Rf

π
contradicting the assumption that π′ = π∗

β′ .
Case 2:Rd

π < Rd
π′

Let α = β′ − β. Then

(1− β′)Rd
π′ +Rf

π′ = (1− β)Rd
π′ +Rf

π′ − αRd
π′ (1)

≤ (1− β)Rd
π +Rf

π − αRd
π′ (2)

< (1− β)Rd
π +Rf

π − αRd
π = (1− β′)Rd

π +Rf
π (3)

contradicting the assumption that π′ = π∗
β′ .

(Eq 2) because π = π∗
β (Eq 3) by the Case 2 assumption

4 Experiments and Results
The experiments are designed to study the performance of
our two Task Phasing variants when paired with a state-of-
the-art RL solver. Specifically, they are designed to answer
the following questions.
1. Can our Task Phasing variants learn an optimized policy

in sparse-reward domains where the paired RL algorithm
(without task phasing) cannot?

2. Can the proposed task phasing variants learn a policy that
outperforms the demonstrator, where the demonstrator’s
policy is used for collecting the demonstrations in D?

3. Are the limitation reported for each of our two Task Phas-
ing variants (Sections 3.1 and 3.2) observed empirically?

4. How does Task Phasing compare to state-of-the-art algo-
rithms designed to run in sparse reward domains and/or
leverage demonstrations?

Our results provide a positive answer to Questions 1–3
and show clear advantages over previous state-of-the-art al-
gorithms with respect to Question 4. In order to support full
reproducibility of the reported results, our codebase along
with detailed running instructions are provided online 3.
The experiments are carried out in three continuous control,
sparse reward environments, namely:

3https://github.com/ParanoidAndroid96/Task-Phasing.git

• PyFlags (Erceth 2020) (GNU General Public License
v3.0) - This task requires a tank to fire at an opponent
tank and capture its flag while defending its own flag.

• FetchPickAndPlace-v1(P&P) (Plappert et al.
2018) (MIT license) - This task requires a robotic
arm to grab a randomly spawning block on a tabletop
and carry it to a random goal location within the arms
reach.

• FetchSlide-v1(FS) (Plappert et al. 2018) (MIT license)
- This task requires a robotic arm to push a randomly
spawning block on a tabletop such that it slides to a stop
at a random goal location outside the robotic arms reach.

The FetchPickAndPlace and FetchSlide domains are used
as sparse reward benchmark domains in the HER with
demonstrations paper (Nair et al. 2018). All 3 domains are of
special interest as they correspond to the limitations reported
for our Task Phasing variants. Specifically, the PyFlags do-
main (capture the flag) has many local optimums in the pol-
icy space, which is expected to have a stronger negative
impact on Reward-Phasing compared to Temporal-Phasing.
On the other hand, the two Fetch domains have unrecover-
able actions, which are expected to have a stronger negative
impact on Temporal-Phasing compared to Reward-Phasing.

A snapshot from each of the reported domains is provided
in Figure A.1. The technical description for the domains
is provided in Appendix A.1. All experiments are repeated
with 3 different random seeds and the mean of their results
is reported along with a 1-σ shaded region.

4.1 Settings
We use a common RLϵ algorithm, denoted Proximal Policy
Optimization (PPO) (Schulman et al. 2017), as our RL algo-
rithm (for computing ‘train’, Line 1, and ‘re-train’, Line 1, in
Algorithm 1). All algorithms used in the experiments apply
the ADAM optimizer for training. The hyperparameters val-
ues for our approach as well as for the baseline algorithms
are provided in Appendix A.2.

Temporal phasing Temporal-Phasing requires an online
demonstrator. The demonstrator can be learnt from demon-
strations using techniques such as IRL (Fu, Luo, and Levine
2017) or GAIL (Ho and Ermon 2016a). In order to focus the
study on the phasing approach, we skip the IL phase and
directly use a suboptimal rules-based demonstrator (same
one used to collect the demonstrations). We report results
for the best performing Temporal-Phasing variant ‘V1: ran-
dom step’. We provide a comparison of the various vari-
ants of Temporal-Phasing, as well as ablation studies con-
ducted on them, in the Appendix A.3.We found that using
a dynamic α step size performed better compared to using
a static one. In our dynamic setting, β is incremented by
β ← β + α only if the average performance of the cur-
rent policy (πβ) is greater than a set threshold. The threshold
values for each domain are provided in Appendix A.2.Also,
for Temporal-Phasing we used importance sampling to train
the RL-policy over transitions that follow from the demon-
strator control (off-policy training). We used a PPO impor-
tance sampling approach that was introduced by (Levine and

Koltun 2013). However, instead of using Differential Dy-
namic Programming to generate “guiding samples” (Levine
and Koltun 2013), we use the demonstrator’s actions.

Reward-Phasing. Reward-Phasing requires a dense re-
ward function to provide initial guidance to the RL policy.
In our approach, we use the Adversarial IRL (Fu, Luo, and
Levine 2017) approach to learn the dense reward function
for the task. Results are reported for the best performing
Reward-Phasing variant (V1: constant phasing). Similar to
Temporal-Phasing, we provide a comparison of the various
variants of Reward-Phasing in Appendix A.3. In order to al-
low reasonable running times, we employ a fixed interval
approach, where β ← β + α is applied every 200 train-
ing episodes. That is, Line 1 in Alg 1 trains for a fixed 200
episodes (not necessarily until convergence to π∗

β).
The experiments conducted indicate that the performance

of both Temporal-Phasing and Reward-Phasing is sensitive
to the α parameter (step size), learning rate, and entropy
coefficient. However, annealing these parameters through-
out the learning process leads to stable (insensitive) results
for both approaches. Further details on the hyperparameters
used can be found in Appendix A.2.

Baselines We compare the proposed approaches against
the following baseline algorithms that are considered state-
of-the-art for sparse reward domains:

Hindsight Experience Replay (HER) with demonstra-
tions (Nair et al. 2018). This approach automatically gen-
erates a learning curriculum. It does so by setting interme-
diate goals in the environment that the policy can reach and
providing rewards based on how close the agent is to a goal
state. This approach requires some domain knowledge as the
goal state for the environment must be defined. We find that
the agent learns to retrieve the flag when the goal state for the
PyFlag task is set such that the agent is positioned at its own
base with the opponent’s flag in its possession (distance to
red flag = 0) and its own flag is not in the opponent’s posses-
sion. When computing rewards, a weight of 1.0 is provided
for possession of the opponent’s flag and preventing the op-
ponent from taking the agent’s flag, in order to encourage
offensive and defensive strategies. A lower weight, 0.1, is
provided for the agent being positioned at its base so that it
will prioritize attempting to steal the flag instead of staying
close to its base. The goal state and the reward for the Fetch
domains is the same as in (Nair et al. 2018), with the excep-
tion that the reward is scaled up from {−1, 0} to {0, 1}.

Self-adaptive Imitation Learning (SAIL) (Zhu et al.
2022). Instead of relying purely on exploration or on ex-
ploiting demonstrations, this approach aims to effectively
strike a balance between exploiting sup-optimal demonstra-
tions and efficiently exploring the environment to surpass
the performance of the demonstrator. It maintains two re-
play buffers, for caching teacher demonstrations and self-
generated transitions, respectively. During iterative training,
SAIL dynamically adds high-quality self-generated trajecto-
ries into the teacher demonstration buffer.

Random Network Distillation (RND) (Burda et al. 2019).
This approach encourages the exploration of new states in
the environment but does not rely on demonstrations. The
exploration boost is provided by combining an intrinsic re-
ward with an extrinsic (true) reward. The intrinsic reward is
the error of a neural network predicting features of the obser-
vations given by a fixed randomly initialized neural network.

Other relevant baselines algorithms include:
HER+DDPG (Andrychowicz et al. 2017), BC+HER,
GAIL (Ho and Ermon 2016b), DAC (Kostrikov et al. 2018),
DDPGfD (Vecerik et al. 2017), POfD (Kang, Jie, and
Feng 2018). However, these baselines are omitted from
our reported results as they were shown (Nair et al. 2018;
Zhu et al. 2022; Burda et al. 2019) to be inferior to the
aforementioned 3 state-of-the-art baselines.

4.2 Results
We start by comparing our task phasing variants against
the baseline algorithms. Figure 2 presents learning curves
for both our best Temporal-Phasing (V1: random step) and
Reward-Phasing (V1: constant phasing) variants.

Temporal Phasing In the PyFlags domain, see Fig-
ure 2(a), Temporal-Phasing outperforms all other algorithms
with respect to the final performance. Temporal-Phasing is
also the only approach that is able to outperform the demon-
strator.4 The peak in performance is achieved when the RL
policy has full control (β = 1) learning a policy that out-
performs the demonstrator (game score > 0). These results
provide a positive answer to the experiments’ Questions 1, 2,
and 4. The results in the Fetch domains, shown in Fig-
ure 2(b,c), indicate that Temporal-Phasing performed poorly
in these domain, with the demonstrator policy only being
phased out 50% on average (not able to achieve the phasing
threshold beyond 50%). This highlights the limitations of
the Temporal-Phasing approach in learning to perform sen-
sitive tasks that suffer from unrecoverable actions. This is
apparent in the P&P domain where the robotic arm can take
one wrong action, such as opening the gripper, leading it to
drop the block. A similar phenomenon can be observed in
the FS domain where pushing the block in certain directions
leads to the block becoming unreachable. In the PyFlags do-
main, by contrast, the demonstrator’s policy is more likely
to recover from a limited number of bad actions, making the
Temporal-Phasing approach more appropriate. These results
provide a positive answer to the experiments’ Question 3.

Reward Phasing Figure 2 paints a picture where Reward-
Phasing achieves state-of-the-art performance in both Fetch
domains. It can be observed that during the phasing process
Reward-Phasing results in mostly monotonic improvement
(in expectancy), supporting the claims made in Theorem 1.

In the Fetch domains, the policy learned using Reward-
Phasing not only learns to perform the task but also outper-
forms the demonstrator policy. These results provide further
positive support to experiments’ Questions 1, 2, and 4. In the

4In the PyFlags domain, matching the demonstrator’s perfor-
mance is achieved when the average game score is zero (as it is a
zero-sum game).

Figure 2: Learning curves of different algorithms tested in the PyFlag, FetchPickAndPlace, and FetchSlide domains. The y-axis
represents the average episode score/reward over 300 runs. In the PyFlags domain, the game score is the difference between the
number of times the blue and red flags are stolen. In PyFlags 1 episode = 20480 steps; P&P, FS 1 episode = 1024 steps.

PyFlags domain, although the policy learnt using Reward-
Phasing does not outperform the demonstrator policy, we
observe that the learned policy is still able to steal the en-
emy’s flag 5 times per episode on average. This indicates
that Reward-Phasing was successful in learning a policy that
retained useful behaviors in sparse reward settings. How-
ever, the RL policy seemed to get stuck in a local minima
where it is unable to outperform the opponent. This provides
further positive support to the experiments’ Question 3.

HER with demonstrations Despite being able to learn a
reasonable sub-optimal policy, the HER algorithm did not
outperform both our best task phasing approaches in the re-
ported domains. The results highlight the drawbacks of the
HER algorithm in adversarial settings such as the PyFlags
domain. The HER algorithm provides a reward to the agent
for achieving sub-goals based on how close they are to the
true goal state, but it does not consider how good those sub-
goals are with respect to the true reward. For instance, the
agent may receive a large reward when it reaches a state
close to the opponent’s flag, but it is not penalized if this
state leads the agent directly into the opponent’s line of fire.

Random Network Distillation The RND algorithm was
not able to perform meaningful learning in any of the re-
ported domains. This indicates that although exploration-
based approaches are known to provide good results, they
require a substantial training period compared to algorithms
that utilize demonstrations or some form of domain knowl-
edge. Similar trends for RND have been previously observed
and reported (Yang et al. 2021).

Self-adaptive Imitation Learning SAIL was unable to
outperform at least one of our task-phasing approaches in
all of the reported domains. While in the PyFlags domain,
it was able to outperform Reward-Phasing, it still under-
performed Temporal-Phasing. SAIL exhibited similar lim-
itations to Temporal-Phasing in the Fetch domains where

it failed to even match the demonstrator’s performance. We
speculate that similar to Temporal-Phasing, SAIL is unable
to effectively deal with unrecoverable actions which pre-
vents it from experiencing sparse (hard to reach) rewards.

5 Limitations and Future Work
A limitation of task phasing is the need for human input
to choose between its two (and potentially more) variants,
Temporal-Phasing or Reward-Phasing. Future work aims to
improve Reward-Phasing by fusing it with the Dataset Ag-
gregation (Ross, Gordon, and Bagnell 2011) approach for
no-regret online learning. We expect such an approach to
outperform Temporal-Phasing in all of the domains, making
Reward-Phasing a default variant choice. In doing so, how-
ever, the availability of an online interactive demonstrator
must be assumed. Such an assumption can be motivated by
RL domains that target optimizing existing, suboptimal con-
trollers. Examples include Traffic Signal Controllers (Ault
and Sharon 2021; Sharon 2021; Ault, Hanna, and Sharon
2020) and Autonomous Driving (Kiran et al. 2021).

6 Summary
This paper presents two general, domain-independent ap-
proaches for designing a curriculum continuum from
demonstrations: Temporal-Phasing and Reward-Phasing.
The curriculum continuum allows decomposing a complex
RL task into a set of tasks with progressively increasing
complexity. We show that under the assumption of a contin-
uous (task, optimal policy) space, a task phasing approach
with a sufficiently small step size, is guaranteed to learn
the optimal policy for any task. We show that the Reward-
Phasing curriculum must result in policies that are mono-
tonically non-decreasing with respect to the expected re-
turn in the target task. Experimental results in sparse reward
domains indicate that Temporal-Phasing and/or Reward-
Phasing can significantly surpass state-of-the-art algorithms

in terms of asymptotic performance. The results indicate that
Temporal-Phasing is more applicable for tasks that do not
require high precision or are prone to catastrophic actions,
and that Reward-Phasing produces sub-optimal results when
IRL fails to accurately mimic the demonstrator.

Acknowledgements
1. The reported work has taken place in the PiStar AI and

Optimization Lab at Texas A&M. PiStar research is sup-
ported in part by NSF (IIS-2238979).

2. A portion of this work was funded by Ultra Electronics
Advanced Tactical Systems, Inc. and Ultra Labs.

3. A portion of this work has taken place in the Learning
Agents Research Group (LARG) at UT Austin. LARG
research is supported in part by NSF (CPS-1739964,
IIS-1724157, FAIN-2019844), ONR (N00014-18-2243),
ARO (W911NF-19-2-0333), DARPA, GM, Bosch, and
UT Austin’s Good Systems grand challenge.

4. Peter Stone serves as the Executive Director of Sony
AI America and receives financial compensation for this
work. The terms of this arrangement have been reviewed
and approved by the University of Texas at Austin in ac-
cordance with its policy on objectivity in research.

5. A portion of this work was funded by the Mays Innova-
tion Research Center at Texas A&M

References
Abbeel, P.; and Ng, A. Y. 2004. Apprenticeship learning
via inverse reinforcement learning. In Proceedings of the
twenty-first international conference on Machine learning,
1.
Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong,
R.; Welinder, P.; McGrew, B.; Tobin, J.; Pieter Abbeel, O.;
and Zaremba, W. 2017. Hindsight experience replay. Ad-
vances in neural information processing systems, 30.
Ault, J.; Hanna, J. P.; and Sharon, G. 2020. Learning an In-
terpretable Traffic Signal Control Policy. In Proceedings of
the 19th International Conference on Autonomous Agents
and MultiAgent Systems, AAMAS ’20, 88–96. Richland,
SC: International Foundation for Autonomous Agents and
Multiagent Systems. ISBN 9781450375184.
Ault, J.; and Sharon, G. 2021. Reinforcement Learning
Benchmarks for Traffic Signal Control. In Proceedings of
the 35th Neural Information Processing Systems (NeurIPS
2021) Track on Datasets and Benchmarks.
Barto, A. G. 2013. Intrinsic motivation and reinforcement
learning. In Intrinsically motivated learning in natural and
artificial systems, 17–47. Springer.
Bengio, Y.; Louradour, J.; Collobert, R.; and Weston, J.
2009. Curriculum learning. volume 60, 6.
Burda, Y.; Edwards, H.; Storkey, A.; and Klimov, O. 2019.
Exploration by random network distillation. In Seventh In-
ternational Conference on Learning Representations, 1–17.
Dennis, M.; Jaques, N.; Vinitsky, E.; Bayen, A. M.; Russell,
S. J.; Critch, A.; and Levine, S. 2020. Emergent Complexity
and Zero-shot Transfer via Unsupervised Environment De-
sign. ArXiv, abs/2012.02096.

Dey, S.; Pendurkar, S.; Sharon, G.; and Hanna, J. P. 2021.
A Joint Imitation-Reinforcement Learning Framework for
Reduced Baseline Regret. In 2021 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
3485–3491.
Durugkar, I.; Tec, M.; Niekum, S.; and Stone, P. 2021. Ad-
versarial Intrinsic Motivation for Reinforcement Learning.
In Proceedings of the 35th International Conference on Neu-
ral Information Processing Systems (NeurIPS 2021).
Ecoffet, A.; Huizinga, J.; Lehman, J.; Stanley, K. O.; and
Clune, J. 2019. Go-Explore: a New Approach for Hard-
Exploration Problems. ArXiv, abs/1901.10995.
Erceth. 2020. PyFlags.
Fu, J.; Luo, K.; and Levine, S. 2017. Learning robust re-
wards with adversarial inverse reinforcement learning. arXiv
preprint arXiv:1710.11248.
Haarnoja, T.; Zhou, A.; Abbeel, P.; and Levine, S. 2018.
Soft actor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor. In International
conference on machine learning, 1861–1870. PMLR.
Ho, J.; and Ermon, S. 2016a. Generative Adversarial Im-
itation Learning. In Lee, D.; Sugiyama, M.; Luxburg, U.;
Guyon, I.; and Garnett, R., eds., Advances in Neural Infor-
mation Processing Systems, volume 29. Curran Associates,
Inc.
Ho, J.; and Ermon, S. 2016b. Generative adversarial imi-
tation learning. Advances in neural information processing
systems, 29.
Ionescu, R. T.; Alexe, B.; Leordeanu, M.; Popescu, M.; Pa-
padopoulos, D.; and Ferrari, V. 2016. How Hard Can It
Be? Estimating the Difficulty of Visual Search in an Image.
2157–2166.
Jiménez-Sánchez, A.; Mateus, D.; Kirchhoff, S.; Kirchhoff,
C.; Biberthaler, P.; Navab, N.; Ballester, M. Á. G.; and
Piella, G. 2019. Medical-based Deep Curriculum Learning
for Improved Fracture Classification. In MICCAI.
Kang, B.; Jie, Z.; and Feng, J. 2018. Policy optimization
with demonstrations. In International conference on ma-
chine learning, 2469–2478. PMLR.
Kiran, B. R.; Sobh, I.; Talpaert, V.; Mannion, P.; Al Sallab,
A. A.; Yogamani, S.; and Pérez, P. 2021. Deep reinforcement
learning for autonomous driving: A survey. IEEE Transac-
tions on Intelligent Transportation Systems.
Kostrikov, I.; Agrawal, K. K.; Dwibedi, D.; Levine, S.; and
Tompson, J. 2018. Discriminator-actor-critic: Addressing
sample inefficiency and reward bias in adversarial imitation
learning. arXiv preprint arXiv:1809.02925.
Levine, S.; and Koltun, V. 2013. Guided Policy Search. In
Dasgupta, S.; and McAllester, D., eds., Proceedings of the
30th International Conference on Machine Learning, vol-
ume 28 of Proceedings of Machine Learning Research, 1–9.
Atlanta, Georgia, USA: PMLR.
Lotfian, R.; and Busso, C. 2019. Curriculum Learning for
Speech Emotion Recognition From Crowdsourced Labels.
IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 27(4): 815–826.

Matiisen, T.; Oliver, A.; Cohen, T.; and Schulman, J. 2019.
Teacher–student curriculum learning. IEEE transactions on
neural networks and learning systems, 31(9): 3732–3740.
Nair, A.; McGrew, B.; Andrychowicz, M.; Zaremba, W.;
and Abbeel, P. 2018. Overcoming exploration in reinforce-
ment learning with demonstrations. In 2018 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
6292–6299. IEEE.
Narvekar, S.; Peng, B.; Leonetti, M.; Sinapov, J.; Taylor,
M. E.; and Stone, P. 2020. Curriculum Learning for Re-
inforcement Learning Domains: A Framework and Survey.
Journal of Machine Learning Research, 21(181): 1–50.
Narvekar, S.; Sinapov, J.; Leonetti, M.; and Stone, P. 2016.
Source Task Creation for Curriculum Learning. In Proceed-
ings of the 2016 International Conference on Autonomous
Agents & Multiagent Systems, AAMAS ’16, 566–574.
Richland, SC: International Foundation for Autonomous
Agents and Multiagent Systems. ISBN 9781450342391.
Oudeyer, P.-Y.; and Kaplan, F. 2009. What is intrinsic moti-
vation? A typology of computational approaches. Frontiers
in neurorobotics, 1: 6.
Oudeyer, P.-Y.; and Kaplan, F. 2013. How can we define
intrinsic motivation ?
Pentina, A.; Sharmanska, V.; and Lampert, C. 2015. Cur-
riculum learning of multiple tasks. 5492–5500.
Plappert, M.; Andrychowicz, M.; Ray, A.; McGrew, B.;
Baker, B.; Powell, G.; Schneider, J.; Tobin, J.; Chociej, M.;
Welinder, P.; Kumar, V.; and Zaremba, W. 2018. Multi-
Goal Reinforcement Learning: Challenging Robotics Envi-
ronments and Request for Research. ArXiv, abs/1802.09464.
Portelas, R.; Colas, C.; Hofmann, K.; and Oudeyer, P.-Y.
2020a. Teacher algorithms for curriculum learning of Deep
RL in continuously parameterized environments. In Kael-
bling, L. P.; Kragic, D.; and Sugiura, K., eds., Proceedings
of the Conference on Robot Learning, volume 100 of Pro-
ceedings of Machine Learning Research, 835–853. PMLR.
Portelas, R.; Colas, C.; Weng, L.; Hofmann, K.; and
Oudeyer, P.-Y. 2020b. Automatic curriculum learning for
deep rl: A short survey. arXiv preprint arXiv:2003.04664.
Reddy, S.; Dragan, A. D.; and Levine, S. 2019. SQIL: Imita-
tion learning via reinforcement learning with sparse rewards.
arXiv preprint arXiv:1905.11108.
Ross, S.; Gordon, G.; and Bagnell, D. 2011. A reduction of
imitation learning and structured prediction to no-regret on-
line learning. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, 627–635.
JMLR Workshop and Conference Proceedings.
Salimans, T.; and Chen, R. 2018. Learning Montezuma’s
Revenge from a Single Demonstration. arXiv preprint
arXiv:1812.03381.
Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; and Moritz,
P. 2015. Trust Region Policy Optimization. In Bach, F.; and
Blei, D., eds., Proceedings of the 32nd International Con-
ference on Machine Learning, volume 37 of Proceedings
of Machine Learning Research, 1889–1897. Lille, France:
PMLR.

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
Sharon, G. 2021. Alleviating Road Traffic Congestion with
Artificial Intelligence. In Zhou, Z.-H., ed., Proceedings of
the Thirtieth International Joint Conference on Artificial In-
telligence, IJCAI-21, 4965–4969. International Joint Confer-
ences on Artificial Intelligence Organization. Early Career.
Soviany, P.; Ionescu, R. T.; Rota, P.; and Sebe, N. 2021. Cur-
riculum Learning: A Survey. ArXiv, abs/2101.10382.
Taylor, M. E.; and Stone, P. 2009. Transfer learning for rein-
forcement learning domains: A survey. Journal of Machine
Learning Research, 10(7).
Torabi, F.; Warnell, G.; and Stone, P. 2018. Behavioral
cloning from observation. 4950–4957.
Vecerik, M.; Hester, T.; Scholz, J.; Wang, F.; Pietquin, O.;
Piot, B.; Heess, N.; Rothörl, T.; Lampe, T.; and Riedmiller,
M. 2017. Leveraging demonstrations for deep reinforcement
learning on robotics problems with sparse rewards. arXiv
preprint arXiv:1707.08817.
Wei, J.; Suriawinata, A.; Ren, B.; Liu, X.; Lisovsky,
M.; Vaickus, L.; Brown, C.; Baker, M.; Nasir-Moin, M.;
Tomita, N.; Torresani, L.; Wei, J.; and Hassanpour, S. 2020.
Learn like a Pathologist: Curriculum Learning by Annotator
Agreement for Histopathology Image Classification.
Weinshall, D.; and Amir, D. 2020. Theory of curriculum
learning, with convex loss functions. Journal of Machine
Learning Research, 21(222): 1–19.
Weinshall, D.; Cohen, G.; and Amir, D. 2018. Curriculum
learning by transfer learning: Theory and experiments with
deep networks. In International Conference on Machine
Learning, 5238–5246. PMLR.
Yang, T.; Tang, H.; Bai, C.; Liu, J.; Hao, J.; Meng, Z.; and
Liu, P. 2021. Exploration in deep reinforcement learning: a
comprehensive survey. arXiv preprint arXiv:2109.06668.
Yengera, G.; Devidze, R.; Kamalaruban, P.; and Singla, A.
2021. Curriculum Design for Teaching via Demonstrations:
Theory and Applications. Advances in Neural Information
Processing Systems, 34: 10496–10509.
Zhao, E.; Deng, S.; Zang, Y.; Kang, Y.; Li, K.; and Xing,
J. 2020. Potential Driven Reinforcement Learning for Hard
Exploration Tasks. In Bessiere, C., ed., Proceedings of the
Twenty-Ninth International Joint Conference on Artificial
Intelligence, IJCAI-20, 2096–2102. International Joint Con-
ferences on Artificial Intelligence Organization. Main track.
Zhu, Z.; Lin, K.; Dai, B.; and Zhou, J. 2022. Self-Adaptive
Imitation Learning: Learning Tasks with Delayed Rewards
from Sub-optimal Demonstrations. Proceedings of the AAAI
Conference on Artificial Intelligence, 36(8): 9269–9277.

