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Abstract  
To maximize indoor daylight, design projects commonly 
use commercial optimization tools to determine optimum 
window configurations. However, experiments show that 
such tools either grossly suboptimal or are very slow to 
compute in certain conditions.  
This paper presents an empirical comparison between a 
gradient-free optimization technique, Covariance Matrix 
Adaptation Evolution Strategy (CMA-ES), and the widely 
used Genetic Algorithm (GA)-based tool, Galapagos, for 
optimizing window parameters to improve indoor 
daylight. Results are reported for six locations across 
different latitudes. A novel combination of daylight 
metrics, sDA, and ASE, is proposed for single-objective 
optimization comparison. Results indicate that GA in 
Galapagos takes progressively more time to converge, 
from 11 minutes in southernmost to 11 hours in 
northernmost latitudes, while runtime for CMA-ES is 
consistently around 2 hours. On average, CMA-ES is 1.5 
times faster than Galapagos, while consistently finding 
optimal solutions. The conclusions from this paper can 
help researchers in selecting appropriate optimization 
algorithms for daylight simulation based on latitudes, 
desired runtime, and desired solution quality. 
Key innovations 
• This paper demostrates the benefits from using CMA-

ES over the commonly used GA-based tool, 
Galapagos, for daylight optimization. 

• The paper proposes a novel combination of the 
daylight metrics, sDA and ASE, into a single objective 
such that the optimum value corresponds to 
sDA=100%; ASE = 0%. 

• Results suggest that CMA-ES consistently converges 
to optimal solutions, unlike Galapagos.  

• Experimental results for six states in the USA suggest 
that, for southern latitudes, Galapagos provides faster 
runtime, however, as latitudes rise toward the north, 
CMA-ES is relatively faster. 

• CMA-ES runtime is consistent in finding the optimal 
solution on all six locations, unlike Galapagos. 

Practical implications 
Use CMA-ES optimization for more reliable results 
regarding shading design and consistent optimization 
time. 

Use Galapagos optimization for faster results in lower 
latitudes where shading significantly influences daylight 
control. 
Introduction 
Daylight is a critical parameter to address in building 
envelope design. Daylight consideration in architecture is 
known to improve comfort, health, and productivity. In 
the works of Hwang and Kim (2011), and Baker and 
Steemers (2014), daylight has been shown to improve 
occupant health, comfort, and satisfaction. However, with 
increased daylight availability through glazing surfaces 
comes an increased risk of visual discomfort through 
glare. There is an extensive body of literature that 
investigated the relationship between daylight and glare 
(Nabil and Mardaljevic, 2006; Araji and Boubekri, 2008) 
using a wide array of daylight and glare metrics. In 
addition to daylight access, glare control for windows in 
the form of horizontal and vertical shading devices, 
therefore, are crucial design elements that need to be 
incorporated to obstruct disturbing levels of glare (Chan 
and Tzempelikos, 2013; Yun, Yoon, and Kim, 2014). This 
balance between daylight and glare is further encouraged 
in building design through the Daylight credit category 
under the LEED v4 rating system (USGBC, 2014). 
Daylight and proxy glare calculations for LEED v4 credit 
require the use of daylight metrics such as Spatial 
Daylight Autonomy (sDA) and Annual Sunlight 
Exposure (ASE), which are essentially a time series of 
illuminances over a year. Dynamic metrics such as these 
allow performance measurements based on daily and 
seasonal variations for a specific location. However, the 
total time required to try out all possible design variable 
options scales exponentially with additional design 
variables. 
With the recent advancements in the fields of artificial 
intelligence researchers in the building industry have 
begun to incorporate artificial intelligence in various 
settings. One such application is to reduce the time 
required for simulation for exploring different room 
configurations during the design phase by using 
optimization techniques (Nguyen, Reiter, and Rigo, 2014).  
Several algorithms exist to solve a wide variety of 
optimization problems in building design, each with its 
strengths and limitations, the most robust of which is 
considered to be evolutionary or stochastic algorithms, 
and in particular, Genetic Algorithms (GA) (Goldberg, 
1989). In architecture, GAs are being widely used in 
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recent years by architects and designers with the creation 
of Galapagos (Rutten, 2013), a user-friendly evolutionary 
solver plugin in Grasshopper. Despite its extensive 
application, Galapagos suffers from some limitations, in 
particular regarding inconsistent runtime and the nature of 
the optimal solution it generates, as will be shown in the 
following section. 
This paper investigates a gradient-free optimization 
technique called “Covariance Matrix Adaptation 
Evolution Strategy” (CMA-ES) for daylight optimization. 
Specifically, the goal of the paper is to present a 
comparative analysis between CMA-ES and the GA-
based tool Galapagos, henceforth referred to as simply 
Galapagos, with respect to three parameters namely, 
average run time, solution quality, and consistency in 
runtimes. The paper also investigates if a correlation 
exists between optimizer runtime and solution quality 
with the test location for each optimizer. For comparison, 
the paper selects six locations spanning different latitudes. 
The locations include a variety of solar incident angles 
creating different annual daylight conditions in order to 
optimize a test geometry to improve daylight and 
minimize glare in compliance with LEED v4. 
Additionally, the study proposes a novel way to combine 
multiple objective functions, in this case, sDA (Spatial 
Daylight Autonomy) and ASE (Annual Sunlight 
Exposure), into a single objective since both the 
algorithms being compared require a single objective. 
This study will help architects and researchers in choosing 
a better optimization technique based on the location 
being considered. 
Background 
In the last decade, several studies in the field of 
architecture have applied various optimization methods to 
optimize building systems and envelopes in order to 
maximize indoor daylight and minimize energy 
consumption and glare, thereby improving indoor comfort 
conditions for occupants. Optimization problems 
essentially are formulated to discover ‘the best result 
under the circumstances’ (Venkataraman, 2009). This is 
done by minimizing or maximizing a function, called the 
‘objective function’ subject to a set of constraints. The 
search for an optimal design also requires a set of ‘input 
variables’, the values of which can change over a 
specified range. Input variables, thus, characterize a 
specific design.  
Among the commonly used optimization methods 
(Goldberg, 1989), Genetic Algorithms (GA) are based on 
biological processes, inspired by natural evolution, and 
are frequently used in architecture to optimize building 
performance (Nguyen, Reiter, and Rigo, 2014; Machairas, 
Tsangrassoulis, and Axarli, 2014; Wortmann et al., 2017). 
As a ‘ “classic” metaheuristic algorithm,’ GA initially 
begins the search with a number of random individuals as 
the ‘first generation’ of solutions, the performance of 
which is evaluated based on the objective function. If this 
objective value is not met in a generation, GA utilizes 
crossover, mutation, and selection to create successive 
generations (Murray-Smith, 2012, Wortmann et al., 2017, 

Kheiri, 2021). Once the objective function is met, the 
optimization stops. 
GA has been extensively used in building optimization 
since the late 1990s, with more than 80% of these studies 
focused on optimizing building systems and envelopes (Li, 
Shao, Zuo, and Huang, 2017). Gagne and Andersen (2012) 
proposed a GA-based tool to find the optimum façade 
configurations for illuminance and glare objectives. Yi 
(2019) proposed a method to integrate the quality and 
quantity performance of the envelope into one measurable 
goal for optimization. In the works of Kim (2020), 
Charpentier (2020), and Torres and Sakamoto (2007) 
shading devices are optimized to improve indoor daylight 
levels according to LEED and minimize the cooling load. 
Most of these works use commercial optimization tools. 
Some optimization tools developed for the field of 
architecture include Galapagos (Rutten, n.d.) and Octopus 
(Vierlinger, n.d.). In Galapagos, the user can choose 
between GA (Genetic Algorithm) or SA (Simulated 
Annealing) as an optimizer. It is a single-objective 
optimization tool, whereas Octopus is a multi-objective 
evolutionary algorithm, based on SPEA-2. The user can 
choose a solution between Pareto optimal surfaces. 
Single-objective optimization problems have one 
objective to optimize, whereas multi-objective 
optimizations involve optimizing multiple objective 
functions. Despite the extensive application of GA in 
architecture optimization studies, for hourly daylight 
simulations, GA has its limitations in that it requires a 
large number of simulation samples, which becomes 
computationally expensive (Kheiri, 2018) and slow to 
compute (Elbeltagi, 2005). Although studies have 
attempted to address this limitation by either simplifying 
the objective function or reducing the number of 
individuals, the former tends to disregard detailed 
information while the latter results in non-optimal 
solutions (Kheiri, 2018).  
Covariance Matrix Adaptation - Evolutionary Strategy 
(CMA-ES) (Hansen 2006) is another genetic algorithm. 
Unlike other genetic algorithms, CMA-ES models 
pairwise correlations between every pair of input 
variables. Further, CMA-ES was shown to be empirically 
effective for optimizing “difficult functions,” especially 
in cases when the number of input variables is relatively 
large (Hansen 2010). In the daylight optimization setting, 
considering pairwise correlations of the input variables, 
such as the correlation between window dimension and 
building orientation, is hypothesized to be beneficial. As 
a result, the paper investigates using CMA-ES for 
optimizing window shading devices to maximize indoor 
daylight. Additionally, since CMA-ES is an evolutionary 
algorithm for single objective optimization, the paper 
utilizes Galapagos for comparison, which, as stated before, 
is also a single objective evolutionary solver. 
Methods 
The methodology consists of three major steps (Figure 1). 
The first step consists of geometry modeling with specific 
parameters. In the second step, a daylight model is 
generated using climatic conditions of selected locations 
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to run daylight simulations. The third step involves 
running optimization using two different optimizers: 
Galapagos and CMA-ES to compare their performance in 
terms of the quality of the solution returned and runtime. 
A solution with sDA 100% and ASE 0% is referred to as 
the optimal solution. Solution quality refers to how close 
the solution is to the optimal solution. 

 
Figure 1: Overall methodology flowchart. 

Test Case and Parameters 
A simple shoebox geometry measuring 6 m wide, 9 m 
deep, and 3 m high was modeled to run daylight 
simulations (Figure 2). The geometry contained one 
rectangular window on the south façade with horizontal 
overhangs and vertical fins as shading devices. The 
window sill height was fixed at 0.9 m from the floor. The 
illuminance grid spacing was fixed at a 0.6 m distance, 
located at a height of 0.8 m from the floor.  

 
Figure 2: Geometry modelling parameters with daylight 

grid. 
The input variables for the study include window width 
(X1) and height (X2), number and depth of vertical fins 
(X3 and X4), number and depth of horizontal overhangs 
(X5 and X6), and the orientation (X7). Table 1 shows the 
input variables with their value ranges.  

Table 1: Variable parameters used in the study. 
Variable label Variable name Value range 

X1 Window width 1.5 – 6.0 m 
X2 Window height 1.2 – 3.0 m 
X3 Fin number 1 – 6 
X4 Fin depth 0.0 – 1.2 m 
X5 Overhang number 1 – 6 
X6 Overhang depth 0.0 – 1.2 m 
X7 North offset 0.0 – 360.0° 

Six locations in the U.S.A. at different latitudes from 
north to south were considered for the study including, 
Bozeman, MT; New York City, NY; Dulles, VA; Los 
Angeles, CA; Houston, TX; and Miami, FL (Table 2). 
This is done to find out how the different sky conditions 
and amounts of solar radiation reaching the earth will 
influence the performance of the optimization.   

Table 2: Test locations and corresponding latitudes. 
Location Latitude (°) 

Bozeman, MT 45.7 
New York City, NY 40.7 
Dulles, VA 38.9 
Los Angeles, CA 34.1 
Houston, TX 29.8 
Miami, FL 25.8 

The materials used for the daylight model are listed in 
Table 3. The glazing assembly was a Double-Glazed Unit 
(DGU) with a U-value of 1.36 W/(m2.K), a Solar Heat 
Gain Coefficient (SHGC) of 0.38, and a Visible 
Transmittance (TVis) of 50.6%. Reflectance (R) for the 
other surfaces was set as shown in Table 3.   
The Radiance parameters used were -ab 6 –lw 0.01. 
According to existing literature (Mardaljevic, 1995), 
higher accuracy in results is achieved with -ab values 
higher than 4. 
Table 3: Material properties of the exterior objects used 

in the daylight model. 
Object R (%) TVis (%) SHGC 

Ceiling 70 - - 
Floor 20 - - 
Wall 70 - - 
Window - 50.6 0.38 

Performance indices 
Several indicators exist to measure and predict daylight 
performance in architecture, based on Climate-Based 
Daylight Modelling (CBDM). CBDM uses the 
meteorological dataset to extract sun and sky information 
to run daylight models using various climate-based 
daylight metrics including, Daylight Autonomy (DA), 
sDA (Spatial Daylight Autonomy), ASE (Annual 
Sunlight Exposure), and Useful Daylight Illuminance 
(UDI) (Mardaljevic, Heschong, and Lee, 2009; Mohsenin 
and Hu, 2015). Among them, sDA and ASE are two well-
established performance indicators used to assess indoor 
daylight, that have been adopted by the LEED rating 
system (USGBC, 2014).  
The Illuminating Engineering Society (IES) (2012) 
defines sDA as ‘a percentage of floor area that exceeds a 
specified illuminance level for a specified number of 
annual hours.’ In other words, sDA measures the 
‘sufficiency’ of indoor illuminance over a year during 
standard operating hours (8 am to 6 pm). Daylight in an 
area is said to be ‘sufficient’ if the sDA value is 55% i.e., 
at least 55% of the space receives at least 300 lux for at 
least 50% (sDA300/50%) of the occupied hours. sDA value 
of 75% indicates ‘preferred’ lighting conditions by the 
occupants.  
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ASE, on the other hand, is defined as a metric to assess 
the ‘potential risk of excessive sunlight penetration’ 
(Illuminating Engineering Society, 2012) for a specified 
number of annual hours, as a percentage of the floor area. 
Therefore, ASE indicates visual discomfort by measuring 
the amount of direct sunlight entering a space annually. 
The acceptable threshold for ASE is a maximum of 1000 
lux of direct sunlight for a maximum of 250 hours (ASE 
1000/250) of the occupied hours. An ASE value higher than 
10% indicates potential glare and increased cooling load. 
The objective of the optimizers is to maximize sDA and 
minimize ASE. However, Galapagos, as well as CMA-
ES, are single objective optimization algorithms. To 
overcome this, the following objective function is 
considered that combines sDA and ASE into a single 
objective considered for maximization. 

𝑥𝑠𝐷𝐴 =  {
0.0177 × 𝑠𝐷𝐴2                            𝑖𝑓 𝑠𝐷𝐴 < 75%
100                                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

𝑥𝐴𝑆𝐸 =  {

100                                                  𝑖𝑓 𝐴𝑆𝐸 < 10%

103 − 0.4 × 𝐴𝑆𝐸                         𝑖𝑓 𝐴𝑆𝐸 < 20%

0.000186 × (100 − 𝐴𝑆𝐸)3             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 =

{
− (1 −

(𝑥𝑠𝐷𝐴× 𝑥𝐴𝑆𝐸)

10000
) + 

𝑠𝐷𝐴−𝐴𝑆𝐸

100
   𝑖𝑓 𝐿𝐸𝐸𝐷 

− (1 −
(𝑥𝑠𝐷𝐴× 𝑥𝐴𝑆𝐸)

10000
)                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1) 

The functions were designed with the following 
speculations:  
1. The powers were set to be higher when the solution 

quality is very poor, so that the optimizer gets a good 
signal (to improve) when there’s a slight improvement, 

2. The weights and additive constants (for e.g., 0.0177) 
were set with the reported specific values to make the 
function monotonic,  

3. The product between xsDA and xASE ensures both need 
to be of high quality to have a maximum product, and 

4. An additional bonus for cases achieving LEED 
threshold = (sDA-ASE) / 100. This results in an 
objective function with a maximum value with sDA = 
100%; ASE = 0%.  

The final evaluation of the function with values of sDA 
and ASE values can be seen in Figure 3. 

 
Figure 3: Visualization of the objective function for 

various sDA and ASE values. 
Testing 
Galapagos 
Galapagos evolutionary solver was used in Grasshopper 
as a baseline for comparison. As stated previously, seven 
variables were defined as input. The combined sDA and 
ASE metric was defined as the objective function, which 
was set to be maximized in Galapagos (Eq. 1). The 
optimization was run with 10 individuals per generation, 
with an initial boost set to 2. Initial boost multiplies the 
number of individuals in the first generation to reduce the 
risk of getting stuck in local optima right in the beginning 
due to insufficient individuals. The fittest individuals (i.e., 
parents) are selected from the initial population, which 
goes on to create the next generation of offspring. Thus, 
each new generation is better than the previous generation. 
Reasonable variance among generations was ensured by 
allowing 5% of individuals to be carried over to the next 
generation and a maximum inbreeding factor of 75%. The 
maximum number of stagnant generations before the 
solver stops, if no improvement of the fitness function 
was reached, was set at 50. 
CMA-ES 
CMA-ES is not supported by any of the standard 
Grasshopper libraries. Moreover, Python blocks available 
in Grasshopper are instances of IronPython (Ironpython, 
n.d.) and are not capable of running native Python 
libraries. We address this issue by using the following 
software pipeline: 
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• Run a Python server in the form of Remote Procedure 
Calls (RPC) (Nelson, 1981). 

• Set up gh Python remote (Gh-python-remote, 2022) in 
Grasshopper 

• Perform RPC calls to the server from the IronPython 
as suggested by gh-python-remote documentation. 

Such a setup enables access to native Python and all the 
computational libraries available for Python Grasshopper. 
CMA-ES (CMA-ES, 2023) along with Numpy (Millman, 
2020) were used for the experiments. The population size 
was set to 9, following the recommendation (Hansen 
2016). All the other hyperparameters (like stopping 
criteria) were set following (Hansen 2016). The initial 
mean vector was randomly selected within the input 
variables range. The initial standard deviation for each 
variable was chosen following (Hansen 2016), set as 
approximately half of the range of variables used as 
shown in Table 4.  

Table 4: Initial Standard deviation for CMA-ES per 
variable. 

Variable label Variable name Standard 
deviation 

X1 Window width 2 
X2 Window height 2 
X3 Fin number 2 
X4 Fin depth 2 
X5 Overhang number 2 
X6 Overhang depth 2 
X7 North offset 240 

Results and Discussion 
To analyse the performance consistency of both methods, 
each of the locations was run five times with the same 
initial setup. Therefore, a total of thirty runs were 
analysed for each optimizer to identify a trend in runtime 
and the solution quality.  
Runtime 
Results indicate a marked difference between the two 
optimizers with respect to the time taken by the 
simulations to converge for different test case latitudes.  
Judging by the negative slope (Figure 4), Galapagos 
shows a sharp negative incline between latitudes and total 
runtime, with a slope of -0.0484. This means, higher 
latitudes on the north, on average, take the most time to 
converge while lower southern latitudes take the least 
time. The runtime for all six latitudes ranged from nearly 
11 hours in MT (latitude = 45.7°) to 11 minutes in FL 
(latitude = 25.8°).  

 
Figure 4: Average of five optimization runtimes for all 

six locations. 
On the other hand, CMA-ES shows a relatively flat slope 
of -0.0033. Galapagos shows more than 15 times higher 
slope ratio than CMA-ES. On average, all latitudes 
displayed a similar runtime of around 2 hours. However, 
out of all five simulation runs for the six locations, the 
maximum and minimum values were still observed in the 
northernmost (4.5 hours in MT) and southernmost (35 
minutes in FL) latitudes respectively. 
On average, CMA-ES performs 1.5 times faster than 
Galapagos. Figure 5 compares the range and distribution 
of runtimes. The presence of large outliers in data from all 
locations for Galapagos, except CA and TX, indicates that 
there is a greater variance in the runtimes. CA has the 
largest range of data and hence the largest spread, while 
FL has the smallest spread. CMA-ES, on the other hand, 
shows lesser variance for the runtime for any particular 
latitude due to the absence of any major outliers, which 
indicates that CMA-ES runtime is consistent across 
multiple latitudes, unlike Galapagos. 

 
Figure 5: Optimization runtime and variance 

comparison between Galapagos and CMA-ES. 
We believe the reason for this runtime difference among 
locations in Galapagos is based on the sensitivity of 
shading devices to control indoor daylight conditions. In 
lower latitudes, the impact of shading devices on indoor 
daylighting is significant, which is why finding an 
optimum solution is relatively easy than in higher 
latitudes. 
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Solution Quality 
As mentioned before, the objective function with sDA = 
100% and ASE = 0% results in a value of 1. Solution 
quality is defined as how close the objective function in 
each optimization run is to the desired objective value of 
1. 
Similar to runtime, Galapagos also showed a correlation 
between solution quality and latitude. Figure 6 shows that 
northern latitudes achieved a lower solution quality, such 
as 0.95 in MT, while southern latitudes achieved the 
desired solution quality of 1. However, with CMA-ES, all 
optimization runs with all six latitudes achieved the 
optimum solution of 1. 
This shows that CMA-ES is not only more consistent in 
simulation run time across latitudes than Galapagos, but 
also returns optimal solutions. to our objective, unlike 
Galapagos. 

 
Figure 6: Solution quality comparison between 

Galapagos and CMA-ES for all locations. 
Conclusion 
In this paper, a comparative analysis between two widely 
used genetic algorithms which are Galapagos and CMA-
ES was presented. The analysis was conducted using a 
simple test case geometry located in six different latitudes 
within the USA. In terms of both optimization runtime 
and solution quality, CMA-ES was found to outperform 
Galapagos. Using the CMA-ES algorithm, lighting 
conditions in different locations can be optimized in 
around 2 hours, whereas using Galapagos, runtime for 
locations in northern latitudes will be significantly higher 
than in southern latitudes.  
Therefore, for relatively quick tests for comparative 
studies between different scenarios, Galapagos can offer 
faster results in lower latitudes. However, CMA-ES was 
found to be more robust as it shows lesser variance for 
runtime and solution quality with respect to latitudes.  
The CMA-ES algorithm can potentially be used to 
optimize other building performance areas such as indoor 
thermal energy, ventilation, solar radiation, etc. 
Additionally, since CMA-ES takes less time for higher 
latitude locations, it makes it favorable for use in 
complicated cases such as those that require running time-
specific optimization problems or that require optimizing 

multiple performance criteria simultaneously, etc. 
Findings from the paper can help practitioners make 
informed decisions with regard to which optimization 
method to adopt based on the location of their project and 
the desired optimum solution quality for indoor daylight. 
Future studies can explore the use of CMA-ES as a plugin 
embedded in Rhino Grasshopper for ease of use. 
The paper evaluates optimization methods on daylight 
metrics at different locations with a fixed set of design 
variables. It would be worthwhile to explore how these 
methods perform when the number of design variables 
increases. This paper is also limited to a simplified 
geometry. A more complex geometry with multiple 
openings, complex shading devices, and detailed material 
properties might make the optimization problem more 
challenging, and highlight the effectiveness of CMA-ES. 
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