Proceedings, The Fourth International Symposium on Combinatorial Search (SoCS-2011)

Pruning Techniques for the Increasing Cost Tree Search
for Optimal Multi-Agent Pathfinding

Guni Sharon Roni Stern

Meir Goldenberg

Ariel Felner

Information Systems Engineering, Ben-Gurion University
Be’er-Sheva, Israel
{gunisharon,roni.stern} @ gmail.com, mgoldenbe @yahoo.ca, felner@bgu.ac.il

Abstract

We address the problem of optimal path finding for multiple
agents where agents must not collide and their total travel
cost should be minimized. Previous work used traditional
single-agent search variants of the A* algorithm. In (Sharon
et al. 2011) we introduced a novel two-level search algorithm
framework for this problem. The high-level searches a novel
search tree called increasing cost tree (ICT). The low-level
performs a goal test on each ICT node. The new framework,
called ICT search (ICTS), showed to run faster than the pre-
vious state-of-the-art A* approach by up to three orders of
magnitude in many cases. In this paper we focus on the low-
level of ICTS which performs the goal test. We introduce a
number of optional pruning techniques that can significantly
speed up the goal test. We discuss these pruning techniques
and provide supporting experimental results.

Introduction

The multi-agent path finding (MAPF) problem consists of
a graph and a number of agents. For each agent, a path is
needed from its initial location to its destination without col-
liding into obstacles or other moving agents. The task is to
minimize a cumulative cost function (e.g., total time steps).
MAPF has practical applications in robotics, video games,
vehicle routing etc. (Silver 2005; Dresner and Stone 2008).
In its general form, MAPF is NP-complete, because it is a
generalization of the sliding tile puzzle which is known to
be NP-complete (Ratner and Warrnuth 1986).

Previous work on MAPF falls into two classes. The
first is called the decoupled approach where paths are
planned for each agent separately. A prominent example
is HCA* (Silver 2005). Agents are ordered in some order.
The path found for agent a; (location and time) is writ-
ten (reserved) into a global reservation table. To resolve
conflicts, search for successive agents must avoid locations
and time points that were reserved by previous agents. A
similar approach was used for guiding cars that need to
cross traffic junctions (Dresner and Stone 2008). Other de-
coupled approaches establish flow restrictions similar to
traffic laws, directing agents at a given location to move
only in a designated direction (Wang and Botea 2008;
Jansen and Sturtevant 2008). Decoupled approaches run rel-

Copyright (© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

150

atively fast, but optimality and even completeness are not
always guaranteed.

The focus of this paper is on the second class of meth-
ods for solving MAPF called the global search approach,
where MAPF is formalized as a global, single-agent search
problem (Ryan 2008; Standley 2010) and is solved by an
A*-based search. Global searches usually return the optimal
solution but may run for a long time.

In (Sharon et al. 2011) we introduced a two-level frame-
work that optimally solves MAPF. The high-level performs a
search on a new search tree called increasing cost tree (ICT).
Each node in the ICT consists of a k-vector {C, Ca, ... Ck}
which represents all possible solutions in which the cost of
the individual path of each agent a; is exactly C;. The low-
level performs a goal test on each of these tree nodes. We
denote our 2-level algorithm as ICT-search (ICTS). Exper-
imental results on a number of domains showed that ICTS
outperforms the previous state-of-the-art A* approach by up
to three orders of magnitude in many cases.

In this paper we continue this line of research and focus
on a number of pruning techniques that can be optionally
activated before the low-level. These techniques were very
briefly discussed in (Sharon ez al. 2011). A successful prun-
ing proves that a given ICT node n is not the goal, In such
case n is immediately declared as non-goal and the high-
level moves to the next ICT node without the need to per-
form the low-level search on n. If all pruning failed, we must
activate the more heavy low-level search on n in order to
confirm whether n is goal or not. The tradeoffs between the
different pruning techniques are discussed in this paper and
supporting experimental results are provided.

Problem definition and terminology

We define our variant of MAPF which is commonly used
and some basic terminology. Nevertheless, most algorithms
(including our own) work for other existing variants too.

Input: The input to MAPF is: (1) A graph G(V, E). (2) k
agents labeled aq, as ... ay. Every agent a; is coupled with
a start and goal vertices - start; and goal;.

Initially, (at time t() every agent a; is located in location
start;. Between successive time points, each agent can per-
form a move action to a neighboring location or can wait
(stay idle) at its current location. The main constraint is that
each vertex can be occupied by at most one agent at a given
time. In addition, if a and b are neighboring vertices, dif-

ferent agents cannot simultaneously traverse the connecting
edge in opposite directions (from a to b and from b to a). A
conflict is a case where one of the constraints is violated. We
allow agents to follow each other, i.e., agent a,; could move
from x to y if at the same time, agent a; moves from y to z.

The task is to find a sequence of {move, wait} actions
for each agent such that each agent will be located in its goal
position while aiming to minimize a global cost function.

Cost function: We use the common cost function which
is the summation (over all agents) of the number of time
steps required to reach the goal location (Dresner and Stone
2008; Standley 2010). Therefore, both move and wait actions
cost 1.0. We denote the cost of the optimal solution by C*.
Figure 2(i) (on page 3) shows an example 2-agent MAPF
problem. Agent a; has to go from a to f while agent as
has to go from b to d. Both agents have a path of length 2.
However, these paths conflict, as both of them have state c at
the same time point. One of these agents must wait one time
step or take a detour. Therefore, C* = 5 in our case.!

Previous work on optimal solution

Previous work on optimal MAPF formalized the problem as
a global single-agent search as follows. The states are the
different ways to place k agents into |V/| vertices without
conflicts. At the start (goal) state agent a; is located at ver-
tex start; (goal;). Operators between states are all the non-
conflicting actions (including wait) that all agents have. Let
byase be the branching factor for a single agent. The global
branching factor is b = O((bpase)”). All (bpgse)® combi-
nations of actions are considered and only those with no
conflicts are legal neighbors. Any A*-based algorithm can
then be used to solve the problem. (Ryan 2008; 2010) ex-
ploited special structures of local neighborhoods (such as
stacks, halls and cliques) to reduce the search space.

Standley’s improvements: Recently, (Standley 2010)
suggested two improvements for solving MAPF with A*:

(1) Operator Decomposition (OD): OD aims at reducing
b. This is done by introducing intermediate states between
the regular states. Intermediate states are generated by ap-
plying an operator to a single agent only. This helps in prun-
ing misleading directions at the intermediate stage without
considering moves of all of the agents (in a regular state).

(2) Independence Detection (ID): Two groups of agents
are independent if there is an optimal solution for each group
s.t. the two solutions do not conflict. The basic idea of ID
is to divide the agents into independent groups. Initially
each agent is placed in its own group. Shortest paths are
found for each group separately. The resulting paths of all
groups are simultaneously performed until a conflict occurs
between two (or more) groups. Then, all agents in the con-
flicting groups are unified into a new group. Whenever a new
group of £ > 1 agents is formed, this new k-agent prob-
lem is solved optimally by an A*-based search. This process
is repeated until no conflicts between groups occur. Stand-
ley observed that since the problem is exponential in &, the

! Another possible cost function is the total time elapsed until
the last agent reaches its destination. This would be 3 in our case.
Also, one might only consider move actions but not wait actions.
The tile puzzles are an example for this.

151

Figure 1: ICT for three agents.

A*-search of the largest group dominates the running time
of solving the entire problem, as all other searches involve
smaller groups (see (Standley 2010) for more details on ID).

For the A* search Standley used a common heuristic func-
tion which we denote as the sum of individual costs heuristic
(SIC). For each agent a; we assume that no other agents ex-
ist and precalculate its optimal individual path cost. We then
sum these costs. The SIC heuristic for the problem in Fig-
ure 2(i) is 2 + 2 = 4.

Standley compared his algorithm (A*+OD+ID) to a ba-
sic implementation of A* and showed spectacular speedups.
The ID framework might be relevant for other algorithms
that solve MAPF. It is relevant for ICTS and we ran ICTS
on top of the ID framework as detailed below.

We now turn to present our two-level ICTS algorithm.

High-level: increasing cost tree (ICT)

The classic global search approach spans a search tree based
on the possible locations of each of the agents. Our new for-
malization is conceptually different. It is based on the un-
derstanding that a complete solution for the entire problem
is built from individual paths, one for each agent. We intro-
duce a new search tree called the increasing cost tree (ICT).
In ICT, every node s consists of a k-vector of individual path
costs, s = [C1,Cy,...Cy] one cost per agent. Node s rep-
resents all possible complete solutions in which the cost of
the individual path of agent a; is exactly C;.

The root of ICT is [opt1, opta, ..., opty], where opt; is the
cost of the optimal individual path for agent ¢ which assumes
that no other agents exist. A child is generated by adding
a unit cost to one of the agents. An ICT node [C1, .., C]
is a goal node if there is a non-conflicting complete solu-
tion such that the cost of the individual path for agent a;
is exactly C;. Figure 1 shows an example of an ICT with
three agents, all with individual optimal path costs of 10.
Dashed lines lead to duplicate children which can be pruned.
The total cost of node s is C; + Cs + ... + C. For the
root this is exactly the SIC heuristic of the start state, i.e.,
SIC(start) = opt; + opta + ... optx. Nodes of the same
level of ICT have the same total cost. It is easy to see that
a breadth-first search of ICT will find the optimal solution,
given a goal test function.

The depth of the optimal goal node in ICT is denoted by
A. A equals the difference between the cost of the optimal
complete solution (C*) and the cost of the root (i.e., A =
C* — (opt; + opta + . . . opty)). The branching factor of ICT
is exactly k£ (before pruning duplicates) and therefore the
number of nodes in ICT is O(k*).? Thus, the size of ICT is

“More accurately, the exact number of nodes at level 4 in the

' MDD’ MDD?

¥ ® ®
¥6 @() © ©
' © eee ©
E (1)

Figure 2: (i) 2-agent problem (ii)) M D D, (iii) M D D5

exponential in A but not in k. For example, problems where
the agents can reach their goal without conflicts will have
A = 0, regardless of the number of agents.

The high-level searches the ICT with breadth-first search.
For each node, the low-level determines whether it is a goal.

Low-level: goal test on an ICT node

A general approach to check whether an ICT node s =
[C1,Cs,...,C%] is a goal would be: (1) For every agent a;,
enumerate all the possible individual paths with cost C;. (2)
Iterate over all possible ways to combine individual paths
with these costs until a complete solution is found. Next, we
introduce an effective algorithm for doing this.

Compact paths representation with MDDs

The number of different paths of length C; for agent a; can
be exponential. We suggest to store these paths in a special
compact data structure called multi-value decision diagram
(MDD) (Srinivasan et al. 1990). MDDs are DAGs which
generalize Binary Decision Diagrams (BDDs) by allowing
more than two choices for every decision node. Let M D D5
be the MDD for agent a; which stores all possible paths of
cost c. M D Dy has a single source node at level 0 and a sin-
gle sink node at level c. Every node at depth ¢ of M DDy
corresponds to a possible location of a; at time ¢, that is on
a path of cost ¢ from start; to goal,.

Figure 2(ii,iii) illustrates M DD? and M D D3 for agent
ai, and M DD2 for agent as. Note that whlle the num-
ber of paths of cost ¢ might be exponential in ¢, the num-
ber of nodes of M DD¢ is at most |V| x c. For example,
M D D# includes 5 possible different paths of cost 3. Build-
ing the MDD is very easy. We perform a breadth-first search
from the start location of agent a; down to depth c and only
store the partial DAG which starts at start(i) and ends at
goal(i) at depth c. Furthermore, M DD¢ can be reused to
build MDDST. We use the term M DD¢(z, t) to denote
the node in M D DY that corresponds to location z at time ¢.
We use the term M D D; when the depth of the MDD is not
important for the discussion.

Goal test with MDDs. A goal test is now performed
as follows. For every ICT node we build the corresponding
MDD for each of the agents. Then, we need to find a set of
paths, one from each MDD that do not conflict with each

ICT is the number of ways to distribute ¢ balls (actions) to k ordered

buckets (agents). For the entire ICT this is Z (k : ‘ _1 1)4
i=0 -

MDD > MDD >

152

Figure 3: (i) M D D15 (ii) unfolded MDD*?.

other. For our example, the high-level starts with the root
ICT node [2,2]. M DD? and M D D3 have a conflict as they
both have state c at level 1. The ICT root node is therefore
declared as non-goal by the low-level. Next, the high-level
tries ICT node [3,2]. Now M DD3 and M D D3 have non-
conflicting complete solutions. For example, < a — b — ¢ —
f > for a; and < b,¢,d > for ay. Therefore, this node is
declared as a goal node by the low level and the solution
cost 5 is returned.

Next, we present an efficient algorithm that iterates over
the MDDs to find whether a non-conflicting set of paths ex-
ist. We begin with two agents and then generalize to k£ > 2.

2-agent MDD and its search space

Consider two agents a; and a; located in their start positions.
Define the global 2-agent search space as the state space
spanned by moving these two agents simultaneously to all
possible directions as in any centralized A*-based search.
Now consider their MDDs, M D D{ and M DD;?, which cor-

respond to a given ICT node [, d].3

The cross product of the MDDs spans a 2-agent search
space or equivalently, a 2-agent-MDD denoted as M DD
for agents a; and a;. MDD;; is a 2-agent search space
which is a subset of the global 2-agent search space, be-
cause we are constrained to only consider moves according
to edges of the single agent MDDs and cannot go in any
possible direction.

MDD;; is formally defined as follows. A node n =
MDD,;;([x;,z;],t) includes a pair of locations [z;, x;] for
a; and a; at time ¢. It is a unification of the two MDD
nodes M DD;(x;,t) and MDD;(x;,t). The source node
MDD:;;([x;,x;],0) is the unification of the two source
nodes M DD;(x;,0) and MDD;(x;,0). Consider node
MDD;;([z;,2;],t). The cross product of the children of
MDD;(x;,t) and MDDj(z;,t) should be examined and
only non-conflicting pairs are added as its children. In
other words, we look at all pair of nodes M DD;(z;,t +
1) and MDDj(z; t + 1) such that ; and @}, are chil-
dren of x; and x;, respectively. If #; and Z; do not con-
flict* then M DD;;([#;,%;),t + 1) becomes a child of

*Without loss of generality we can assume that ¢ = d. Other-
wise, if ¢ > d a path of (¢ — d) dummy goal nodes can be added

to the sink node of M DDd to get an equivalent MDD, M D Dj5.
Figure 2(iii) also shows M DD2 where a dummy edge (with node
d) was added to the sink node of M DD3.

4They conflictif ¢; = @ orif (xv; = @ and z; = ;), in which
case they are traversing the same edge in an opposite direction.

Algorithm 1: The ICT-search algorithm

Input: (k,n) MAPF
1 Build the root of the ICT
2 foreach ICT node in a breadth-first manner do
3 foreach agent a; do
4 | Build the corresponding M DD;
5 end
6 [perform subset pruning //optional
7
8

if pruning was successful then
| break //Conflict found. Next ICT node
9 end

] search the k-agent MDD // low-level search

11 if goal node was found then
12 \ return Solution

13 end

14 end

MDD;j;([x;,x;],t) in M DD;;. There are at most |V | nodes
for each level ¢ in the single agent MDDs. Thus, the size of
the 2-agent-MDD of height ¢ is at most ¢ x |V]?.

One can actually build and store M DD;; by performing
a search (e.g. breadth-first search) over the two single agent
MDDs and unifying the relevant nodes. Duplicate nodes at
level ¢ can be merged into one copy but we must add an edge
for each parent at level ¢ — 1. Figure 3(i) shows how M D D3}

and M DD%l were merged into a 2-agent-MDD, M D D3,.

Low-level search. Only one node exists at level ¢ (the
MDD height) - M D Dg;([goal;, goal], c). A path to it is a
solution to the 2-agent problem. A goal test for an ICT node
therefore performs a search on the search space associated
with M DDy;. This search is called the low level search.
Once a node at level c is found, true is returned. If the entire
search space of M DDy, was scanned and no node at level
c exists, false is returned. This means that there is no way
to unify two paths from the two MDDs, and deadends were
reached in M D Dy, before arriving at level c.

Generalization for £ > 2 is straightforward. A node in a
k-agent-MDD, n = M D Dy, (z[k], t), includes k locations
of the k agents at time ¢ in the vector x[k]. It is a unification
of k non-conflicting single-agent MDD nodes of level ¢. The
size of MDDy is O(c x |V[¥). The low-level search is
performed on the search space associated with M D Dyy,).

ICTS is summarized in Algorithm 1. The high-level
searches each node of the ICT (Line 2). Then, the low-
level searches the corresponding k-agent MDD search space
(Lines 10 -14). Lines in square brackets (6-9) are optional.
These are the pruning techniques which are the main focus
of this paper and are discussed below.

Search choices

The high-level search is done with breadth-first search.
However, any complete search algorithm can be activated
by the low-level search on the k-agent MDD search space.
We tried many variants but only report results where the low
level search was performed by DFS with transpositions table
for pruning duplicates. In the case that a solution exists (and
the corresponding ICT node will be declared as the goal) this

153

k | Ins A* | ICTS
2| 50 0 0
4| 50 0 0
6 | 50 2 0
8 | 50 98 2
10 | 47 | 5,888 57
12 | 42 | 8,142 499

Table 1: Runtime in ms. in a 8x8 grid

DFS variant will find the solution fast, especially if many
such solutions exist.

Similarly, like A*, ICTS in all our experiments was also
built on top of the ID framework. That is, the general frame-
work of ID was activated (see above). When a group of con-
flicting agents was formed, A* or ICTS was activated.

Comparison between A* and ICTS

In (Sharon et al. 2011) we performed a systematic compar-
ison between ICTS and the state-of-the-art A* variant of
A*+OD+ID (Standley 2010). We provided theoretical ex-
planation on the benefits of ICTS and explained why it runs
faster. Let X be the number of nodes expanded by A*, i.e.,
X is the number of nodes with f < C*. The main find-
ing was that the number of nodes visited by the low-level
of ICTS is O(X x k®) while the number of nodes gener-
ated by A* is O(X X (bpase)¥). ICTS clearly outperforms
A* in cases where k < (bpqse)”. We provided worst-case
examples where k2 > (by,s.)*. However, in most of our
experiments ICTS outperformed A*.

Table 1 shows an example experiment from (Sharon ef al.
2011) on a 4-connected 8x8 grid with no obstacles where we
varied the number of agents from 2 to 12 (the k& column). The
Ins column shows the number of instances (out of 50) solved
by both algorithm under 5 minutes. The next columns are the
running times in ms for A*+ID+OD and for ICTS+ID. ICTS
clearly outperforms A* in all these cases. More experimen-
tal results on other grids and on maps from (Sturtevant 2010)
were presented in (Sharon et al. 2011) and similar tenden-
cies were observed.

Since thorough comparison to A* was already provided
in (Sharon et al. 2011) in the rest of this paper we explore
further speedups for ICTS and only provide experimental
results within the framework of ICTS.

Pruning techniques

We now turn to discuss a number of useful pruning methods
that can be optionally activated before the low-level on an
ICT node n. This is shown in lines 6-9 of Algorithm 1. If the
pruning was successful, n can be immediately declared as
non-goal and there is no need to activate the low-level on n.
The high-level jumps to the next ICT node. We begin with
the simple pairwise pruning and then describe enhancements
as well as generalize these techniques to pruning techniques
that consider groups with more than two agents. We then
provide experimental results and discuss these methods.

Algorithm 2: Pairwise pruning in ICT node n

1 foreach pair of agents a; and a; do
2 Search M DD;; with DFS

3 if solution found then

4 | continue //next pair

5 end

6 if solution not found then

7 | return SUCCESS // Next ICT node
8 end

10 return FAILURE // Activate low level on n

Simple pairwise pruning

As shown above, the low-level search for k agents is ex-
ponential in k. However, in many cases, we can avoid the
low-level search by first considering subproblems of pairs
of agents. Consider a k-agent MAPF and a corresponding
ICT node n = {C1, Cs, ... C}}. Now, consider the abstract
problem of only moving a pair of agents a; and a; from their
start locations to their goal locations at costs C; and C.,
while ignoring the existence of other agents. Solving this
problem is actually searching the 2-agent search space of
MDD;;. If no solution exists to this 2-agent problem (i.e.,
searching M DD, ; will not reach a goal node), then there is
an immediate benefit for the original k-agent problem as this
ICT node (n) can be declared as non-goal right away. There
is no need to further perform the low-level search through
the k-agent MDD search space. This variant is called Simple
pairwise pruning (SPP).

SPP, presented in Algorithm 2 is optional and can be per-
formed just before the low-level search. SPP iterates over
all pairs (4,7) and searches the 2-agent search space of
MDD;;. If a pair of MDDs with no pairwise solution is
found (Line 6), Success is returned. The given ICT node
is immediately declared as a non-goal and the high-level
moves to the next ICT node. Otherwise, if pairwise solu-
tions were found for all pairs of MDDs, failure is returned
(Line 10) and the low-level search through the search space
of the k-agent MDD of the given ICT node n must be ac-
tivated. SPP is performed with a DFS on M DD;; (line 2).
The reason is again that a solution for the 2-agent problem
can be found rather fast, especially if many solutions exist.
In this case, this particular pair of agents cannot prune the
current ICT node n. The pruning phase quickly moves to
the next pair of agents and tries to perform pruning for the
new pair on node n. There are O(k?) prunings in the worst
case where all pairwise searches resolved in a 2-agent solu-
tion and failure is returned.

Enhanced pairwise punning

With some modification, pairwise pruning can produce valu-
able benefits even in this worst case. This is done by chang-
ing the search strategy of the pairwise pruning from DFS
to breadth-first search and adding a number of steps that
modify the single-agent MDDs, M DD; and M DD as fol-
lows. Assume that M DD;; was built by unifying MDD,
and M DD;. We can now unfold M D D;; back into two sin-
gle agent MDDs, M D Dx; and M D Dx; which are sparser

154

than the original MDDs. M D Dx; only includes paths that
do not conflict with M D D (and vice versa). In other words,
M D Dx; only includes nodes that were actually unified with
at least one node of M DD;. Nodes from M DD; that were
not unified at all, are called invalid nodes and can be deleted.

Figure 3(ii) shows M DDsx3 after it was unfolded from
M DD3,. Light items correspond to parts of the original
MDD that were pruned. Node c in the right path of M D D3
is invalid as it was not unified with any node of M DD3.
Thus, this node, its incident edges and its only descendent
(f) can be removed and are not included in M DD*ff.

Enhanced pairwise pruning (EPP) deletes invalid nodes
from each individual MDD while performing the pairwise
pruning search through the entire search space of M DD,;.
Unlike SPP, EPP searches the M DD;; in a breadth-first
search manner. For each level ¢ the following actions are
performed. Each node M DD;(z,t) is kept in the sparser
M D D+; if there exists at least one node M DD;(y,t) such
that M DD;; includes the node MDD;;([z,y],t). Other-
wise, M DD (z,t) is pruned and not included in M D Dx;.
Similarly, M D D+x; is generated in the same way.

The entire M DD;; is searched with the breadth-first
search even if a solution was found. This is done in order
to have the the sparser MDDs M D Dx; and M D Dx; fully
available. These sparser MDDs can be now used in the fol-
lowing two cases:

(1) Further pairwise pruning. After M D Dx; was obtained,
it is used for the next pairwise check of agent a;. Sparser
MDDs will perform more ICT node pruning with other
MDDs as they have a smaller number of options for uni-
fying nodes and higher chances of declaring an ICT node
as a non-goal. Furthermore, when M D Dx; is matched with
M D Dy, it might prune more portions of M D Dj, than if the
original M D D; was used. This has a cascading effect such
that pruning of MDDs occurs through a chain of MDDs.

(2) The general k-agent low-level search. This has a great
benefit as the sparse MDDs will span a smaller k-agent
search space for the low-level than the original MDDs.

Repeated enhanced pairwise pruning

If all O(k?) pairs were matched and a solution was found for
every pair then the ICT node cannot yet be declared as a non-
goal and the low-level should be activated. Assume a pair of
agents a; and a; such that a solution was found in M DD
when the agents were first matched. However, now, after
all the mutual pruning of single-agent MDDs, the result-
ing M DDx; and M D Dx; are much sparser. Repeating this
process might reveal that now, the new sparser MDDs can
no longer be unified and that the previous solution no longer
exists. The Repeated enhanced pairwise pruning (REPP) re-
peatedly performs iterations of EPP. In each iteration, EPP
matches all O(k?) pairs and repeatedly makes the single-
agent MDDs sparser. This is continued until either the ICT
node is pruned (because there exist a pair a; and a; such that
there is no solution to M D Dx,;) or until no single-agent
MDD can be made sparser by further pairwise pruning.

Tradeoffs

Natural tradeoffs exist between the different pairwise prun-
ing. Per pair of agents, SPP is the fastest because as soon

E] K] Allns | NP | 2S[2E[2RE| 3S| 3E]3RE
4x4 grid
47197057 50 0.7 057 0T 00 041 00 00
5/ 21]05] 50 1.2 09| 05| 00| 03| 00| 00
6| 32| 11|50 5.4 271 02| 00| 03| 01| 00
7] 44|18 50 18.9 9.1 20| 00| 28] 06| 00
8 61 (33|50 | 5797 | 299.1 | 121.7 | 02| 56.6 | 51 | 0.1
9| 7.0 |43 | 4720985 | 7414 | 662 | 00 2643 | 58| 00
10| 7.8 |52 | 3935009 | 2200.5 | 1165 | 03 | 488.7 | 11.4 | 0.0
11 | 94|61 | 18] 6573.6 | 19594 | 186.5 | 0.0 | 407.1 | 6.4 | 0.0
8x8 grid
10 35[05] 50 12 06 00 00 OI] 00 00
12| 55|11 50 9.4 27| 09| 00 12| 01| 00
14| 70| 17| 39 84.5 256 | 36| 01| 132 03| 0.1
16 | 98 | 15| 26 64.3 401 | 133 | 00| 98| 01| 00
18 | 11.0 | 2.0 | 21 57.4 17.1 29| 00| 25| 15] 00

Table 2: Number of (non-goal) ICTS nodes where the low level was activated for 4x4 grid (top) and 8x8 grid (bottom)

@|b|©

N
@lel©

Figure 4: Bottleneck for three agents.

as the first two-agent solution is found we stop and move to
the next pair. EPP is slower per pair of agents because the
pairwise search is performed until the entire M DD;; was
searched and the single-agent MDDs were made as sparse as
possible. However, EPP might cause speedup in future prun-
ing and in the low-level search as descried above. REPP is
even slower than EPP per ICT node but can cause further
pruning of ICT nodes and of single-agent MDDs.

m-agent pruning

All variants of pairwise pruning can easily be generalized
to include groups of m > 2 agents. Given a group of m
agents (where 2 < m < k), one can actually search through
the m-agent MDD search space. Again, if no solution is
found for a given set of m agents, the corresponding ICT
node can be pruned and declared as a non-goal. The low-
level search on the k-agent MDD search space will not be
activated and the high-level moves to the next ICT node. In
the simple m-agent pruning, DFS will be activated. In the
enhanced and repeated-enhanced m-agent pruning breadth-
first search will be activated on the m-agent MDD search
space and the different single-agent MDDs can be made
sparser according to the same reasoning provided above.

Given m agents, m-agent pruning is more effective than
all (,™) (m — 1)-agent pruning. To illustrate this, consider
a bottleneck of 2 cells where 3 agents need to pass it at the
same time as shown in Figure 4. Each pair of agents can
pass without conflicts (at a cost of 3 moves per agent) but
the three agents cannot pass it at the same time with a total
of 9 moves.

A single-agent MDD contains up to |V'| x C* nodes where

155

C™ is the length of the shortest solution. Therefore, an m-
agent MDD contains at most (|V'| x C*)™ nodes. If a solu-
tion is found to the m-agent MDD in the pruning phase, the
corresponding ICT node is pruned and this is much cheaper
than performing the k-agent low-level search which takes
O((|V|x C*)*). However in the worst case, there are (*)
O(k™) groups of m agents so the total time for all m-agent
pruning in the worst case is O((|V|x ¢*)™ x k™). In general,
asymptotically, it should always be beneficial to activate the
me-agent pruning when (|V| x C*)™ x k™) < (|V| x C*)F,
i.e., when k™ < (|V|xC*)*~™ Insuch cases, the total time
of the pruning is negligible when compared to that of the
low-level search. In other cases, timing results might vary as
we detail below.

Experimental results

In our experiments we compared the following 7 different
variants of pruning techniques for ICTS. Each of these
was activated before the low-level search. If a pruning was
successful the low level was not activated.

. No pruning (NP). This is pure ICTS.

. Simple pairwise pruning (2S).

. Enhanced pairwise pruning (2E).

. Repeated enhanced pairwise pruning (2RE).

. Simple triples pruning (35).

. Enhanced triples pruning (3E).

. Repeated enhanced triples pruning (3RE).

N AU A W =

We set a time limit of 5 minutes. If a variant could not
solve an instance within the time limit it was halted and fail
was returned. Our first experiments are on 4-connected 4x4
and 8x8 grids with no obstacles. For each of theses grids and
for each given number of agents, we randomized 50 prob-
lem instances. The numbers in the tables are averages over
the instances that were solved by all variants out of the 50
instances. This number of solved instances is shown in the
Ins columns of the tables discussed below.

Pruning effectiveness

Table 2 (top of this page) presents the effectiveness of the
pruning of the different variants for a given number of agents

(k[K] A[Ins[NP | 25 | JE[ORE | 3S | 3E [3RE |
4x4 grid
4 19 1 05| 50 0.1 0.2 0.1 0.2 0.3 0.1 0.2
5 21105 50 0.2 0.4 0.2 0.3 0.5 0.2 0.3
6| 32| 11| 50 3.1 3.6 2.2 2.6 33 2.3 2.7
7| 44118] 50 30.5 25.7 13.8 14.9 19.7 13.5 15.4
8 6.1 | 33] 50 | 63544 | 59689 1,672.7 681.1 1,817.2 646.6 761.9
9| 7.0 |43 | 47 | 14991.1 | 12,223.4 3,700.2 | 3,689.6 | 10,135.7 | 3,533.7 | 4,314.6
10 | 7.8 | 52 | 39 | 43,637.9 | 31,104.3 6,137.7 6,319.2 | 18,928.7 6,018.5 | 7,041.0
11975 | 65| 24 N/A N/A | 24,436.0 | 19,915.1 | 60,003.9 | 19,527.5 | 23,088.6
8x8 grid
6 1.5 101 [50 0.2 0.2 0.1 0.3 0.2 0.2 0.4
8 26 | 05| 50 1.8 22 1.7 2.3 2.4 1.7 2.6
10| 35|05 50 298.9 287.4 133 8.6 56.0 8.0 10.6
12| 55| 11| 50| 3,076.5 594.9 136.2 85.2 274.5 93.3 106.3
14| 7.0 | 1.7 | 39 | 11,280.6 | 3,467.5 844.9 307.3 | 2,562.7 343.2 348.9
16 | 98 | 1.5 | 26 | 17,226.5 | 12,768.1 1,534.9 493.3 | 4,966.3 859.4 605.5
18 | 11.0 | 2.0 | 21 | 20,650.7 | 14,123.8 825.1 390.3 | 9,640.9 505.4 445.1

Table 3: Runtime for 4x4 grid (top) and 8x8 grid (bottom).

(indicated by the k column). The k&’ column presents the av-
erage effective number of agents, i.e., the number of agents
in the largest independent subgroup found by the ID frame-
work. In practice, due to the activation of ID, ICTS was ex-
ecuted on at most &’ agents and not on k.

For each of the pruning variants the table presents the
number of non-goal ICT nodes where the pruning failed
and the low-level was activated. This number for pure ICTS,
given in the NP column, is the total number of such non-
goal ICT nodes. For example, consider the line for £ = 8
(the last number where all 50 instances could be solved by
all variants) for the 4x4 grid in the top of the table. There
were 579.7 non-goal ICT nodes. For all of these nodes the
NP variant (pure ICTS) activated the low-level search. When
2S was activated almost half of them were pruned and the
low-level was only activated for 299.1 non-goal ICT nodes.
This number decreases with the more sophisticated tech-
nique and for 2RE almost all nodes were pruned and only
0.2 nodes needed the low-level. Triple pruning show the
same tendency and it is not surprising that triples always
outperformed the similar pairwise pruning.

It is important to note the correlation between k, k/, A
and the NV P column (the number of ICT nodes). When more
agents exist, & and Delta increase linearly but the num-
ber of ICT nodes increases exponentially with A. This phe-
nomenon was studied in (Sharon et al. 2011).

Similar tendencies can be observed for the 8x8 grid (bot-
tom). However, the 8x8 grid is less dense with agents and
there are less conflicts. This leads to small values for A and
therefore for small numbers of ICT nodes.

Runtime

Table 3 shows the runtime in ms. for the same set of ex-
periments. The best variant for each line is given in bold.
As explained above, there is a time tradeoff per ICT node
between the different variants ; the enhanced variants incur
more overhead. Therefore, while the enhanced variants al-
ways prune more ICT nodes (as shown in Table 2) this is not
necessarily reflected in the running time. When the number
of agents increases, only relatively easy problems (out of 50)

156

were solved, hence the numbers do not necessarily increase.

Clearly, one can observe the following trend. As a given
problem becomes denser with more agents it pays off to use
the enhanced variants. For example, for the 4x4 grid, clearly,
7 agent is the point where the winner shifts from 2E to 3E.
Similarly, for 8x8 2RE start to win at 12 agents. Note that
the best variant outperformed the basic NP variant in up to a
factor of 50.

It is interesting to note from both tables that, for the cases
of 4x4 and 8x8 grids that we tested, 2RE, 3E and 3RE per-
form very similar. They all managed to prune almost all
non-goal ICT nodes and their time performance is very sim-
ilar. For 4x4, 3E was slightly faster while for 8x8 2RE was
slightly faster. This is explained below.

Dragon age maps

We also experimented with maps of the game Dragon Age:
Origins from (Sturtevant 2010). Figure 5 shows two such
maps (den520d (top), and ost003d (bottom)) and the
success rate, i.e., the number of instances (out of 50 ran-
dom instances) solved by each variant within the 5-minutes
limit. Clearly all the pruning techniques significantly solves
more instances than NP. Table 4 presents the running times
on the instances that could be solved by all of the reported
variants. In the DAO maps 2E was the fastest, although other
variants were not too far behind.

Discussion

The major difference in the results is that in DAO the sim-
ple 2E variant was the fastest while for the grid domains the
advanced variants 2RE and 3E were faster than 2E. The ex-
planation is as follows. We note that a major factor that de-
termines the “hardness” of the problem is the ratio between
the number of agents (k) and the size of the graph (n) - i.e.,
the density of the agents. Larger graphs reduce the internal
conflicts (more "blanks’) and the problem becomes easier.
This is reflected in the fact that the number of states in the
DAO maps is very large but yet, we could solve problems
of tens of agents. When the problem is more dense, more
conflicts exist and the enhanced pruning techniques tend to

50
a5
a0

35
——NP
30

—m—-2F
25

MRE

15
—=3RE 19

=3

5 10 15 20 25 30 35 40 45 50 55

——NP
-2

=3

—#=3RE 19

Figure 5: DAO maps (left). Their performance (right). The
x-axis = number of agents. The y-axis = success rate.

pay off. The DAO maps are not dense. Therefore, 2E cap-
tured most/all the conflicts. There was no point to use more
advanced techniques. The 8x8 and 4x4 grids are more dense
and the extra time to activate the more advanced techniques
was worth it. The results of the 4x4 are interesting. Table 2
shows that 2RE was the most efficient in pruning. By con-
trast, 3E was the fastest on this gird, although 2RE was only
slightly behind. The reason is that since there are only 16
states in this domain, the low-level runs very fast and 3E
did not lose too much by activating a few extra low-level
searches. Additionally, 3E was faster per node than 2RE due
to the fact that the number of agents is small and the number
of triples is not large. 2RE performed more checks.

Conclusion and future work

In this paper we discussed a number of techniques that are
able to prune non-goal ICT nodes without the need to ac-
tivate the low-level phase of ICTS. All of these techniques
significantly outperform simple ICTS where no pruning is
performed and the low-level is activated for all ICT nodes.

There is a tradeoff between the different techniques. The
advanced pruning techniques incur larger overhead but are
able to prune a larger portion of the ICT nodes. There is no
universal winner as the different problem instances differ in
many attributes. However when the problem is dense with
agents, more conflicts exist and it was beneficial to apply
more advanced pruning techniques.

We believe that in this line of work we only touched the
surface of tackling optimal MAPF and ICTS. Considerable
work remains and will continue in the following directions.

(1) More insights about the influence of the different pa-
rameters of the problems on the difficulty of MAPF will bet-
ter reveal when the ICTS framework is valuable and what
pruning technique performs best under what circumstances.

(2) Improved pruning techniques. In this paper we only
provided a comparison between a number of pairwise and
triple variants. Groups larger than 3 agents can be used. Fur-
thermore, more variants exist. For example, one can devise
a pruning technique based on the ID framewrok. That is, try

157

[K] ¥ [ms] NP 2E [2RE 3E [3RE
Den520d
sT1o] 50 S8 52 61 52 67
10 | 13 | 50 439 231 359 275 442
15 | 19 | 50 | 16375 | 1251 679 | 1,296 768
20 | 21 | 49 | 13240 853 | 1282 | 1070 | 1689
30 | 46 | 46 | 67424 | 5061 | 9042 | 8647 | 14,891
40 | 57| 39 | NA | 20568 | 23455 | 28359 | 35724
50 | 69 | 24 | NA | 26716 | 34283 | 36611 | 51925
0st003d
s 1] s0 592 62 82 65 91
10 | 15 | 50 205 149 223 154 238
15 | 18 | 49 | 11,577 396 523 422 564
20 | 29 | 48 | 70267 | 6,053 | 8238 | 7.600 | 10,331
30 | 41| 39 | NA | 13920 | 14699 | 15853 | 17,574
4 | 60 | 23 | N/A | 25784 | 33457 | 31493 | 42,190
45 | 68 | 14 | N/A | 39278 | 51420 | 49,023 | 63.858

Table 4: Runtime on the DAO maps

to prune a given pair. Then, add a third agent. Then forth etc.
until the entire low-level is activated.

(3) Sophisticated usages of the MDDs might provide fur-
ther speedup. We are currently applying a CSP-based ap-
proach to speed-up the goal test.

Acknowledgements

This research was supported by the Israeli Science Founda-
tion (ISF) grant 305/09 to Ariel Felner.

References

K. Dresner and P. Stone. A multiagent approach to autonomous
intersection management. JAIR, 31:591-656, March 2008.

M. Jansen and N. Sturtevant. Direction maps for cooperative
pathfinding. In AIIDE, 2008.

D. Ratner and M. Warrnuth. Finding a shortest solution for the N
x N extension of the 15-puzzle is intractable. In AAAI-86, pages
168-172, 1986.

M. Ryan. Exploiting subgraph structure in multi-robot path plan-
ning. JAIR, 31:497-542, 2008.

M. Ryan. Constraint-based multi-robot path planning. In ICRA,
pages 922-928, 2010.

G. Sharon, R. Stern, M. Goldenberg, and A. Felner. The increas-
ing cost tree search for optimal multi-agent pathfinding. In IJCAIL,
2011. To appear.

D. Silver.
2005.

A. Srinivasan, T. Kam, S. Malik, and R. K. Brayton. Algorithms
for discrete function manipulation. In /ICCAD, pages 92-95, 1990.

Cooperative pathfinding. In AIIDE, pages 117-122,

T. Standley. Finding optimal solutions to cooperative pathfinding
problems. In AAAI pages 173-178, 2010.

N. Sturtevant. Pathfinding benchmarks.
http://movingai.com/benchmarks, 2010.

K. C. Wang and A. Botea. Fast and memory-efficient multi-agent
pathfinding. In ICAPS, pages 380-387, 2008.

Available at

