
Meta-Agent Conflict-Based Search For Optimal Multi-Agent Path Finding

Guni Sharon
ISE Department

Ben-Gurion University
Israel

gunisharon@gmail.com

Roni Stern
ISE Department

Ben-Gurion University
Israel

roni.stern@gmail.com

Ariel Felner
ISE Department

Ben-Gurion University
Israel

felner@bgu.ac.il

Nathan Sturtevant
CS Department

University of Denver
USA

Sturtevant@cs.du.edu

Abstract
The task in the multi-agent path finding problem (MAPF) is
to find paths for multiple agents, each with a different start
and goal position, such that agents do not collide. It is pos-
sible to solve this problem optimally with algorithms that are
based on the A* algorithm. Recently, we proposed an alterna-
tive algorithm called Conflict-Based Search (CBS) (Sharon et
al. 2012), which was shown to outperform the A*-based al-
gorithms in some cases. CBS is a two-level algorithm. At
the high level, a search is performed on a tree based on con-
flicts between agents. At the low level, a search is performed
only for a single agent at a time. While in some cases CBS
is very efficient, in other cases it is worse than A*-based al-
gorithms. This paper focuses on the latter case by general-
izing CBS to Meta-Agent CBS (MA-CBS). The main idea is
to couple groups of agents into meta-agents if the number of
internal conflicts between them exceeds a given bound. MA-
CBS acts as a framework that can run on top of any complete
MAPF solver. We analyze our new approach and provide
experimental results demonstrating that it outperforms basic
CBS and other A*-based optimal solvers in many cases.

Introduction and Background
In the multi-agent path finding (MAPF) problem, we are
given a graph, G(V,E), and a set of k agents labeled
a1 . . . ak. Each agent ai has a start position si ∈ V
and goal position gi ∈ V . At each time step an agent
can either move to a neighboring location or can wait in
its current location. The task is to return the least-cost
set of actions for all agents that will move each of the
agents to its goal without conflicting with other agents (i.e.,
without being in the same location at the same time or
crossing the same edge simultaneously in opposite direc-
tions). MAPF has practical applications in robotics, video
games, vehicle routing, and other domains (Silver 2005;
Dresner and Stone 2008). In its general form, MAPF is NP-
complete, because it is a generalization of the sliding tile
puzzle, which is NP-complete (Ratner and Warmuth 1986).

There are many variants to the MAPF problem. In this pa-
per we consider the following common setting. The cumu-
lative cost function to minimize is the sum over all agents
of the number of time steps required to reach the goal lo-
cation (Standley 2010; Sharon et al. 2011a). Both move and

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

wait actions cost one. A centralized computing setting with a
single CPU that controls all the agents is assumed. Note that
a centralized computing setting is logically equivalent to a
decentralized setting where each agent has its own comput-
ing power but agents are fully cooperative with full knowl-
edge sharing and free communication.

There are two main approaches for solving the MAPF
in the centralized computing setting: the coupled and the
decoupled approaches. In the decoupled approach, paths
are planned for each agent separately. Algorithms from the
decoupled approach run relatively fast, but optimality and
even completeness are not always guaranteed (Silver 2005;
Wang and Botea 2008; Jansen and Sturtevant 2008). New
complete (but not optimal) decoupled algorithms were re-
cently introduced for trees (Khorshid, Holte, and Sturtevant
2011) and for general graphs (Luna and Bekris 2011).

Our aim is to solve the MAPF problem optimally and
therefore the focus of this paper is on the coupled approach.
In this approach MAPF is formalized as a global, single-
agent search problem. One can activate an A*-based algo-
rithm that searches a state space that includes all the differ-
ent ways to permute the k agents into |V | locations. Con-
sequently, the state space that is searched by the A*-based
algorithms grow exponentially with the number of agents.
Hence, finding the optimal solutions with A*-based algo-
rithms requires significant computational expense.

Previous optimal solvers dealt with this large search space
in several ways. Ryan (2008; 2010) abstracted the problem
into pre-defined structures such as cliques, halls and rings.
He then modeled and solved the problem as a CSP problem.
Note that the algorithm Ryan proposed does not necessarily
returns the optimal solutions. Standley (2010; 2011) parti-
tioned the given problem into smaller independent problems,
if possible. Sharon et. al. (2011a; 2011b) suggested the in-
creasing cost search tree (ICTS) - a two-level framework
where the high-level phase searches a tree with exact path
costs for each of the agents and the low-level phase aims to
verify whether there is a solution of this cost.

In this paper we focus on the new Conflict Based Search
algorithm (CBS) (Sharon et al. 2012) which optimally solves
MAPF. CBS is a two-level algorithm where the high-level
search is performed on a constraint tree (CT) whose nodes
include constraints on time and locations of a single agent.
At each node in the constraint tree a low-level search is per-

97

Proceedings of the Fifth Annual Symposium on Combinatorial Search

formed to find individual paths for all agents under the con-
straints given by the high-level node.

Sharon et al. (2011a; 2011b; 2012) showed that the be-
havior of optimal MAPF algorithms can be very sensitive
to characteristics of the given problem instance such as the
topology and size of the graph, the number of agents, the
branching factor etc. There is no universally dominant al-
gorithm; different algorithms work well in different cir-
cumstances. In particular, experimental results have shown
that CBS can significantly outperform all existing optimal
MAPF algorithms on some domains (Sharon et al. 2012).
However, Sharon et al. (2012) also identified cases where
the CBS algorithm performs poorly. In such cases, CBS may
even perform exponentially worse than A*.

In this paper we aim at mitigating the worst-case perfor-
mance of CBS by generalizing CBS into a new algorithm
called Meta-agent CBS (MA-CBS). In MA-CBS the number
of conflicts allowed at the high-level phase between any pair
of agents is bounded by a predefined parameter B. When
the number of conflicts exceed B, the conflicting agents are
merged into a meta-agent and then treated as a joint compos-
ite agent by the low-level solver. By bounding the number
of conflicts between any pair of agents, we prevent the ex-
ponential worst-case of basic CBS. This results in an new
MAPF solver that significantly outperforms existing algo-
rithms in a variety of domains. We present both theoreti-
cal and empirical support for this claim. In the low-level
search, MA-CBS can use any complete MAPF solver. Thus,
MA-CBS can be viewed as a solving framework and future
MAPF algorithms could also be used by MA-CBS to im-
prove its performance.

Furthermore, we show that the original CBS algorithm
corresponds to the extreme cases where B = ∞ (never
merge agents), and the Independence Dependence (ID)
framework (Standley 2010) is the other extreme case where
B = 0 (always merge agents when conflicts occur). Thus,
MA-CBS allows a continuum between CBS and ID, by set-
ting different values of B between these two extremes.

The Conflict Based Search Algorithm (CBS)
The MA-CBS algorithm presented in this paper is based on
the CBS algorithm (Sharon et al. 2012). We thus first de-
scribe the CBS algorithm in detail.

Definitions for CBS We use the term path only in the con-
text of a single agent and use the term solution to denote a
set of k paths for the given set of k agents. A constraint
for a given agent ai is a tuple (ai, v, t) where agent ai is
prohibited from occupying vertex v at time step t.1 During
the course of the algorithm, agents are associated with con-
straints. A consistent path for agent ai is a path that satisfies
all its constraints. Likewise, a consistent solution is a solu-
tion that is made up from paths, such that the path for agent
ai is consistent with the constraints of ai. A conflict is a tu-
ple (ai, aj , v, t) where agent ai and agent aj occupy vertex
v at time point t. A solution (of k paths) is valid if all its

1A conflict (as well as a constraint) may apply also to an edge
when two agents traverse the same edge in opposite directions.

paths have no conflicts. A consistent solution can be invalid
if, despite the fact that the paths are consistent with their
individual agent constraints, these paths still have conflicts.

The key idea of CBS is to grow a set of constraints for
each of the agents and find paths that are consistent with
these constraints. If these paths have conflicts, and are thus
invalid, the conflicts are resolved by adding new constraints.
CBS works in two levels. At the high-level phase conflicts
are found and constraints are added. At the low-level phase,
the paths of the agents are updated to be consistent with the
new constraints. We now describe each part of this process.

High-level: Search the Constraint Tree (CT)
At the high-level, CBS searches a constraint tree (CT). A
CT is a binary tree. Each node N in the CT contains the
following fields of data:

1. A set of constraints (N.constraints). The root of the
CT contains an empty set of constraints. The child of a
node in the CT inherits the constraints of the parent and
adds one new constraint for one agent.

2. A solution (N.solution). A set of k paths, one path for
each agent. The path for agent ai must be consistent with
the constraints of ai. Such paths are found by the low-
level search algorithm.

3. The total cost (N.cost). The cost of the current solution
(summation over all the single-agent path costs). We de-
note this cost the f -value of the node.

Node N in the CT is a goal node when N.solution is
valid, i.e., the set of paths for all agents have no conflicts.
The high-level phase performs a best-first search on the CT
where nodes are ordered by their costs.

Processing a node in the CT Given the list of constraints
for a node N of the CT, the low-level search is invoked. This
search returns one shortest path for each agent, ai, that is
consistent with all the constraints associated with ai in node
N . Once a consistent path has been found for each agent
with respect to its constraints, these paths are then validated
with respect to the other agents. The validation is performed
by simulating the set of k paths. If all agents reach their goal
without any conflict, this CT node N is declared as the goal
node, and the current solution (N.solution) that contains
this set of paths is returned. If, however, while performing
the validation a conflict C = (ai, aj , v, t) is found for two
(or more) agents ai and aj , the validation halts and the node
is declared as a non-goal node.

Resolving a conflict Given a non-goal CT node N whose
solution N.solution includes a conflict Cn = (ai, aj , v, t)
we know that in any valid solution at most one of the
conflicting agents (ai or aj) may occupy vertex v at time
t. Therefore, at least one of the constraints (ai, v, t)
or (aj , v, t) must be added to the set of constraints in
N.constraints. To guarantee optimality, both possibilities
are examined and N , is split into two children. Both children
inherit the set of constraints from N . The left child resolves
the conflict by adding the constraint (ai, v, t) and the right
child adds the constraint (aj , v, t).

98

Figure 1: (i) MAPF example (ii) CT (iii) A case where A* outperforms CBS.

Algorithm 1: high-level of CBS (and MA-CBS)
Input: MAPF instance

1 R.constraints = ∅
2 R.solution = find individual paths by the low-level()
3 R.cost = SIC(R.solution)
4 insert R to OPEN
5 while OPEN not empty do
6 P← best node from OPEN // lowest solution cost
7 Validate the paths in P until a conflict occurs.
8 if P has no conflict then
9 return P.solution // P is goal

10 C← first conflict (ai, aj , v, t) in P
11 if should-merge(ai, aj) // Optional, MA-CBS only

then
12 ai,j = merge(ai,aj)
13 Update P.constraints().
14 Update P.solution by invoking low-level(ai,j)
15 Insert P to OPEN
16 continue // go back to the while statement
17 foreach agent ai in C do
18 A← new node
19 A.constriants← P.constriants + (ai, v, t)
20 A.solution← P.solution.
21 Update A.solution by invoking low-level(ai)
22 A.cost = SIC(A.solution)
23 Insert A to OPEN

Note that for a given CT node N one does not have to save
all its cumulative constraints. Instead, it can save only its lat-
est constraint and extract the other constraints by traversing
the path from N to the root via its ancestors. Similarly, with
the exception of the root node, the low-level search should
only be performed for agent ai which is associated with the
newly added constraint. The paths of other agents remain
the same as no new constraint was added for them.

CBS Example
Pseudo-code for CBS is shown in Algorithm 1. We note that
lines (11-16) are to be ignored for basic CBS (that is, the

should-merge() function (Line 11) always returns false for
basic CBS). These lines will be added later for MA-CBS.
CBS has the structure of a best-first search. We cover it
using the example in Figure 1(i), where the mice need to
get to their respective pieces of cheese. The corresponding
CT is shown in Figure 1(ii). The root contains an empty
set of constraints. In line 2 the low-level now returns an
optimal solution for each agent, < S1, A1, C,G1 > for a1
and < S2, B1, C,G2 > for a2. Thus, the total cost of this
node is 6. All this information is kept inside this node. The
root is then inserted into the sorted OPEN list and will be
expanded next.

When validating the two-agent solution given by the two
individual paths (line 7), a conflict is found when both agents
arrive to vertex C at time step 2. This creates the conflict
(a1, a2, C, 2). As a result, the root is declared as non-goal
and two children are generated in order to resolve the con-
flict (Line 17). The left child, adds the constraint (a1, C, 2)
while the right child adds the constraint (a2, C, 2). The low-
level search is now invoked (Line 21) for the left child to
find an optimal path that also satisfies the new constraint.
For this, a1 must wait one time step either at S1 (or at A1)
and the path < S1, A1, A1, C,G1 > is returned for a1. The
path for a2, < S2, B1, C,G2 > remains unchanged in the
left child. The total cost for the left child is now 7. In a sim-
ilar way, the right child is generated, also with cost 7. Both
children are added to OPEN (Line 23). In the final step the
left child is chosen for expansion, and the underlying paths
are validated. Since no conflicts exist, the left child is de-
clared as a goal node (Line 9) and its solution is returned as
an optimal solution.

It may be the case that while performing the validation
(Line 7) between the different paths a k-agent conflict is
found for k > 2. There are two ways to handle such k-
agent conflicts. We can generate k children, each of which
adds a constraint to k−1 agents (i.e., each child allows only
one agent to occupy the conflicting vertex v at time t). Or,
an equivalent formalization is to only focus on the first two
agents that are found to conflict, and only branch according
to their conflict. This leaves further conflicts for deeper lev-
els of the tree. For simplicity of description we chose the
second option.

99

Low-level: Find Solutions for CT Nodes
The low-level is given an agent, ai, and a set of associ-
ated constraints. It performs a search in the underlying
graph to find an optimal path for agent ai that satisfies all
its constraints. Agent ai is solved in a decoupled manner,
i.e., while ignoring the other agents. This search is three-
dimensional, as it includes two spatial dimensions, and one
dimension of time. Any single-agent path-finding algorithm
can be used to find the path for agent ai, while verifying
that the constraints are satisfied. We used A* with a perfect
heuristic in the two spatial dimensions. To get this heuris-
tic, we pre-calculated and stored the all-pairs shortest path
information. Whenever a state x is generated with g(x) = t
and there exists a constraint (ai, x, t) in the current CT node
this state is discarded.

Additionally, in this A* search ties were broken by us-
ing a conflict avoidance table (CAT) (Standley 2010)). The
CAT is initialized by the current solution of node N , stor-
ing the number of agents passing via a given vertex at a
given time, according to this solution. When two low-level
states have the same f -values, the state with the smallest
number of conflicts in the low-level CAT is preferred. This
tie-breaking mechanism guides the low-level search towards
solutions with less inter-agent conflicts. As a result, the op-
timal solution (which has no conflicts) is found faster.

Meta-agent Conflict Based Search (MA-CBS)
In this section we present our new generalized framework,
MA-CBS. First, we motivate it by focusing in the limitations
of the basic version of CBS that was just described.

Motivation for Meta-Agent CBS
In (Sharon et al. 2012) we showed that CBS is very effi-
cient (compared to other approaches) for some MAPF prob-
lems and very inefficient for others. In general, it was shown
that in domains with many bottlenecks, doorways and nar-
row passages, A* based algorithms (as well as ICTS) might
do exponential work while CBS can solve the problem much
faster by resolving a small number of conflicts.

Such a case is presented in Figure 1(i) in which both
agents have m different routes to reach a bottleneck ver-
tex (C). In this example, CBS generates three CT nodes.
First, the root node is generated, invoking the low-level for
the two agents, and expanding a total of 8 low-level nodes
for the CT root. Now, a conflict is found at C and the CT
root node is split into two children. In the left child the
low-level searches for an alternative path for agent a1 that
does not pass through C at time step 2. S1 plus all m states
A1, . . . , Am are expanded with f = 3. Then, C and G1 are
expanded with f = 4 then the search halts and returns the
path < S1, A1, A1, C,G1 >. Thus, at the left child a total of
m+3 nodes are expanded. Similar m+3 states are expanded
for the right child. Adding all these to the 8 states expanded
at the root we get a total of 2m + 14 low-level node expan-
sions. For the same problem A*, which runs in a 2-agent
search space, will expand m2 + 3 nodes. For m ≥ 5 this
is larger than 2m + 14 and consequently, CBS will expand

fewer nodes. A* must expand the cross product of all single-
agent paths with f = 3. By contrast, CBS must only try two
such paths to realize that no solution of cost 6 is valid. Fur-
thermore, the nodes counted for A* are multi-agent nodes
while for CBS, they are single-agent states. This is another
advantage of CBS – smaller constant time per node.

By contrast, there are cases where many conflicts exist
and CBS is very inefficient compared to the A* variants.
Figure 1(iii) presents such a case where A* outperforms
CBS. In this problem there are 4 optimal paths for each agent
but each of the 16 paths combinations has a conflict in one
of the gray cells. Consequently, one agent must wait at least
one step to avoid collision. For this problem A* will ex-
pand 5 nodes with f = 8 and 3 nodes with f = 9 until
the goal is found and a total of 8 nodes are expanded. Now,
consider CBS. Each agent has 4 different optimal paths. All
16 combinations have conflicts in one of the 4 gray cells
{C2, C3, B2, B3}. Therefore, for f = 8 a total of 16 CT
nodes will be expanded, each will expand 4 low-level single-
agent states to a total of 16× 4 = 64 low-level nodes. Then,
at the goal CT node with f = 9, CBS will expand 7 new
states. Thus, a total of 71 states are expanded for CBS.

This general tendency that different MAPF algorithms
behave differently for different environments or topologies
was already seen in previous work (Sharon et al. 2011a;
2012). Furthermore, a given domain might have different
areas with different topologies. This calls for an algorithm
that will change its strategy based on the exact task and on
the area it searches in. There is room for a significant amount
of research in understanding topologies. We provide a first
step in the context of CBS by dynamically grouping agents
into a meta-agent and solving them in the low-level phase
by a coupled algorithm (e.g., A*).

The two examples in Figure 1 suggest that in some cases
it is more efficient to jointly plan for all agents, while in
other cases it is more efficiently to plan for each agent inde-
pendently. In general, CBS behaves poorly when a group of
agents is strongly coupled, i.e., when there is a high rate of
internal conflicts between agents in the group. In such cases,
basic CBS may encounter many conflicts before finding the
optimal solution.

In some cases, the number of conflicts encountered by
CBS, for a given group of agents, is so large that it would
have been more efficient to solve that group optimally with a
coupled solver. MA-CBS exploits this by identifying groups
of strongly coupled agents and merging them into a meta-
agent. Then, the high-level CBS continues, but this meta-
agent is treated as a single agent. The low-level search there-
fore solves it in a coupled manner with any MAPF solver.
To this end, the low-level solver of CBS can be any MAPF
solver, e.g., A*+OD (Standley 2010) or Enhanced Partial
Expansion A* (Felner et al. 2012). Thus, MA-CBS is in fact
a framework that can be used on top of any other MAPF
solver. Next, we describe MA-CBS in detail.

Merging Agents Into a Meta-Agent
The main difference between basic CBS and MA-CBS is the
new operation of merging agents into a meta-agent. A meta-
agent consists of M agents, each agent is associated with its

100

own position. Thus, a single agent is just a meta-agent of
size 1. Returning to Algorithm 1, we introduce the merging
action which occurs just after a new conflict was found by
the validation process (C in line 10) for a given CT node. At
this point MA-CBS has two options:

• Branch: Branch into two CT nodes based on a new con-
flict (lines 17-23). This is the basic option which is per-
formed by the basic CBS.

• Merge: Merge the two conflicting (meta) agents into a
single meta-agent (Lines 12-16). This is a new option.

The merging process is performed as follows. Assume a
CT node N with k agents. Suppose that agents a1, a2 were
chosen to be merged. We now have k − 1 agents with a
new meta-agent of size 2, labeled a1,2. This meta-agent will
never be split again in the subtree of the CT below this given
node; it might, however, be merged with other (meta) agents
to new meta-agents. Since nothing changed for the other
agents that were not merged, we now only call the low-level
search again for this new meta-agent (Line 14). The low-
level search for a meta-agent of size M is in fact an optimal
MAPF problem for M agents, and is solved with a coupled
MAPF solver (e.g., A*).

Note that the cost of this CT node may increase due to
this action, as the optimal path for a meta-agent is at least
as large as the sum of optimal paths of each of these agents
separately. Thus, we recalculate the f -value of this node and
add it again into OPEN to its new location. (Line 15).

MA-CBS has two important components. First, MA-CBS
requires a merging policy to decide which option to choose
(branch or merge) (Line 11). Second, MA-CBS requires
a mechanism to define the constraints imposed on the new
meta-agent (Line 13). This mechanism that merges the con-
straints must be designed such that MA-CBS still returns an
optimal solution. Next, we discuss how to implement these
two components.

Merge Policy
Many merging policies are possible. We present a simple
merging policy which we have found to be experimentally
efficient. In our merging policy we identify when agents
should be merged using a bound parameter, B. Two agents
ai, aj are merged into a meta-agent ai,j if the number of
conflicts between ai and aj seen so far during the search
exceeds B. We use the notation MA-CBS(B) to denote MA-
CBS with a bound of B. Clearly, basic CBS is the special
extreme case of MA-CBS(∞). That is, we never choose
to merge and always branch according to a conflict. The
other extreme case is MA-CBS(0), where we only allow 0
conflicts but merge as soon as a conflict occurs. Below, we
show that this case is identical to the ID framework.

To implement this merge policy, a conflict matrix CM
is maintained. CM [i, j] stores the number of conflicts be-
tween agents ai and aj seen so far by MA-CBS. After a new
conflict between ai and aj is found (Line 10) CM [i, j] is in-
cremented by 1. Now, if CM [i, j] > B the should-merge()
function (Line 11) returns true and ai and aj are merged into
ai,j . Again, other merging policies are possible.

Merging Constraints
Next, we describe how to merge the constraint imposed by
each of the merged agents. Denote a meta-agent by x. A
meta-constraint for a given meta-agent x is a tuple (x, v, t)
where any individual agent xi ∈ x is prohibited from oc-
cupying vertex v at time step t. Similarly, a meta-conflict
is a tuple (x, y, v, t) where an individual agent x′ ∈ x and
an individual agent y′ ∈ y occupy vertex v at time point t.
It is important to note that the exact identity x′ and y′ is ir-
relevant because we will later split the CT node according to
meta-agents, either allowing x in v at time t and constraining
y from being in v at time t, or vice versa.

We want to merge the constraints of ai and aj when
they are merged into a meta-agent ai,j . Consider the set
of constraints associated with agents ai and aj before the
merge. These were generated due to conflicts between
agents. These conflicts (and therefore the resulting con-
straints) can be divided to three groups.
(1) internal: conflicts between ai and aj .
(2) external(i): conflicts between ai and any other agent ak
(where k 6= j).
(3) external(j): conflicts between aj and any other agent ak
(where k 6= i).

Since ai and aj are now going to be merged, internal con-
flicts are no longer relevant as ai and aj will be solved in
a coupled manner by the low-level solver. Thus, we only
consider external constraints.2 For each external constraint
(ai, v, t) we add a meta constraint (ai,j , v, t). Similarly, for
each external constraint (aj , v, t) we add a meta constraint
(ai,j , v, t).

To illustrate MA-CBS, consider again the example shown
in Figure 1(i). Assume that we are using MA-CBS(0). In
this case, at the root of the CT, once the conflict (a1, a2, C, 2)
is found, should−merge() returns true and agents a1 and
a2 are merged into a new meta-agent a1,2. Next the low-
level solver is invoked to solve the newly created meta-agent
and a (conflict-free) optimal path for the two agents is found.
If A* is used, a 2-agent A* search will be executed for this.
The high-level node is now re-inserted into OPEN as its f -
value increased from 8 to 9. Since it is the only node in
OPEN, it will be expanded next. On the second expansion
the search halts as no conflicts exists - there is only one meta-
agent, which has no internal conflicts by definitions. Thus,
solution from the root node is returned. By contrast, for MA-
CBS(B) for B > 0, the root node will be split according the
conflict as describe above.

In (Sharon et al. 2012) we provided a formal proof for the
correctness of basic CBS. With a few adaptations, this proof
generally holds for MA-CBS too, given that an agent can
also be a meta-agent. We thus omit this proof here.

MA-CBS Generalizes ID
While MA-CBS(∞) is basic CBS, MA-CBS(0) is exactly
the recently proposed technique for MAPF called Indepen-
dence Detection (ID) (Standley 2010). Thus, MA-CBS, is a

2To identify the type of a given constraint implementers might
choose to store a list of conflict affiliated with each high-level node.

101

general framework which has these two previous algorithms
as a special extreme cases.

ID is a technique used to identify groups of agents that can
be solved independently. ID is a general framework which
runs as a base level and can use any possible MAPF solver
on top of it. Two groups of agents are independent if there
is an optimal solution for each group such that the two so-
lutions do not conflict. The basic idea of ID is to divide
the agents into independent groups. Initially each agent is
placed in its own group. Optimal solutions are found for
each group separately. Given a solution for each group,
paths are checked to see if a conflict occurs between two (or
more) groups. If so, all agents in the conflicting groups are
unified into a new group. Whenever a new group of k ≥ 1
agents is formed, this new k-agent problem is solved op-
timally by any MAPF optimal solver. This process is re-
peated until no conflicts between groups occur. Since the
problem is exponential in k, Standley observed that solving
the largest group dominates the running time of solving the
entire problem, as all others involve smaller groups.

It is easy to see that the ID framework is identical to
MA-CBS(0). In the root node, MA-CBS(0) solves each
agent separately. Then, MA-CBS(0) expands this CT root
node, finding a conflict between the solutions of the single
agents (if one exists). The conflicting agents that have at
least one conflict will be merged as the threshold parameter
B = 0. The combined group will be solved using the low-
level MAPF solver. Next the root will be re-inserted into
OPEN and a validation occurs. Since B = 0 the branching
option will never be chosen and conflicts are always solved
by merging the conflicted (meta) agents. Thus, this variant
will only have one CT node which is being re-inserted into
OPEN, until no conflicts occur.

However, MA-CBS(B) can be significantly better than
ID, when it solves agents that are only loosely coupled, by
adding constraints to these agents separately. For example,
in the case of a bottleneck (such as Figure 1(i)) where the in-
dividual solutions of two agents conflict, ID (=MA-CBS(0))
will merge these agents to a single group and solve it in a
coupled manner. By contrast, MA-CBS(B) (with B > 0)
can avoid this bottleneck by adding a single constraint to
one of the agents. Clearly, using MA-CBS(B) for any value
of B ≥ 0 adds much more flexibility and may significantly
outperform ID. This is clearly seen in the experimental re-
sults section described next.3

Experimental Results
In this section we study the behavior of MA-CBS empir-
ically on three standard benchmark maps from the game
Dragon Age: Origins (Sturtevant 2012). Each of the three
maps, shown in Figure 3, represent a different topology.
Map den520d (top) has many large open spaces and no bot-
tlenecks, map ost003d (middle) has a few open spaces and

3Standley 2010 also presented an enhanced variant of ID. When
a conflict is found between the solutions of two groups, then a re-
planning phase tries to find alternative plans that avoid conflict-
ing. This significantly increases the chances of finding independent
plans. This variant is a reminiscent of MA-CBS(1).

den520d with A* as a low-level solver
k A* B(1) B(5) B(10) B(100) B(500) CBS
5 0.223 273 218 220 219 222 219

10 1,099 1,458 553 552 549 552 546
15 1,182 1,620 1,838 1,810 1,829 1,703 1,672
20 4,792 4,375 1,996 2,011 2,020 1,857 1,708
25 7,633 14,749 2,193 2,255 2,320 2,888 3,046
30 > 62,717> 60,214 8,082 8,055 8,107 8,013 7,745
35 > 65,947> 51,815 13,670 13,587 15,981 28,274> 45,954
40 > 81,487 >82,860 18,473 18,399 20,391 31,189> 45,857

den520d with EPEA* as a low-level solver
k EPEA* B(1) B(5) B(10) B(100) B(500) CBS
5 899 190 180 181 180 180 256

10 1,633 1,782 470 467 469 469 632
15 1,621 2,241 1,708 1,702 1,713 1,738 1,807
20 3,393 3,725 1,527 1,515 1,553 1,555 1,867
25 7,675 8,327 1,701 1,620 1,731 2,071 3,264
30 12,574 13,308 3,955 3,773 5,276 16,191 >38,707
35 15,736 12,655 4,974 4,993 7,199 18,998> 50,050
40 14,635 15,452 4,860 4,971 7,686 20,860 >50,891

ost003d with EPEA* as a low-level solver
k EPEA* B(1) B(5) B(10) B(100) B(500) CBS
5 187 231 168 168 169 169 222

10 1,718 1,983 764 753 757 757 935
15 4,888 4,593 1,597 1,592 1,568 1,570 1,909
20 10,463 13,426 3,701 3,654 3,623 3,598 4,119
25 > 60,140 >58,902 >28,881 15,109 18,159 35,536> 73,860
30 >84,473> 80,248> 30,781 25,860 27,525 46,328 >92,209
35 >90,703 >81,633 >39,660 21,466 28,241 47,544> 95,262

brc202d with EPEA* as a low-level solver
k EPEA* B(1) B(5) B(10) B(100) B(500) CBS
5 1,834 2,351 1,286 1,276 1,268 1,267 1,664

10 6,034 8,059 4,580 4,530 4,498 4,508 5,495
15 12,354 15,389 6,903 6,871 6,820 6,793 8,685
20 > 70,003 >73,511 35,095 21,729 19,846 31,229 >43,625

Figure 2: Runtime of the MA-CBS experiments.

a few bottlenecks and map brc202d (bottom) has almost
no open spaces and many bottlenecks. Our main objec-
tive was to study the effect of the conflict bound parame-
ter B on the performance of MA-CBS. Recall again that
MA-CBS(0) is equivalent to A*+ID (or any other MAPF
solver used instead of A* for the low-level search), while
MA-CBS(∞) is the basic CBS algorithm (Sharon et al.
2012). We have run experiments with MA-CBS(B) where
B = 0, 1, 5, 10, 100, 500 and∞.

Since MA-CBS is a framework that can use any A*-
based solver for the low-level search, we experimented with
two such solvers: A* and Enhanced Partial Expansion A*
(EPEA*) (Felner et al. 2012).4 Both solvers used the SIC
heuristic (defined above). A* was chosen as a baseline,
while EPEA* was chosen since it is currently the state-of-
the-art A*-based MAPF solver. The different variants of the

4EPEA* is a variant of A* that uses domain specific knowl-
edge to generate only nodes with the same f -cost as the parent. n
is re-inserted into the OPEN list, but with the f -cost of the next
best child. This saves significant overhead caused by dealing with
surplus nodes - nodes with f -value larger than that of the optimal
cost. In EPEA* such nodes will not be generated and will not enter
OPEN. In MAPF, the number of such nodes is exponential in the
number of agents.

102

Figure 3: Success rate of the MA-CBS experiments with
EPEA* as the low-level solver

ICTS algorithm (Sharon et al. 2011a) cannot detect unsolv-
able problems, so ICTS cannot be used inside the MA-CBS
framework as a low level solver without modifications which
are beyond the scope of this paper.

For each of the maps we varied the number of agents k.
We ran our algorithms on 100 random instances for each
value of k. If an algorithm did not solve a given problem
instance within five minutes it was halted. The numbers re-
ported are an average over all instances solved by all the
algorithms. For variants where an algorithm did not solve at
least 70% of the cases we report a lower bound on all cases.
Thus, some numbers have > before them.

The table in Figure 2 shows runtime in ms for the exper-
iments described above. The k column denotes the number
of agents in the experiment. MA-CBS(x) is denoted only
by B(x). For a given number of agents, the result of the
best-performing algorithm is given in bold. The top frame
is for the den520d map where A* was used for the low-
level search while the rest of the frames report results when
EPEA* was used. Each frame presents a different map. Sim-
ilar trends were observed in the data not shown.

The results clearly show that MA-CBS with non-extreme
values, i.e., with B 6= 0 and B 6= ∞, is able to solve most
instances faster than the two extreme cases, i.e., MA-CBS(0)
(A*(EPEA*)+ID) and MA-CBS(∞) (basic CBS). The new
variants achieved up to an order of magnitude speed-up over

MA-CBS(∞) (e.g. in den520d for 35 and 40 agents with
EPEA* as the low-level solver) and up to a factor of 4 over
MA-CBS(0) (e.g., in ost003d with 25 agents).

Next, consider the effect of increasing the number of
agents k for the den520d map where EPEA* was used (sec-
ond frame). Problems with fewer agents (k < 25) were
solved more quickly using MA-CBS with large values of B.
As the problems become denser (k > 30), MA-CBS with
smaller B values is faster. In addition, the relative perfor-
mance of basic CBS (≡ MA-CBS(∞)) and MA-CBS(500)
with respect to the best variant degrades. This is explained as
follows. In dense problem instances, where there are many
agents relative to the map size, many conflicts occur. Recall
that basic CBS and MA-CBS are exponential in the number
of conflicts encountered. Thus, increasing the number of
agents makes the problem denser and, as a result, the rela-
tive performance of MA-CBS with large values of B (which
behaves closer to basic CBS) degrades when compared to
variants with small values of B. In separate experiments in
the extreme scenario where k = |V |−1, like the sliding-tile-
puzzle, we observed that MA-CBS(0) (≡ coupled solver)
performs best.

Now, consider the results in the table where A* was used
as a low-level solver (top frame). Here, we see the same gen-
eral trend as observed in the results for EPEA*. However,
we observe that the best-performing value of B was larger
than that of MA-CBS with EPEA* (second frame). For ex-
ample, in the den520d map with 30 agents, MA-CBS(5)
with A* as the low-level solver did not obtained a signifi-
cant speedup over CBS. For EPEA* as the low-level solver
MA-CBS(5) obtained an order of magnitude speedup over
CBS. The same tendency can also be observed in the other
maps. The reason is that for a relatively weak MAPF solver,
such as A*, solving a large group of agents is very ineffi-
cient. Thus, we would like to avoid merging agents and run
in a more decoupled manner. For these cases a higher B
is preferred. On the other hand fast MAPF solvers, such as
EPEA*, would perform better with a lower value of B.

Figure 3 shows the success rate, i.e., the number of in-
stances solved before the timeout, for MA-CBS with B =
0, 1, 10, 100 and∞. Only results for EPEA* as the low-level
is presented as A* results were similar. Additionally, for
comparison we also report the success rate of the best ICTS
variant (Sharon et al. 2011b). Note that curves are ordered
according to their performance in the given map. Thus, sim-
ilar algorithm might have a different legend in the different
maps.

As can be seen, in all the experiments MA-CBS with
intermediate values, i.e., 0 < B < ∞, is able to solve
more instance than both extreme cases, i.e., EPEA* (≡
MA−CBS(0)) and basic CBS (≡MA−CBS(∞)). Ad-
ditionally, MA-CBS with intermediate values also outper-
forms the ICTS solver in the brc202d and ost003d maps, and
performed very similar to ICTS for the den520d map. This
supports the understanding from (Sharon et al. 2011b) that
ICTS is especially effective for maps with large open spaces
such as den520d but not as good for domains with corridors
and deadends such as brc202d.

Consider the performance of MA-CBS variants with B <

103

∞ in comparison with the basic CBS (B = ∞). Basic
CBS performs very poor for den520d (top), somewhat poor
for ost003d (middle) but rather well for brc202d (bottom).
This is because in maps with no bottlenecks and large open
spaces, such as den520d, CBS will be inefficient, since many
conflicts will occur. This phenomenon is explained in the
pathological example of CBS given in Figure 1(iii). Thus, in
den520d the benefit of merging agents is high, as we avoid
many conflicts. By contrast, for maps without large open
spaces and many bottlenecks, such as brc202d, CBS encoun-
ters few conflicts, and thus merging agents results in only a
small reduction in conflicts. Indeed, as the results show, for
brc202d the basic CBS (MA-CBS(∞)) achieves almost the
same performance as setting lower values of B.

In problems with higher conflict rates it is, in general,
more helpful to merge agents, and hence lower values of
B perform better. For example, for den520d (top) MA-
CBS(10) obtained the highest success rates. By contrast,
for ost003d and brc202d MA-CBS(100) obtained the high-
est success rates.

Summarizing the experimental results, we observed the
following trends:

• MA-CBS with non-trivial B values (0 < B < ∞) out-
performs previous algorithms: A*, EPEA* and CBS.

• Density. In dense maps with many agents, low values of
B are more efficient.

• Topology. In maps with large open spaces and few bot-
tlenecks, low values of B are more efficient.

• Low-level solver. If a slow MAPF solver is used for the
low-level search, high values of B are preferred.

Discussion and Future Work
This paper introduces the MA-CBS algorithm, a generaliza-
tion of the CBS algorithm (Sharon et al. 2012) for solving
MAPF problems optimally. MA-CBS serves as a bridge be-
tween CBS and completely coupled solvers, such as A*,
A*+OD (Standley 2010) and EPEA* (Felner et al. 2012).
It starts as a regular CBS solver, where all the low-level
search is performed by single-agent searches. If MA-CBS
identifies that a pair of agents often conflict, it groups them
together. The low-level solver treats this group as one sin-
gle composite agent, and finds solutions for that group using
a given MAPF solver (e.g., A*). As a result, MA-CBS is
flexible and can enjoy the complementary benefits of both
CBS and traditional coupled solvers by setting the correct
value for B in the range between the two extremes. In cases
where only a few conflicts occur, MA-CBS can act like CBS,
while if conflicts are common, MA-CBS can converge to
a completely coupled solver. Experimental results showed
that MA-CBS with non-extreme values of B (i.e., neither
B = 0 nor B = ∞) outperforms both CBS and other state-
of-the-art MAPF algorithms.

MA-CBS is in fact a general framework that can use any
MPAF solver as a low-level solver. Furthermore, MA-CBS
can be viewed as a generalization of the Independence De-
tection (ID) framework introduced by Standley (2010).

A number of ongoing directions for MA-CBS include: (1)
devising more intelligent merge policies, (2) dynamically
changing B based on the exact topology currently seen. Fi-
nally, (3) the approach of mixing constraints and search is
related to recent work on the theoretical properties of A*
and SAT algorithms (Rintanen 2011) and is an important
connection that needs more study.

Acknowledgments
This research was supported by the Israeli Science Founda-
tion (ISF) under grant 305/09 to Ariel felner.

References
Dresner, K., and Stone, P. 2008. A multiagent approach to au-
tonomous intersection management. JAIR 31:591–656.
Felner, A.; Goldenberg, M.; Sturtevant, N.; Stern, R.; Sharon, G.;
Beja, T.; Holte, R.; and Schaeffer, J. 2012. Partial-expansion A*
with selective node generation. In AAAI (to appear).
Jansen, M., and Sturtevant, N. 2008. Direction maps for coopera-
tive pathfinding. In AIIDE.
Khorshid, M. M.; Holte, R. C.; and Sturtevant, N. R. 2011. A
polynomial-time algorithm for non-optimal multi-agent pathfind-
ing. In SOCS.
Luna, R., and Bekris, K. E. 2011. Push and swap: Fast cooperative
path-finding with completeness guarantees. In IJCAI, 294–300.
Ratner, D., and Warmuth, M. 1986. Finding a shortest solution for
the N × N extension of the 15-puzzle is intractable. In AAAI-86,
168–172.
Rintanen, J. 2011. Planning with SAT, admissible heuristics and
A*. In IJCAI, 2015–2020.
Ryan, M. 2008. Exploiting subgraph structure in multi-robot path
planning. JAIR 31:497–542.
Ryan, M. 2010. Constraint-based multi-robot path planning. In
ICRA, 922–928.
Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2011a. The
increasing cost tree search for optimal multi-agent pathfinding. In
IJCAI, 662–667.
Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2011b. Prun-
ing techniques for the increasing cost tree search for optimal multi-
agent pathfinding. In SOCS.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2012.
Conflict-based search for optimal multi-agent path finding. In AAAI
(to appear).
Silver, D. 2005. Cooperative pathfinding. In AIIDE, 117–122.
Standley, T., and Korf, R. 2011. Complete algorithms for cooper-
ative pathnding problems. In IJCAI, 668–673.
Standley, T. 2010. Finding optimal solutions to cooperative
pathfinding problems. In AAAI, 173–178.
Sturtevant, N. 2012. Benchmarks for grid-based pathfinding.
Transactions on Computational Intelligence and AI in Games.
Wang, K. C., and Botea, A. 2008. Fast and memory-efficient multi-
agent pathfinding. In ICAPS, 380–387.

104

