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“OR" Rule for Combining
Alerts

e Alerts of the same event can be raised by different
methods

e |nput string length -/Q
e Character distribution Ea g L;ﬁ

e Token finder etc...
e OR Rule:
e Alertiff S1 OR S2 OR S3 Alerts

e Analyst is overwhelmed by the number of alarms

e String length might give many false alerts



“AND” Rule for Combining

Tokens: All distinet

substrings of a minimum
Alerts et
e.g., If there are K
occulll'revl(css of ”h:rl’rp”d
. . . “t1p” will not be considere
e Polygraph': Automatic Generation C uuless it appears awother k

times and not as part of

Signatures. http

e Signature: Conjunction of all tokens

e AND Rule:

e Alert iff token1 AND token2 AND ... AND
tokenN found in network flow.

Token observed in
all samples of the

e More false negatives: token observed i jiacs oo

every sample of

suspicious, but not in every real worm  theworm.
7

[1]. Newsome, Karp, Song. Polygraph: Automatically Generating Signatures for Polymorphic Worms. IEEE S&P, 2005




Our Goal: Study Design
Space for Combining Alerts

e With ntokens (or
sensors) there are 22

. . Y; € {0, 1}
possible fusion rules

- Yi
® AND-rules and OR-rules g v>-

are only 2 of them oy .Y € {0,1
e But there are many more: -/ 92"

Majority voting, Select
only one, etc...




Which Fusion Rule is the
Best!?

We want to find the “best” fusion rule(s):

&

g° = arg max d(f)

fe{g:{0,1}"—{0,1}}

Problem 1: Find the rules that give an optimal
ROC curve

Problem 2: Find the rules that minimize the
operational “cost” of an IDS

Problem 3: Prioritize alerts




Our Solution: Likelihood
Ratio Test (LRT)

e Each rule has a different False Alarm vs. False
Negative tradeoff (we obtain a LRT estimate).

e | RT-Rule is optimal for Problem 1 (best ROC),
Problem 2 (minimize costs) and Problem 3
(ranking of alarms).

® Principled (theoretically sound) and practical
(useful and intuitive) way of combining intrusion
detection sensors.




Agenda

Metric 1: Optimal ROC curve
Metrics 2 & 3: Minimum cost and ranking
Experiments

Conclusions and Future Work




Notation and Definitions

Intrusion |=1, otherwise 1=0

Output is Y=1 (alarm), Y=0 (no alarm)
Pr=Pr[Y=1|1=0] and Pp=[Y=1]|I=1]
There is a tradeoff between Pr and Pp

The ROC curve shows points (Pra,Pp) for different
“configurations” of an IDS




Metric 1: Receiver Operating
Characteristic (ROC) Curve

Pp = P[Y =1/H,] !

Decision rate,
True positive, 1
Power

An ROC curve

shows the tradeoft
between the probability
of false positives

and the probability

of true positives

I .
| >
1 PI" :P[Y:”H[]]
False alarm rate,
False positive,
Size




Metric 1: Receiver Operating
Characteristic (ROC) Curve

Pp=PlY =1|H,| !
Decision rate, Perfect Always 1
True positive, 1 W

Power




Performance of Sensor 1

Pp = PlY = 1|H,| 1

L




Pri and Pp; estimates for
multiple sensors

Pp = PlY = 1|H,] 1

T 1

Pr = PlY = 1|H,|




Previous Work: The ROC
Convex Hull (ROCCH)?

Pp = PlY = 1|H,| 1

.1

A
"]

0 PP- = P[}’r = 1|?‘|{'[]]

[2]. Provost, Fawcett. Robust Classification for Imprecise Environments. Machine Learning 2001



ROCCH Gives Suboptimal

on.

2“ Possible
combination
rules
Brute for search
won'’t work

Pp = P|Y = 1|H,|




Neyman-Pearson Theory

® Given observation Y: test Null Hypothesis Ho vs.
alternative Hj

e |[f we know P(Y|Ho) and P(Y|H1), then the test D(Y)
that maximizes P[D(Y)=H1|H4] for a fixed
P[D(Y)=H1|Ho] is:

1 ifAY)>T
’D[Y}:{ v ifNY) =T
0 iflY)<T

o \Where I(Y)= P(Y|H1)/P(Y|Ho) is the likelihood ratio.




Our Work: The Likelihood
RatioTest for Fusing Alarms

{ 1 NY) > T (1)

v if¢(Y)=7 , independence assumption
0 ifl(Y)<T
no independence (V) =

PU — P[Y — 1|H1] 1
LRROC (Optimal !)

‘1 __""""""""":,T:Tr':ffii'-'77="('::'

Theorem: In U(PP-.,-___PU?-)E
general, optimal °
ROC has
2" + 1 rules




Example of the Likelihood-
Ratlo Test
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Example of the Likelihood-
Ratlo Test
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Example of the Likelihood-
Ratlo Test
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Metric 2: Expected Cost

Co1=Cost of a false alarm

C10=Cost of a missed
Intrusion

Expected Cost is a function
of Pr and Pp

The rule that minimizes the
expected cost will lie in the
ROC curve




Metric 3: Prioritization of
Alerts

e The likelihood ratio is an estimate of the
confidence for hypothesis Hj

® Example: {01)<¢10)  =>

® The alert given by Y1=1,Y2=0 should take priority
over Y1=0,Y2=1.
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Experiment Setup

e Dataset

Collected 30 minute HTTP trace (5 million packets) at College
of Computing, Georgia Tech

Divided into two halves: training and testing set

Injected web attacks into testing set using tools, e.qg.,
libwhisker (base rate 0.00082)

e Real-world IDSs
e Snort (V2.3): signature based detection

® PAYL: anomaly detector based on byte frequency within the
payload

® NetAD: modeling 48 attributes (48 bytes at fixed locations),
summing up anomaly score based on byte frequency (within
history, at the same location)




Experiment: Result

Pt o & o & O o o

e de—d—
e S, — — - - - -
10 5 20 5 10 15 20

':I:I1 ':1III

(a) Fix the cost of FN (b) Fix the cost of F'P
(C1o = 1) in all the cases, (Co1 = 1) 1in all the cases,
change the cost of F'P (Co1). change the cost of F'N (C1o).
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Experiment:
Prioritization of Alerts

e Example: When PAYL raises an alarm alone, it
should take precedence over when Snort and
NetAD raise an alarm, but PAYL does not:

[(000) < 1(001) < 1(100) < 1(101) < 1(010) < 1(011) < 1(110) < I1(111)

Snort PAYL | NetAD Snort =Y

0.016 0.99896 | 0.1037 PAYL=Y>
0.0000237 | 0.00336 | 0.004 NetAD=Y3




Conclusions and Future
Work

e \\Ve presented a theoretically sound and intuitive
method for fusing alerts

® \We generalized and improved previous work

e \We plan to extend work to probabilistic IDS, and
anomaly detectors




