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Abstract—Malware often contains many system-resource-
sensitive condition checks to avoid any duplicate infection,
make sure to obtain required resources, or try to infect only
targeted computers, etc. If we are able to extract the system
resource constraints from malware code, and manipulate the
environment state as vaccines, we would then be able to immu-
nize a computer from infections. Towards this end, this paper
provides the first systematic study and presents a prototype
system, AUTOVAC, for automatically extracting the system re-
source constraints from malware code and generating vaccines
based on the system resource conditions. Specifically, through
monitoring the data propagation from system-resource-related
system calls, AUTOVAC automatically identifies the environment
related state of a computer. Through analyzing the environment
state, AUTOVAC automatically generates vaccines. Such vac-
cines can be then injected into other computers, thereby being
immune from future infections from the same malware or its
polymorphic variants. We have evaluated AUTOVAC on a large
set of real-world malware samples and successfully extracted
working vaccines for many families including high-profile
Conficker, Sality and Zeus. We believe AUTOVAC represents an
appealing technique to complement existing malware defenses.

Keywords-Dynamic malware analysis, environment con-
straint, vaccine.

I. INTRODUCTION

Malware is a severe threat to our computer systems. To
combat malware, the state-of-the-art defense at end-hosts
mainly focuses on detection techniques, which often fall into
two categories: signature-based detection and behavior-based
detection. A signature-based approach typically attempts to
extract some unique string patterns from malware binaries.
Unfortunately, the signature generation and update speed
usually cannot keep up with the quickly increasing malware
samples each day in the wild due to the wide use of
polymorphisms/packers in malware. While a behavior-based
approach could be relatively more stable in terms of detecting
the same set of malware and their variants, it is typically very
expensive and may cause a noticeable performance overhead
on end hosts.

Therefore, the need of new lightweight and complementary
techniques for effective malware defense is still pressing.
Interestingly, we find malware infection works similarly to
pandemic diseases. Since a widely used approach to prevent

further infection of our human beings from the same disease
is through injecting vaccines, if we were able to generate
vaccines for a piece of malware, we would have been able
to prevent it from infecting a wider range of machines
(considering the case of botnets). Fortunately, we find
malware often contains system-resource-sensitive condition
checks or constraints to avoid any duplicate infection, make
sure to obtain required resources, or try to infect only targeted
computers, etc. For instance, many fast-spreading malware
programs (e.g., Conficker [28]) will clearly mark an infected
machine as infected such that they can avoid wasting time
and effort in re-infecting the machine. As such, this infection
marker can be considered as an effective and safe vaccine
to immunize a clean machine from the same infection.

In general, any system resource/environment variables that
are directly or indirectly used in path conditions (such as
registry, mutex), or those that lead to the failure of certain
system calls, can all be considered for vaccine generation,
because these external environment state can impact the
behavior of the malware. While it might lead to an over
approximation by considering all these state variables, we
can run vaccine tests to eliminate the mistakenly classified
environment variables, similar to the biological vaccine test
in the real world.

Based on the above observation, in this paper, we pro-
pose AUTOVAC, a new technique to automatically generate
vaccines for effective and efficient malware immunization
from the same infection. While theoretically manipulating any
variables that lead to a conditional check of malware execution
could potentially be used as a vaccine, we would like to focus
on the variables whose states can be controlled by the external
environment such as registry, certain file names, etc. As such,
the environment resources accessed by malware are of our
interest. Specifically, we design a program analysis technique
to determine whether the manipulation of these resources can
successfully prevent malware’s infection/execution. We treat
such resources as our malware vaccines and derive concrete
information needed for generating vaccines. After we generate
the vaccines, we then inject them into end hosts. To the best
of our knowledge, AUTOVAC is the first systematic work of
using program analysis to automatically generate vaccines



for real-world malware immunization.
In summary, this paper makes the following contributions:
• We conduct the first systematic study of malware vaccine.

We discuss all possible mutable resources of our vaccine
interest, and present a taxonomy of malware vaccines.

• We design and implement AUTOVAC, which can auto-
matically track the malware path constraints as well as
their propagation, associate them with the external envi-
ronment resources, and automatically generate vaccines.

• We evaluate our system with a large set of real-world
malware samples. Experimental results show that it is
truly possible to generate working vaccines for many
real-world malware families, such as Conficker, Sality,
and Zeus, and use vaccines as a complementary approach
in practice.

II. PROBLEM STATEMENT AND APPROACH OVERVIEW

A. Malware Vaccine Background

Definition of malware vaccine The concept of vaccine is
originated from biology. It refers to a biological preparation
that improves immunity to a particular disease by injecting
certain agent that resembles a disease-causing microorganism.
The malware vaccine idea was initially mentioned by David
Ferbrache in his 1992 book [8]. As stated in the book, “With
the computer environment fragments of viral material may
also be used-in this case the signature recognition strings
which the virus uses to prevent repeated replication. These
fragments may safely be added to existing cells and will
protect against the virus.” Unfortunately, he only briefly
talked about this high level features of vaccination and did
not systematically explore this problem further.

Throughout 20 years evolution of malware, when we
revisit the vaccination idea, we realize that we can further
explore this problem in the new context of complex malware
(e.g., targeted malware) defense. From our viewpoint, a
malware vaccine is a computational preparation that improves
immunity to a particular malware program. Essentially,
malware, like any generic program, usually conducts a
series of operations on system resources and outputs the
computation result. These system resources in a computer
system is analogue to the microorganisms in our body.

Thus, we define a malware vaccine as a specific system
resource (or a collection of them) that is created or used
by malware in order for its normal infection and execution.
Such malware vaccine typically has two kinds of behavior:
• It simulates the existence of certain computer organism

(system environment/resource) such that malware will
exit upon the awareness of such existence (because it
does not want to re-infect the victim again, or the victim
does not have a targeted environment, etc.).

• It prevents malware from creating/accessing certain
critical computer organism such that malware cannot
obtain its essential resources to fulfill the functions.

A taxonomy of malware vaccine Besides the aforemen-
tioned mentioned categories of malware vaccines, we can
further define different vaccine types from different perspec-
tives.

First, from the perspective of identification, the vaccine
identifier is defined as a combination of resource type and
name of malware-targeted resources. To avoid vaccines’
unwanted side effect to benign software running on end-
host, the vaccine identifier should be as unique and deter-
ministic as possible. Thus, in our taxonomy, an identifier
can be categorized as: static (e.g., constant value), partial
static (e.g., it conforms to a specific regular expression), or
algorithm-deterministic (e.g., it is calculated with customized
algorithms).

Similar to biological vaccines that may not guarantee the
complete protection from a disease, the effectiveness of a
malware vaccine can vary. Based on the effectiveness, we can
classify malware vaccines into two types: full immunization
that can completely cease the malware execution (e.g.,
negating the first few condition checks to prevent any
malicious behavior execution), and partial immunization that
significantly affects the execution of some major functions
in malware (e.g., malware is not able to keep persistent in
the system if rebooted, or malware is not able to perform
key network communication such as C&C, self-updating).

In terms of vaccine delivery and deployment, there could
be two categories: direct injection and creation of vaccine
daemon. Direct injection is very lightweight, e.g., a specific
mutex name or file name, and the vaccine can be simply
injected into the target computer once and it will be effective
afterwards. Vaccine daemon requires running a service
program (i.e., a daemon) on the targeted machine, and such
daemon can prevent the creation (or other access types)
of certain specific files, registries, libraries, system services,
windows, processes to further prevent malware from obtaining
critical resources or information to fulfill its functionalities
(such as for partial immunization). More details are presented
in §V.

It is worth noting that an ideal malware vaccine is
those with full immunization and one-time direct injection.
However, other types of vaccines are also useful, as discussed
later and shown in our evaluation (§VI).

Use Case of Vaccines As a complementary technique to
existing malware defense, vaccines may not be used to
protect machines from all malware attacks. However, they
can be used for current, high-profile, large-scale malware
propagation and infections, which may last for a period of
time, e.g., several days, weeks, or months. If we can capture
the binary at the initial infection stage, we can quickly
generate vaccines and protect our uninfected machines from
the attacks, until a better detection or prevention solutions
(e.g., a system/software patch to fix the vulnerability) are
available and fully deployed.
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Figure 1. System Architecture

Target and assumptions It is well-known that not all
diseases can have vaccines. Similarly not all malware
can have vaccines. Our target is those malware that has
specific system-resource-sensitive behavior, illustrated in the
following scenarios:
• Some malware can work only in the scenario in which

none of the same malware instances is present in the host.
Thus, they have to uniquely mark their infected systems
through creating and checking certain deterministic
identifiers such as mutex, file, as shown in the Conficker
example. Our vaccine can hence appear to be the
infection marker to fool the malware and stop its
infection.

• Some malware has issues in handling the failure of
certain system resource access. Our vaccine can try to
enforce such failures to make the malware run into their
undesired status (e.g., process termination, or important
functions being disabled).

• Some targeted malware is designed to work in a specific
system environment. Our vaccine can attempt to make
each protected system different from malware targeted
environment, so as to be immune from the infection.

It is true that some malware may not use system resource
checks to make their infection decision. That is, AUTOVAC
does have limitations and we discuss in great detail on the
possible evasions in §VII. We note that while evasions are
possible, most of these scenarios are not within the scope and
assumptions of our approach. The intention of AUTOVAC is
not to replace existing defense approaches, but to complement
them from a new perspective. As we show later, once we can
successfully extract interested system resource constraints
and generate vaccines, we can effectively and efficiently
immunize machines from the same malware infection.

B. Approach Overview

An overview of AUTOVAC is illustrated in Figure 1. At
a high level, it consists of three phases: Candidate Selec-
tion,Vaccine Generation, and Vaccine Delivery/Deployment.

In Phase-I (§III), we will first filter out malware samples
that are unlikely to contain vaccines. In this step, we profile
the normal execution of the malware to obtain an overview

of the malware’s accessed system resources, including such
as the types of resources and the names of the corresponding
resource-identifiers, the operations (e.g., create, read/write)
on the resources, and the corresponding results (e.g., succeed,
or fail).

During our profiling, we will also apply a variant of
dynamic taint analysis [9] to determine whether the malware’s
execution will be affected by certain resources it has accessed.
The implication is that malware has to be sensitive to its
resource access result. Otherwise, malware’s behavior is
deterministic regardless of its resource environment and
no vaccine will exist for it. Hence, if we find no program
branches depend on any system resource, we filter this
malware because it does not contain vaccines that we can
extract. At the end of this phase, we obtain a list of candidate
resources that can affect the control flow of the malware
execution.

In Phase-II (§IV), our task is to generate vaccines by
testing their exclusiveness and impact on malware execution.
It contains three sub-steps.
• Step-I: Exclusiveness Analysis In general, system

resources are also being used by benign programs. In
this step, we would like to filter the resource identifiers
that are not exclusive to malware itself (e.g., some
benign programs also uses them), in order to avoid
false positives.

• Step-II: Impact Analysis The goal of this step is
to measure the potential impact of a certain system
resource, i.e., whether it can affect the execution of some
interested malware functions. We start a second-round
execution monitoring by manipulating the result of the
specific malware’s resource operation, which will gen-
erate a manipulated trace. We apply program alignment
techniques [10] to compare the execution differences
between the manipulated trace and the normal trace,
and determine if the system resource can (significantly)
impact the malware functions, e.g., cause malware to
stop the execution. At the end of this step, we generate
a list of resources that can effectively stop the malware’s
infection (full immunization), or significantly affect the
malware’s certain functions (partial immunization).



• Step-III: Determinism Analysis We also have to
measure the determinism of the specific system resource
identifier, e.g., filename or mutex name. An effective
malware vaccine should be deterministic, such that it
can be accurately reproduced/predicted to affect the
targeted malware. A deterministic value could be a
fixed/static value, or a value that is generated from a
deterministic algorithm (from deterministic resources)
or even partial static if certain part is deterministic. To
decide if a specific resource identifier is deterministic,
we perform backward taint analysis and program slicing
to fully understand the identifier generation logic and
the parameters it depends on. Based on that, we further
analyze the root-cause of the identifier generation, and
generate a program slice responsible for the identifier
generation logic.

In Phase-III, we deploy the malware vaccine at an end host.
There are also two situations: direct injection and vaccine
daemon. We will present their details in §V.

III. PHASE-I: CANDIDATE SELECTION

Given a malware sample, AUTOVAC will first determine
whether it is possible to generate a vaccine, and at the same
time collect the behavior information to facilitate the next
step analysis. Since our vaccine is essentially composed
of system resources that have a direct or indirect (through
propagation) impact on the malware execution, we adopt a
variant of dynamic taint analysis [9] to achieve this.

A. Taint Sources

Taint sources define the origins of the tainted data. Our
current focus is on those system-resource-related data that
can possibly impact the malware behavior. However, there is
a wide range of system resources and certainly some of them
cannot be used such as system-assigned random objects. As
such, we have to systematically study these resources and
identify our taint source. In particular, we use the following
criteria to decide whether a system resource should be tainted.
• Unique Presence Our focused system resources should

be commonly used by malware, and these resources
should be uniquely identified. Thus, those transient
system resources, e.g., events, signals, critical sections,
are out of our interest.

• Less Impact to Benign Software Our targeted re-
sources should have little or minor impact to be-
nign programs. This requirement would exclude many
system-wide objects and information, such as timers,
performance counters, input/output devices, removable
devices, because they are commonly accessed by benign
programs

• Easier Deployment Our targeted resources should be
lightly deployed onto end-hosts as vaccines. To this end,
injecting some specific files or mutex into the end-host

would be viable options. Therefore, files, mutex, or
registry will be our main targeted resources.

API Labeling After applying the above criteria, eventually
mutex, static files, and registry items are of our particular
interest. Meanwhile, the propagation use of these resources
such as process, library, GUI window and services are also
of our interest because these resources depend on some
deterministic resource identifiers. However, at the instruction
level, these resource-identifiers often get accessed through
system APIs. Thus, we have to examine each Windows API
to define our taint sources.

More specifically, all the system resource access APIs (e.g.,
NtQueryObject) are of our interest. AUTOVAC will taint
the return values as well as the affected arguments of these
functions. In our design, we examined over 800 windows
APIs and we classify them into the following two categories.
• Tainting the return value Most APIs only affect

the return values (always stored in EAX), such as
OpenMutex, NtSaveKey. For them, we just taint the
return value.

• Tainting the argument Some APIs store the affected
values in the arguments. For instance, NtOpenKey and
NtOpenFile store the return handler in their first
parameters.

Besides tainting the return values or arguments, we also
need to record the concrete values of the arguments to these
APIs because eventually our vaccines work by affecting the
system environments which are their arguments. Meanwhile,
not all the arguments are of our interest, and only those
resource-identifiers. This is also a tedious procedure to
identify these resource-identifiers. Table I shows an example
on how we label the two Windows APIs.

OpenMutex ReadFile
Resource Type Mutex File
resource-
identifier

3rd parameter: lpName 1st parameter: hFile for
Handle Map

Success EAX: Valid Handle Value EAX: TRUE
Failure EAX: NULL, EAX: FALSE

GetLastError: 0x02 GetLastError:
0x1E

Table I
LABELING EXAMPLES FOR OPENMUTEX/READFILE

B. Taint Propagation
AUTOVAC has to propagate taint labels for data operations.

That is, for any instruction whose source operand has been
associated with the tainted labels, we taint the destination
operand with the same label. Then whenever we find a
comparison (i.e., predicate) instruction whose operands have
been tainted (e.g., test,cmp), we will flag this malware
most likely having a vaccine and pass it to our next phase
analysis.

Output from Phase-I: As our Phase-I runs the malware in
normal settings, it provides a great opportunity to collect



the normal malware behavior. To this end, we log all the
executed APIs as well as their parameters, along with the
precise calling context information including the call stack
and the caller-PC (program counter). In addition, our log file
also contains the list of the system-resource-sensitive APIs
that have been executed, and their propagated taint record
that is used in the predicate.

IV. PHASE-II: VACCINE GENERATION

Once a malware sample has been flagged to “possibly
have a vaccine” in Phase-I, it will be fed to our Phase-II to
perform a deeper analysis, including exclusiveness analysis
(§IV-A), impact analysis (§IV-B), and determinism analysis
(§IV-C). In this section, we present these analyses in greater
detail.

A. Exclusiveness Analysis

The goal of our exclusiveness analysis is to exclude the
resources that have been used in benign software. For instance,
some resources such as library names uxtheme.dll,
mscrt.dll could be used in benign programs. We must
exclude them otherwise our vaccine will have false positives.

In Phase-I, AUTOVAC has logged all the resource-
identifiers, and next we would like to query whether or not
each identifier is unique to the malware. Our basic idea is
inspired by a Googling approach used in previous studies [29].
Essentially we use Google query APIs to search resource-
identifiers. Based on the return results and their context, we
infer whether these resources are already associated with
benign software. We refer readers to [29] for more details. In
short, from our search query, if the resource-identifiers does
not conflict with benign software or there is no any matching
search result, then we proceed with further analysis.

B. Impact Analysis

Given a list of the system resources that can (in)directly
affect the malware execution and the corresponding APIs
provided in Phase-I, AUTOVAC will run the malware again in
a controlled environment such that we can mutate the return
value or involved arguments, and test whether malware will
exhibit different behavior or not. Our current design is to
mutate each involved API one at a time, and compare the
behavior with our normal execution captured in Phase-I.

Trace Differential Analysis Then the next question is how
we compare the malware behavior in two traces: one is
a normal execution, and the other is a resource mutated
execution.

Finding the differences in two traces has been discussed
in previous literature (e.g., [10], [27]). It is essentially a
program alignment problem [10]. The basic idea is to align
two execution points that are equivalent to each other and
then compute the differences only between the unaligned
instructions. In our scenario, we try to obtain the high-level
information such as whether the malware will terminate

Algorithm 1 Differential Analysis on the API-Call Traces∏
m: Manipulated Call Trace,

∏
n: Natural Call Trace

∆m: Unaligned Call Trace in
∏

m, ∆n: Unaligned Call Trace in
∏

n,
f∏: 〈name, caller eip, parameter list〉, f∆: 〈name, parameter list〉

1: ∆m ← ∅,∆n ← ∅
2: for call f∏

m
in

∏
m do

3: for call f∏
n

in
∏

m do
4: if isAligned(f∏

m
,f∏

n
) then

5: GOTO FIND_ALIGNED
6: end if
7: end for
8: ∆m = ∆m

⋃
f∆m

9: end for
10: ∆n =

∏
n

11: FIND_ALIGNED:
12: ∆n =

∏
m[0, index(f∏

n
)]

13: {f∆i
}=Diff(∆m,∆n)

14: return {f∆i
}

rather than the minor instruction level execution differences.
Thus, in our design, we use the API call sequences (as we
have already logged all the executed APIs and their calling
context information), and present an API sequence alignment
algorithm as shown in Algorithms 1.

In particular, we adopted an alignment algorithm from
Zeller [10], which uses the execution context for each
instruction for the comparison. If the instruction and its
execution context are equivalent (line 4), they are aligned
together. However, we do not need to compare instruction
by instruction, but rather at the granularity of APIs. Thus,
we define a calling execution context as a triple:

<API-name, Caller-PC, Parameter list>
For the parameter list, we only compare the static parameters
that are identical across different executions. Note that all
these information has been logged either in Phase-I for the
normal execution, or logged in Phase-II for the mutated
execution. Also, the reason we have to log the Caller-PC is
for the preciseness.

As illustrated in Algorithm 1, our analysis begins from the
start of the trace, then proceeds with a linear searching for
each system/library call in the mutated trace, and examines
whether it could be aligned with some call in the normal run
trace (line 2 − 8). If we find an anchor point, we generate
two difference sets ∆m and ∆n.

Next, we examine the two ∆ sets to evaluate the further
differences, and classify the vaccine immunization type.
Specifically, we define three kinds of immunization effects.

Full Immunization If we find APIs such as ExitThread,
TerminateProcess, and TerminateThread in ∆,
then certainly the mutated system resources can be served as
a full immunization vaccine, because the malware has killed
itself.

Partial Immunization Some vaccines may significantly
weaken certain important functions of malware. We consider
them as partial immunization vaccines. More specifically,
we currently focus on the follow four types of partial



immunization:
• Type-I: Disable Kernel Injection An important mali-

cious function of malware is to raise its privilege. The
common way they use is to inject a kernel driver into
an end host. There are several system calls (mainly
undocumented) such as OpenSCManager have been
used for this. Furthermore, some malware commonly
copies itself as a new file with its name ending with
.sys, which implies that some kernel driver is created
by the malware.

• Type-II: Disable Massive Network Behavior If we
find the normal execution is full of network-related
functions, while the manipulated execution is clean from
such calls, we consider such vaccine as Type-II Partial
Immunization.

• Type-III: Disable Malware Persistence Malware typ-
ically modifies specific registry entries such as Run
subkeys in mutliple register paths. Other autostart
approaches include (a) file operations on startup
folder or system.ini files, (b) creation of new ser-
vice entries, (c) access of winlogon binary. Through
differential analysis we can tell if these operations are
lost in the mutated execution while present in the normal
execution.

• Type-IV: Disable Benign Process Injection To be
more evasive, malware often inject themselves into some
benign processes. Processes such as explorer.exe
and svchost.exe are common targets. If we find
such a clear pattern in the differential analysis, we con-
sider these vaccines as Type-IV Partial Immunization.

No Immunization If none of the above APIs are in the ∆,
then we classify this vaccine with no effect to stop or affect
malware behavior.

C. Determinism Analysis

We next need to verify the determinism of the extracted
resource-identifiers.

Backward Taint Tracking and Program Slicing Given
a resource-identifier, we need to identify whether it is
deterministic or entirely random. We choose to trace the
root-cause for the generation of the resource-identifier.

To back track the procedure of how malware generates an
identifier, we perform a backward taint tracking. The basic
idea is to include all the instructions that have contributed to
the creation of the resource-identifier, which is the argument
of the API of our interest. To this end, starting from data-use
of the argument, we back track each executed instruction
to check whether or not their operands have been involved
to define the data. If so, we taint the source operand as the
same symbol and continue the backward propagation. We
perform the analysis offline on logged traces.

The termination of our backward tracking is the point to
identify the root-cause that generates the identifier’s name.

L2

Call  CreateFile(fileName, …..)

1. push 0x0092453C

0x0092453C
“\\.PIPE\

_AVIRA_2109”

.rdata
1.  call GetComputerName

2.  push eax

…..

3.  push 0x0092653C

4.  push 0x16

5.  lea eax, [ebp-1c]

6. push eax

7. call _snprintf   

8. mov  eax, [ebp-1c]

….

9. push eax

0x0092653C “Global\\%s-99”

1.  lea eax, [ebp-1C] 

2.  push eax

…..

3   call GetTempFileName

4.  lea eax, [ebp-1C] 

…..

5.  push eax

L1

Execution Direction

Backward Analysis Direction

Static 

Algorithmic-

deterministic 

Totally-Random

Figure 2. Sample Malware Code and the Traced Behavior

We continue backward propagation until tainted source is
either from read-only regions (e.g., static strings), or constant
values, or the return value of the system APIs. Based on
these different sources, we decide whether the generation of
the identifier is deterministic or not.

An identifier has a non-deterministic type if and only
if all elements of its composition are resulted from some
random functions (e.g., GetPerformanceCounter and
GetTempFileName). As illustrated in the left part of Fig 2,
if the termination data point is from a read-only segment
such as .rdata, or constant values, we can easily mark it
as static. Similarly, if an identifier is constructed using some
non-deterministic value combined with some constant value,
we can mark it as partial static, and such an identifier will
be deployed using a slightly different strategy compared to
the scenario of purely static identifier.

An identifier could be algorithm-deterministic, namely, its
identifier is generated through certain computation. Some
appear-to-be random name can be generated from some
invariable seed, such as computer name or hardware serial
number. Algorithm-deterministic names will be backward
propagated to some semantic-known APIs. We use these APIs
to decide the root-cause type when generating the name. One
example is shown in the middle part of Figure2. We use
the GetComputerName to infer that the input should be
a computer name.

For such algorithm-deterministic identifier, we also need
to find the generation logic because we need to replay and
compute it for each end-host. We apply the existing backward
program slicing [20] techniques to extract an independent,
executable program slice for that. At the end of this step, we
delete all the entirely random (non-deterministic) identifiers.



D. Malware Clinic Test
To further reduce the possible false positives, we design

a Malware Clinic Test at the end of this phase. With the
analogue of the production of biological vaccine, Malware
Clinic Test aims to inject our vaccine into real environments
and test whether it will affect the normal use of a computer
system. This test environment is automatically configured by
running multiple benign software and services. Even though
the scheme of clinic test is simple, it is essential to ensure
the quality of our generated vaccine. If it affects the normal
usage, it will be discarded.

V. PHASE-III: VACCINE DELIVERY AND DEPLOYMENT

After we generate the vaccine, we next describe how to
deliver and deploy the vaccines to an end-user computer.

Direct Injection Direct injection works for static identifiers.
If a vaccine stops malware execution by frustrating the
presence checking of static type of resources, we inject it by
creating or deleting the resources. For instance, if the malware
needs to open certain static file (or registry) before proceeding
the malicious functionality, then we remove the static file (or
registry), or vice versa. Moreover, we accordingly adjust the
injected file’s access privilege to disallow certain operation
such as read and write. In these cases, when a low-privilege
malware program attempts to access a resource, which is a
common case at the initial infection stage, static vaccines
efficiently stop further malicious behavior.

Vaccine Daemon Vaccine daemon works for algorithm-
deterministic identifier and partially static identifier. For
an algorithm-deterministic identifier, we have extracted a
program slice of the resource-identifier generation logic with
knowledge about its input, such as a computer name or an IP
address. To generate the vaccine, we collect these information
ahead and run the captured program slice. Such procedure
works very similar to Inspector Gadget [20]. Our daemon
process runs periodically to check whether the input has been
changed and the vaccine needs to be re-generated.

Vaccine daemon is also designed for identifying resource
name represented using regular expressions (i.e., distinguish-
able partial static vaccines). Specifically, at the end host, we
dynamically intercept the APIs and resolve their resource-
identifiers. If the daemon monitors that a resource identifier
matches with our partial static vaccine, it will return the
predefined result to stop the malware execution.

VI. EVALUATION

We have implemented AUTOVAC. While our online dy-
namic analysis can be implemented using virtual machine
monitors such as TEMU [5], we use DynamoRIO [2] to
implement due to its simplicity and flexibility in binary instru-
mentation. Our differential analysis module is implemented
using offline parsing of the execution logs. Also, to perform
tainted analysis we translate the X86 instructions into an

Category # Malware Percentage
Trojan 184 10.72%

Backdoor 722 42.07%
Downloader 574 33.44%

Adware 73 4.25%
Worm 104 6.06%
Virus 59 3.43%
Total 1,716 100%

Table II
MALWARE’S CLASSIFICATION FROM VIRUSTOTAL

intermediate language BIL [12], and then we develop our
own parser code to identify the resource-sensitive branches
and perform differential analysis. Our exclusiveness analysis
involves a search engine query component, for which we
implement using the the API provided by Google. In this
section, we present our evaluation results.

A. Experiment Dataset

Our test dataset consists of 1, 716 malware samples, which
are collected from multiple online malware repositories (e.g.,
[1], [3], [4]) with mostly from Anubis [1]. We also leverage an
online malware classification tool, VirusTotal [6], to obtain the
classification information for these malware. We summarize
classification results in Table II. We can see that these
malware samples fall into 6 categories such as Backdoor
(722 samples), Downloader (574 samples) and Trojan (184
samples).

B. Evaluation Result on Candidate Selection

In the first step (Phase-I), we monitor malware’s access
to system resources. We conduct this experiment by running
these 1, 716 malware samples in our analysis environment
and each sample runs for 1 minute (we tend to believe
the resource checks usually happen in the early stage of
the malware execution and we thus choose this 1 minute
threshold). We hook 89 system/library calls as tainted sources
that are related to resource operations. The resources in
our evaluation include file, mutex, registry, window, process,
library and service. We measure the basic operations for these
resources such as read/write for file and registry, open/create
for other resources. Meanwhile, for each execution instance
of the hooked function, we examine their callers’ PC and
make sure it does not belong to the system library’s address
space. Thus, we do not count the functions that are called
inside the system/library calls.

For 1, 716 malware samples, we successfully tracked
460, 323 occurrences of these API calls. Through our taint
analysis in this phase, we identified that 371, 015(80.3%)
occurrences of the calls will possibly deviate the execution
of the malware samples. This result confirms that real-world
malware is indeed resource sensitive.

Among these 371, 015 occurrences, we further made a
statistic study based on the resource type and its corre-
sponding operations. The result is shown in Figure 3. From



Resource Full Type-I Type-II Type-III Type-IV All
File 31 19 17 110 61 238

Registry 10 11 3 72 19 115
Mutex 5 3 3 16 3 30
Process 2 5 2 18 5 32

Windows 0 4 3 8 3 18
Library 19 5 1 10 19 54
Service 7 4 0 17 21 49
Total 74 51 29 251 131 536

Table IV
EVALUATION ON VACCINE GENERATION

the figure, we can see that around 37.39% of the resource
accesses account for file operation. Mutex (7.07%) and
registry (20.08%) are also commonly accessed by malware.
We consider these three types of resources can be efficiently
delivered using the injection scheme. Meanwhile, malware’s
logic is also commonly sensitive to other types of resources
such as windows (13.14%), process (8.02%), library (6.6%)
and service (3.4%).
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Figure 3. Statistics on Malware’s Resource Sensitive Behaviors

C. Evaluation on Vaccine Generation
In the evaluation, we analyzed all 1, 716 malware in a

controlled environment. In total, we generated 536 vaccines
that belong to 210 malware samples. The result is presented
in Table IV. For each column, we classify the vaccines as full
immunization or partial immunization (Type-I to Type-IV).
We also list the statistics on the vaccine distribution among
different resource types in Table IV. Among all vaccines, we
find 373 vaccines have static identifiers, and 163 samples
have algorithm-deterministic or partial static identifiers.

To zoom-in the details of these vaccines, we select 10
representative samples and describe them in Table III. We
can see that most of these vaccines stop several logic of
malware’s infections. In some cases, different operations on
the resources can even cause different effects on malware’s
logic. For example, for the last malware in Table III, we find
that the failure of creating a file will stop malware’s process

Vaccine Backdoor Trojan Worm Adware Downloader Virus
Type
File 33% 27% 24% 30% 45% 81%
Registry 15% 29% 21% 13% 20% 19%
Windows 3% 14% 0% 47% 11% 0%
Mutex 8% 12% 29% 0% 2% 0%
Process 8% 7% 14% 0% 10% 0%
Library 26% 9% 4% 0% 7% 0%
Service 7% 2% 8% 10% 5% 0%
Deployment
Direct 67% 79% 63% 69% 69% 84%
Daemon 33% 21% 37% 31% 31% 16%

Table V
VACCINE STATISTICS ON DIFFERENT MALWARE FAMILIES

hijacking logic, and the failure of writing a file will crash
the malware process.

For the generated 536 vaccines, we also combined their
types with the 210 malware’s classification information to
see what is the common vaccine type for different kinds
of malware. The result is shown in Table V. From this
table, we can see that the file resources are the common
vaccines for many malware families. Meanwhile, the windows
resource vaccine is better suitable for adware because the
windows resource vaccine is attempting to prevent adware
from creating their malicious windows. If such operations
fail, adware will possibly stop their further action. Last but
not least, mutex vaccine works better for worm and backdoor
malware. This is also reasonable, because these malware
highly depends on the mutex to prevent duplicate infection.

We also report the statistics of our vaccine delivery for
these 536 vaccines. As shown in Table V, direct injection
is the most common way to deploy vaccines on end hosts.
Also, only about 20%-30% vaccines need a daemon for the
deployment.

D. Vaccine Case Studies

Next, we present two representative case studies to illustrate
in greater details on how each of our resource access based
vaccines can be used for malware infection immunization.

File-based Vaccines One vaccine for Zeus/Zbot [7] family
is a static file named sdra64.exe which is stored in the
system32 directory. We observe that if Zeus successfully
creates this file, it will continue writing malicious bytes into
that file using bytes in its resource and start a new process
using this file.

Delivery: We deliver a vaccine by deliberately creating
sdra64.exe at an end host. This file is owned by a super
user and does not allow any creation operation by others.
In this way, our vaccine prevents Zeus’s attempt to start the
malicious process.

Mutex-based Vaccines: One mutex vaccine is for Conficker,
which is an algorithm-deterministic vaccine. This mutex
vaccine can efficiently stop Conficker’s infection at its
initialization stage.



Seq Type OperType Impact Identifier Malicious Sample Md5
1 Mutex E T !VoqA.I4 df1df624c5da833d3882d22a2e2456c9
2 File C,R,W P,H %system32% \twinrsdi.exe 1b6fb589f36654af0ef44aa92f94324a
3 File C,E,R, P,H,N %system32% \dwdsregt.exe 24784256bbbb936dc1e0999c307883c8
4 File C,E,R,W K,P %system32%\driver\qatpcks.sys 27d18e20e253391112d50b2b49440aea
5 Mutex E T GTSKISNAUOI ee5878eab962b032c78c1d6eec7ec917
6 Mutex E P,H fx221 af48ecfcc1812d6f814a26792107b80e
7 Mutex C,E T )ryt-24qtqq26sn]9c b534b75da5fc3b9b178c60bf10b1feca
8 Mutex C,E,R P,H _AVIRA_2109 04a93b1f08a1675c67c9975a7024c3d6
9 File C,E,R,W P,H %system32% \ shlmon.exe af48ecfcc1812d6f814a26792107b80e
10 File C,E,R,W T,P %system32%\sdra64.exe 04a93b1f08a1675c67c9975a7024c3d6

Table III
VACCINE SAMPLES (OPERATION TYPE SYMBOLS - CHECK EXISTENCE (E), CREATE (C), READ (R) AND WRITE (W), IMPACT SYMBOL - TERMINATION

(T), PROCESS HIJACKING (H), PERSISTENCE (P), KERNEL INJECTION (K) AND NETWORK MASSIVE ATTACK (N))
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Figure 4. Distribution of BDR

Several other mutex examples include _AVIRA_21099,
_AVIRA_2109, _AVIRA_2108, which belong to
Zeus/Zbot [7] malware. This set of vaccines can stop
multiple malware logic such as kernel injection, process
hijacking, and network communication.

Delivery: Direct injection is an efficient approach to deliver
mutex vaccines. We simply create a deterministic _AVIRA_
mutex in the system to prevent Zbot’s injection. For Conficker,
we run the vaccine slice once at the end host and generate
the mutex name for each computer.

E. Vaccine Effect Analysis

In this test, we evaluate the effect of our vaccines on the
malware samples. As reported in §VI-C, our vaccines can stop
or weaken 210 samples’ malicious behaviors. In this test, we
run these 210 samples in both vaccine-deployed environment
and the normal infection environment for 5 minutes. Then we
compare the differences of their native system calls (all the NT
native calls) in these two environments. We define a metric
Behavior Decreasing Ratio, BDR = Nn−Nd

Nn
, where Nn is

the number native system calls in the normal environment
while Nd is that number in the vaccine-deployed environment.
The larger BDR is, the more reduction of functions by the
vaccines. In Figure 4, we report the distribution of BDR
according to different vaccines’ effectiveness type.

From this figure, we can see that the full immunization

Malware Vaccine Type Impact Description
Zeus/Zbot _AVIRA_2109 mutex Stop process hijacking

Table VI
EXAMPLE OF A HIGH-PROFILE MALWARE VACCINE

vaccines are obvious the most effective ones and they all
terminate the execution of malware (the reason why their
BDR is not 100% is simply because of their initial executions
before exit also have some native system calls). Our partial
immunization vaccines all effectively achieve their goals by
disabling key functions in the malware (through a careful
manual examination, we confirm that all unwanted malicious
logic has been disabled). One such example for Zeus is
shown in Table VI. Even in the worst case in terms of BDR,
our partial immunization vaccine can still reduce at least
24% malware’s important system call activities. Note that
BDR will certainly increase if we keep running the malware
sample in a longer time period.

To further verify that our vaccines are effective for different
variants in the same malware family, we choose 6 high-profile
malware samples and perform another test. These samples
are high-profile malware such as Conficker, Zeus/Zbot, and
Sality, and for these 6 samples we have extracted a total of 17
different vaccines in our previous test. We then further collect
5 variants (binaries are different from what we have collected
in the original dataset) belonging to each family (thus 30
new variants in total). Then we run the 30 new collected
variants in both normal and vaccine-injected environments,
similar to the previous experiment. We carefully analyze
the execution differences and manually verify whether the
injected vaccines have achieved the goal or not. The result is
showed in Table VII. Note that the 4th column indicates the
number of malicious functions that can be stopped if ideally
these vaccines work for all variants, the 5th column indicates
the actual number from our test, and the 6th column shows
the percentage of success.

From the result, we can see that overall our vaccines can
take effect in almost all variants. However, we do find that
some vaccines can work for some variants but fail on others.
One example is the file vaccine sdra64.exe which we



Malware Vaccine# Type Ideal Case Verified Ratio
Zeus/Zbot 6 mutex, file 30 23 77%
Conficker 2 mutex 10 10 100%
Qakbot 2 registry 10 10 100%
IBank 1 file 5 5 100%
Sality 3 mutex,file 15 12 80%

PosionIvy 3 mutex,file 15 10 67%
Total 17 85 70 82%

Table VII
VACCINE EFFECTIVENESS EVALUATION ON MALWARE VARIANTS

did not find its use in 2 other Zbot variants. Fortunately, for
each malware, we have extracted more than one vaccines.
Thus, even some may not be effective for all variants, the
combination of these vaccines can still achieve satisfiable
results. We believe this test also highlights the importance of
using an automatic tool (such as our AUTOVAC) to analyze
malware samples to extract as many vaccines as possible, a
goal otherwise very hard to achieve through manual analysis.

False Positive Test Our next test is on the false positive
evaluation, i.e., whether our generated vaccines will affect
the normal program executions. We design a simple malware
clinic test as mentioned in §IV-D.

First, we install 5 different virtual machines running over 40
benign software (which includes the most common software
typically seen on normal users’ computers such as all kinds
of browsers, programming environments, multimedia appli-
cations, Office toolkits, IM and social networking tools, anti-
virus tools, and P2P programs). Then we equally inject our
vaccines into each test machine and monitor their system logs
over a period of a week. The result shows that our vaccines
did not cause any problem to our running environments.

One could argue that this automatic test may underestimate
users’ interaction. Hence, we conduct another test to install
200 vaccines on 4 lab machines. All these four machines
are for normal everyday use. The result also shows that our
generated vaccines did not cause any trouble for the operation
of existing benign programs. While our clinic test could have
a limited scope, we believe a well-designed clinic test is still
helpful to refine our automatically generated vaccines in a
real-world scenario.

F. Performance Overhead

1) Vaccine Generation Overhead: First, we measured the
overhead of the automatic extraction of vaccines. We run our
test on machines with Intel Core i5 CPU and 6GB memory.
• Generating the Vaccine In our test, we measure the

time spent on analyzing the function traces, extracting
the identifiers and filtering out common identifiers using
search engine and pre-built whitelist. For each sample,
it took 789 seconds to fulfill all these tasks on average.
For backward slicing, we find it took 214 seconds on
average for each identifier. Meanwhile, the longest case
is 530 seconds and the shortest case is 30 seconds.

• Impact Analysis We measure the overhead of our offline
parsing part to handle two execution traces with 1 minute
malware running time. The overhead for 500 cases is
around 24 hours. It means that for each case, it takes
around 2 − 3 minutes to verify its impact.

We note that the vaccine generation is a one-time effort
in the analysis environment. The more important overhead
that users care about is the one on their end hosts.

2) Vaccine Deployment Overhead: We now report the
deployment overhead on each end host.

For static and algorithm-deterministic vaccines, the over-
head is negligible (almost zero) because in most of the
time we only need to install some system resource or
replay the resource-identifier-generation slice for one time.
In our experiment, it takes only 34s to install all the 373
static vaccines onto one end-host machine. It includes
copying/activating the resources and correctly set up their
privileges. For 44 algorithm-deterministic vaccines, we need
to run vaccine program slices on the machine. It takes
1, 131s (25.70s for each vaccine on average) to deploy all the
vaccines. Note these vaccines are packed with installation
scripts and there is no user interactions involved.

For partial static vaccine, it adds a little more overhead to
the end host. The overhead mainly comes from the identifier
comparison after we intercept the call. In our test, the highest
extra overhead is below 4.5% for injecting 119 partial static
vaccines. Among 4.5% overhead, around 3.9% comes from
the function hooking, which is relatively stable even the
vaccine number increases. Hence, it could be expected that
even the number of partial static vaccines have been expanded
by 10 times, we could still efficiently control the overhead
under 12% for each host. More importantly, in most cases,
we do not need to inject all the vaccines at the same time
(to be discussed in Section VII).

VII. LIMITATIONS AND FUTURE WORK

Our system is not perfect. In this section, we discuss its
limitations and outline our future efforts.

Evasions from Malware It is possible to evade our vaccine
if malware authors are aware that we are using certain
resource as the vaccine. They can drop the specific resource
checking logic or change the resource name in the new
version. However, the former will possibly lead to re-infection
and thus may be not desired. While the latter approach is
possible, if we consider the wide and random propagation
of worm or botnet malware, our vaccine still makes the
malware harder to decide whether the system has actually
been infected or not. Hence, if the malware binary cannot run
when over two instances on the same machine, our vaccine
can bring the malware into a dilemma that the target system
may actually been infected before or it has installed our
vaccine system. Even though malware can run with multiple
instances, periodically changing the identifiers may finally



result in multiple instances running in one machine. It also
create extra risks of being detected.

Certainly, malware authors could obfuscate the malware
code to frustrate our vaccine generation such as using control
dependence to propagate data [26]. In fact, in some cases,
there is actually no propagation chain and the conditional
check is directly operated with the resource values. While
future malware could deliberately introduce additional data
propagation and obfuscate through control dependence, to
address such problem will be one of our future efforts.

Limitation on Dynamic Analysis In AUTOVAC, we inten-
sively apply multiple data flow tracking techniques such as
taint analysis and program slicing. Therefore, AUTOVAC
unavoidably suffers from the problems brought by these
dynamic analysis techniques [15]. For instance, in our vaccine
candidate selection/analysis, our taint analysis could cause
overtainting [9] thus resulting in more candidate resources to
analyze. Fortunately, due to our impact analysis and exclusive
analysis, we can still easily filter out those unsuitable vaccines.

In addition, some imprecise interpretation of differential
function calls may cause the underestimation of the actual
impact of certain resources/vaccines. Some previous work
[24] has discussed several approaches to gain a better
understanding of malware’s high-level behaviors. We could
leverage these techniques to refine our result in future work.

Potential False Positive Some of our automated analysis
techniques (e.g., the use of search engine) may also return
incomplete/inaccurate results. Meanwhile, our exclusiveness
analysis and clinic test may not cover all benign programs
such that it is possible to have some resource collision
between our vaccine and some benign programs. Improving
these issues is our another venue of future work.

Deployment Issues One concern for the vaccine deployment
is that injecting a large number of vaccines into end hosts
may annoy the user. Note that most generated vaccines in
practice are just some files, mutexes, registry entries, whose
sizes are tiny or even with 0 byte. This is pretty lightweight
compared with the case that AV tools typically store millions
of signatures on an end host. In addition, as mentioned
before, as a complementary technique to existing solutions,
vaccine-based prevention scheme can be mainly used for
some high-profile, large-scale, and severe malware infections,
instead of for all malware.

VIII. RELATED WORK

Immunization-based Defense In [16], Manuel et al. pro-
posed an end-to-end approach to make end-hosts immune
from fast-propagating worms through collaborative worm
detection and self-certifying alerts. Packet Vaccine [33]
followed this direction and derived the network signatures
of malicious packets to be used at the network level to
filter unwanted packets. Different from these previous work,
AUTOVAC does not investigate the exploits nor vulnerabilities

that malware targets, and instead it analyzes the system
resource constraints of malware and attempts to extract
effective vaccines to immunize a clean system from future
malware infection.

In a concurrent study, Andre et al. [30] proposed the idea
of using infection markers to prevent malware infection.
While both are inspired by the biological vaccine concept, we
systematically explore this problem and our vaccines are more
general and broader than simple infection markers. Employed
techniques are also substantially different; instead of treating
the malware as a black box, AUTOVAC conducts more fine-
grained binary analysis on malware internals, performs more
analysis (e.g., exclusiveness, impact) in the automatic vaccine
generation, and has more delivery/deployment options.

Dynamic Malware Analysis Due to the severe threat of
malware, tons of research has been carried out on analyzing
malware behavior (e.g., [11], [14], [18], [22], [24]) and clas-
sifying malware (e.g, [17], [21], [32]). Certainly AUTOVAC
complements these techniques by exploring a new direction
to stop malware infections.

In AUTOVAC, we design several dynamic binary analysis
techniques to automate the production of malware vaccines.
There has been a significant amount of work [13], [18]–
[20], [23], [31] on dynamic binary analysis. In particular,
prior research [25], [31] has explored the enforced execution
and reverting to trigger malware’s dormant functions [25],
[31]. Our enforced execution applies similar techniques
introduced in the forced execution [31] but we focus on
these environment/system resource sensitive branches.

We also leverage taint analysis and program alignment
techniques. Different from full taint analysis in previous
work [19], [20] and block-level program alignment [27],
our proposed solution avoids the overhead caused by full
execution tracking with a particular focus on the targeted
malware behavior in our problem domain.

IX. CONCLUSION

In this paper, we present AUTOVAC, a new complementary
malware defense scheme that aims to automatically extract
malware vaccines from given malware samples. Our evalua-
tion shows that it is an appealing approach that works on many
real-world malware families. In particular, the vaccines can
be used to build an immune system at an end host to defend
against the specific malware’s infection. To demonstrate the
real-world practicability, we have implemented our prototype
system using several dynamic program analysis techniques,
and conducted empirical evaluations on a large set of real-
world malware samples. Our experimental results show that
we can successfully extract working vaccines for many
malware families including Conficker, Sality and Zeus.
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