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Abstract. To protect sensitive resources from unauthorized use, modern mobile

systems, such as Android and iOS, design a permission-based access control

model. However, current model could not enforce fine-grained control over the

dynamic permission use contexts, causing two severe security problems. First,

any code package in an application could use the granted permissions, inducing

attackers to embed malicious payloads into benign apps. Second, the permissions

granted to a benign application may be utilized by an attacker through vulnerable

application interactions. Although ad hoc solutions have been proposed, none

could systematically solve these two issues within a unified framework.

This paper presents the first such framework to provide context-sensitive per-

mission enforcement that regulates permission use policies according to system-

wide application contexts, which cover both intra-application context and inter-

application context. We build a prototype system on Android, named FineDroid,

to track such context during the application execution. To flexibly regulate

context-sensitive permission rules, FineDroid features a policy framework that

could express generic application contexts. We demonstrate the benefits of

FineDroid by instantiating several security extensions based on the policy

framework, for two potential users: administrators and developers. Furthermore,

FineDroid is showed to introduce a minor overhead.
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1 Introduction

Modern mobile systems such as Android, iOS design a permission-based access control

model to protect sensitive resources from unauthorized use. In this model, the accesses

to protected resources without granted permissions would be denied by the permission

enforcement system. Ideally, the permission model should prevent malicious applica-

tions from abusing sensitive resources. However, the current permission model could

not enforce a fine-grained control over permission use contexts (in this paper, when we

say context we mean the application execution context). As a result, malicious entities

could easily abuse permissions, leading to the explosion of Android malware these

years [9] and the numerous reported application vulnerabilities [21, 36].
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Since Android has been expanding its market share rapidly as the most popular

mobile platform [5], this paper mainly focuses on the permission model of Android.

Currently, the coarse-grained permission enforcement mechanism is limited in the

following two aspects.

– Intra-application Context Insensitive. Current permission model treats each

application as a separate principal and permissions are granted at the granularity of

application, thus all the code packages in the application could access the protected

resources with the same granted permissions. In fact, not all the code packages in a

single application come from a same origin.

– Inter-application Context Insensitive. Application interaction is a common char-

acteristic of mobile applications. However, this new characteristic is transparent to

the current coarse-grained permission enforcement mechanism, exposing a new

attack surface, i.e., the permissions granted to a vulnerable application may be

abused by an attacker application via inter-application communication.

Given these problems, plenty of extensions have been proposed to refine the

Android permission model. Dr. Android and Mr. Hide framework [23] provides fine-

grained semantics for serval permissions by adding a mediation layer. SEAndroid [33]

hardens the permission enforcement system by introducing SELinux extensions to the

Android middleware. FlaskDroid [15] extends the scope of current permission system

by regulating resource accesses in Linux kernel and Android framework together

within a unified policy language. Context-aware permission models [17, 26, 30, 32]

are proposed to support different permission policies according to external contexts,

such as location, time of the day. However, these works still could not address the two

limitations described above. There are also some work dedicated to reduce the risk of

inter-application communication [12–14, 18, 20, 26] or to isolate untrusted components

inside an application [27, 31, 35, 39]. However, none could achieve unified and flexible

control according to the system-wide application context.

In this paper, we seek to fill the gap by bringing context-sensitive permission en-

forcement. We design a prototype, called FineDroid to provide fine-grained permission

control over the application context. For example, if app A is allowed to use SEND SMS

permission in the context C, when app A requests SEND SMS permission in another

context C’, it would be treated as a different request of SEND SMS permission. In

FineDroid, we consider both the intra-application context which represents the internal

execution context of an application, and the inter-application context which reflects the

IPC context of interacted applications. It is non-trivial to track such context in Android.

FineDroid designs several techniques to automatically track such contexts along with

the application execution. To ease the administration of permission control policies,

FineDroid also features a policy framework which is general enough to express the

rules for handling permission requests in a context-sensitive manner.

To demonstrate the benefits of FineDroid, we create two security extensions for

administrators and developers. First, since permission leak vulnerability [20, 21, 24,

36] is very common and dangerous, we show how administrators could benefit from

our system in transparently fixing these vulnerabilities without modifying vulnerable

applications. Second, we provide application developers with the ability of restricting
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untrusted third-party SDK by declaring fine-grained permission specifications in the

manifest file. All these security extensions can be easily built using policies.

We evaluate the effectiveness of our framework by measuring the effectiveness of

the developed security extensions. For administrators, we show that FineDroid can

easily fix permission leak vulnerabilities with context-sensitive permission control

policies, and the policies could even be automatically generated by a vulnerability

detector. For developers, we show that just several policies are enough to restrict the

permissions that could be used by untrusted SDKs. It is worth noting that our system

is not limited to support these two extensions. In addition, our system is showed to

introduce minor performance overhead (less than 2%).

In this paper, we make the following contributions.

– We propose context-sensitive permission enforcement to deal with severe security

problems of mobile systems. Considering the characteristics of mobile applications,

it is important and necessary to take the application context into account when

regulating permission requests.

– We design a novel context tracking technique to track intra-application context and

inter-application context during the application execution.

– We design a new policy framework to flexibly and generally regulate permission

requests with respect to the fine-grained application context.

– We demonstrate two security extensions based on the context-sensitive permission

enforcement system, by just writing policies and sometimes a small number of

auxiliary code.

– We evaluate the security benefits gained by the two security extensions and report

the performance overhead.

2 Threat Model

This paper considers a strong threat model in which an attacker aims to gain and abuse

sensitive resources stealthily. More specifically, this paper assumes an attacker could

launch all kinds of application-level attacks, while the Linux kernel and Android

Runtime are secure (not compromised). For the stealthiness, we mean an attacker

tries to hide its identity in using permissions from the permission enforcement system.

We consider these two kinds of attacks.

Intra-application Attack. To hide the behavior of abusing permissions, an attacker

could inject malicious payloads into a benign application (either before installation or

during runtime). There are several ways for an attacker to infect benign apps. First,

an attacker could actively embeds malicious payloads into popular benign apps and

redistributes the repackaged version via third-party application markets. Second, an

attacker could exploit code injection vulnerabilities (such as Man-in-the-Middle attack

with dynamic class loading [28]) to inject malicious payloads. In addition, an attacker

could also publish malicious SDKs, passively waiting for developers to include [1].

Inter-application Attack. The prevalent application interaction in the Android

programming model may also be used by attackers to stealthily use permissions. This

kind of attack has been verified in several forms, such as capability leak [20, 21, 36],

component hijacking [24], content leak and pollution [41]. In these attacks, the
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Fig. 1: Architecture of Context-Sensitive Permission Enforcement Framework.

permission enforcement system would see a permission request from a victim app

which has a legitimate requirement for this privileged resource, while actually this

permission is originally requested and utilized by an attacker app.

Note that our threat model does not consider other kinds of attacks such as privacy

stealing, root exploits and colluding attacks, because they are not caused by the

context-insensitive permission enforcement mechanism and have been well addressed

by previous work [12, 13, 15, 19, 22].

3 Approach Overview

To defeat these attacks, we propose context-sensitive permission enforcement. The key

idea is to construct a system-wide application context for each permission request

and make granting decisions based on this context. Since the permission enforcement

system could catch all the code packages and all the apps that participate in the

permission request, an attacker could no longer stealthily abuse permissions.

The system-wide application context is composed of two parts: (1) Intra-application

Context which represents the internal execution flow of an application, and (2) Inter-

application Context which reflects the interaction flow among applications and system

services. With these two kinds of contexts, our framework could accurately distinguish

permission requests originated from different sources, thus achieving a fine-grained

control over permission usage.

The overall architecture of FineDroid is presented in Figure 1. The rectangles filled

with black color are new modules introduced by FineDroid. The core of our framework

is the Context Builder module, which automatically tracks the application context along

with the application execution. This module is placed in the Linux Kernel, so an attacker

cannot escape from the context tracking. We also provide Context API at the library

layer for applications and the Android framework to obtain the current application

context from the Context Builder module.

Based on Context API, we design a context-sensitive permission enforcement

system. To flexibly set context-sensitive permission control rules, FineDroid features

a generic policy language. In FineDroid, all permission requests are intercepted by

the Permission Manager module. To handle a permission request, the Policy Manager

module examines all the polices in the system, and then Permission Manager could

make a permission decision according to the action (e.g. allow or deny) specified in the

match policy. Besides, our policy language is extensible for introducing new permission
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handling actions. To support building security extensions atop the policy framework,

Policy Manager provides open interfaces for policy management and extension.

Next, we will detail the design of FineDroid. The application context tracking

technique is presented in Section 4, and we describe the context-sensitive permission

enforcement system in Section 5.

4 Application Context Tracking

Application context is the cornerstone of FineDroid, while it is not a primitive

element yet in the Android system. Thus, we design Context Builder to automatically

build the two kinds of application contexts. To prevent attackers from hiding their

identities in the application context, we place the Context Builder in the Linux Kernel.

However, the complexity of the Android programming model brings huge challenges in

propagating application context along with the application execution. To deal with these

complexities, we further introduce several techniques for context propagating. Next, we

elaborate these techniques.

4.1 Intra-application Context Builder

Intra-application context is used to distinguish different execution flows inside an app.

In FineDroid, the function calling context is used to abstract the internal execution

context inside an app. However, it is too large to efficiently propagate and compare

the complete calling context. Thus, we need to efficiently compute a birthmark for any

given calling context.

PCC as Intra Context. We adopt a technique called probabilistic calling context

(PCC) [11] to compute an integer birthmark based on all the functions in the flow. PCC

can be efficiently calculated with a recursive expression pcc = 3 ∗ pcc′ + cs where pcc′

is the PCC value of the caller and cs is a birthmark for the current call site. By applying

this expression recursively from the leaf function on the stack to the root function, we

could finally obtain a PCC value as the birthmark for the whole calling context. Note

that PCC calculation is deterministic which means a given calling context would always

get the same PCC value. As evaluated in millions of unique calling contexts [11], PCC

is efficient and accurate for bug detection and intrusion detection in deployed software.

Thus, PCC is very suitable to represent the internal execution context inside an app.

Call Site Birthmark. Since all Java code in an Android app is packed into a single

DEX file, we use the relative offset of a call site in the DEX file as the birthmark of the

call site (cs value). While at the first glance this solution may encounter problems with

native code execution, it turns out that this solution could still calculate a PCC value

for the Java functions invoked before the native code because native code could only be

invoked from Java functions through Java Native Interface. It is worth noting that our

solution does not need to calculate a PCC value for every function invocation. Instead,

it just needs to compute PCC values for a small portion of calling contexts inside an

application that may participate in a permission request, such as application interaction.

Implementation Issue. Since Java functions are executed in a dedicated Java stack

by Dalvik virtual machine, Context Builder which lies in the Linux Kernel cannot



6

App_1 

App_1 
(uid: pcc)

interaction

Context: None
App_1 

(uid, pcc)

App_2 App_3 

Linux Kernel

interaction

User Space

App_2
(uid: pcc)

App_1 
(uid: pcc)

App_1 
(uid: pcc)

App_2
(uid: pcc)

Fig. 2: Binder IPC Context Building.

App_A

 (uid_A, pcc_A)

AMS

App_B

 (uid_B, pcc_B)

Zygote

Spawn request
fork

 (uid_B, pcc_B)  (uid_AMS, pcc_AMS)

Binder request

App_A

 (uid_A, pcc_A)

AMS App_B

 (uid_A, pcc_A)  (uid_AMS, pcc_AMS)

Binder request

(a)  When App_B is started (b)  When App_B is not started
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recognize the user-space Java stack. To solve this problem, we instrument Dalvik virtual

machine to register the base address of Java stack to the kernel whenever a Java thread is

spawned. Thus, when Context Builder needs to calculate the PCC value for the current

context, it could traverse all the Java functions in the execution flow by reconstructing

the calling stack with the base Java stack address.

4.2 Inter-application Context Builder

Inter-application context reflects the IPC context among interacted applications. Since

Binder IPC is the only way for an application to interact with other applications and

system services, Context Builder extends Binder kernel module to keep the whole IPC

call chain for every IPC invocation. As showed in Figure 2, the extended Binder driver

allocates an array for each thread to record the application context in handling Binder

communication. During each Binder IPC interaction, the driver would append caller’s

identity into caller’s application context, and propagate it to the callee application as

the callee’s application context. The caller’s identity is composed of two parts: assigned

UID of the caller application and PCC value for the intra-application context inside the

caller application when this interaction occurs.

4.3 Context Propagating

Due to some unique features of Android, the built system-wide application context

would be lost during normal execution. Thus, FineDroid further retrofits the Android

Runtime which manages the application execution to propagate application context

during the following interaction behaviors.

Component-level Propagating. Component interaction is prevalent in Android

apps. To initiate a component interaction, an application (named as A ) first needs to



7

send an Intent to the ActivitManagerService (referenced as AMS for short),

then AMS would choose a target application (named as B ) and route the Intent

to B. Figure 3 (a) illustrates this process. Since the invocations from A to AMS and

from AMS to B are all proceeded with Binder IPC, app B would get the application

context as [(uidA, pccA), (uidAMS , pccAMS)] when receiving this Intent. During

the component interaction, AMS plays as a mediator between the sender and the

receiver. However, from the application context propagated to app B, AMS looks like

a participator which is contrary to its actual role.

The problem would be even worse when the target application B has not been

launched at the time of Intent delivery. Figure 3 (b) illustrates this scenario. When

app B is chosen as the callee of this component interaction and AMS finds that app B has

not been started. AMS would delay the Intent routing and notify Zygote (which is

the application incubator in Android) to spawn a new process for app B. When B has

been started, it would notify AMS and AMS would send the delayed Intent to B. The

problem is that the Intent delivery from AMS to app B is performed in the context of

receiving the start notification of app B, so the application context propagated to app B

is [(uidB, pccB), (uidAMS , pccAMS)]. This problem is caused by that the application

context for sending the Intent from app A to AMS has not been recovered in delivering

the Intent from AMS to app B.

To solve the two problems, we design Intent-based component interaction tracking.

The basic idea is that, we instrument AMS to annotate each Intent object with

the sender’s context, thus the context is propagated to the receiver together with

the Intent object. When Android Runtime in the receiver application gets

the Intent object from AMS, it first recovers the application context recorded in

the Intent object and then triggers the invocation of the target component. Thus,

the target component can be executed with the right application context. Note that

the application context recovery in the receiver application is guaranteed by our

instrumented Android Runtime, thus it could not be escaped.

Thread-level Propagating. In each Android Runtime, there is a main thread

to handle the component interactions with the system and dispatch UI events (so

this thread is also known as UI thread). To reduce the latency of main thread in

processing events, developers are advised to delegate time-consuming operations to

worker threads. Android designs Message [4], Handler [3], AsyncTask [2]

interfaces for developers to facilitate such workload migration and synchronization.

However, since thread interaction is not proceeded via Binder IPC, the application

context would be lost in the worker thread.

We design two countermeasures to propagate application contexts among thread

interactions. First, during thread creation, we instrument the thread creation and

initialization logic to propagate the application context of the creator thread to the new

created thread and then recover the application context before the created thread is

ready to run. Second, for thread interaction, we consider the message-based interaction

mechanism in Android. Before a message is sent to a thread, the application context

of the current thread is annotated to the Message object. Then before the target

thread handles the Message, its application context is restored according to the

one encapsulated in the Message object. It is worth noting that, our thread-level
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context tracking is transparently performed by our instrumented Android Runtime.

Thus, this kind of tracking is mandatory without relying on any modification to the

applications or cooperation with developers.

Event-level Propagating. Callbacks are commonly used in Android to monitor

system events. A typical use case is UI event handling. However, the event-based

programming model also brings problems to application context tracking, because a

callback may be executed in a future time by a thread which would have a different

context to the one when the callback is registered. To deal with this problem, FineDroid

annotates each callback with the application context when it is registered and recover

the application context from the callback before it is triggered for execution. From

Android documentation, we find more than 100 APIs that would register callbacks.

We instrument each API to embed the registered callback into a wrapper which

automatically records and recovers the context to/from the callback. Since only Android

APIs are instrumented, this technique is also enforced transparently to the app.

5 Context-Sensitive Permission System

Based on the constructed system-wide application context, permission requests in

FineDroid could be handled separately according to the concrete application context.

To ease the regulation of permissions requests, FineDroid features a policy framework.

Next, this framework is introduced in two parts.

5.1 Permission Manager

Permission Manager first needs to intercept all permission requests. As introduced

in [35,40], two kinds of permission requests are intercepted: For KEPs (Kernel Enforced

Permissions), we instrument the UID/GID isolation modules in the Linux Kernel

to intercept all KEP permission requests and redirect them to Permission Manager

in the Android framework for handling; For AEPs (Android Enforced Permissions),

we instrument PermissionController service to redirect all permission requests to the

Permission Manager.

To handle a permission request, Permission Manager first queries Policy Manager

to select a policy which best matches the current application context. If no policy

matches, Permission Manager would fall back to the original permission enforcement

mode. In the original mode, permission requests are handled by querying the Permission

Record (see Figure 1) to grant all the permissions declared in the application manifest

file. When a matched policy is selected for the current permission request, Permission

Manager just needs to follow the action (e.g. allow or deny) specified in the policy.

5.2 Policy Framework

FineDroid designs a declarative policy language to express the rules for handling

permission requests in a context-sensitive manner. Basically, it states the handling

action for a permission request from an app within a specified application context. Our
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policy is structured in XML format, with the following tags. (A sample policy can be

found in Figure 4.)

– policy tag. It is the root tag for specifying a policy. Three attributes are required to

designate the handling action (action attribute) when an app (app attribute) requests

some permission (permission attribute). The expected application context for this

policy can be figured by either a context attribute or child tags described below.

– uid-selector tag. It describes the composition relationship of several uid-context

child tags. The selector attribute is mandatory to describe the composition relation-

ship among the child tags. It supports 5 kinds of selectors: “contains”, “startwith”,

“endwith”, “strictcontains” and “fullymatch”.

– uid-context tag. It describes context information for a single application partic-

ipated in the inter-application communication. The uid attribute is required to

specify the identity of the application. Package name can also be used as the

identity of the application. If the value of uid attribute begins with “∧”, it represents

any application except the one specified by the uid attribute. The intra-application

context of the application can be described by either the pcc attribute using the

exact PCC value of the application, or detailed function call context information

using a child pcc-selector tag.

– pcc-selector tag. It describes the composition relationship of several method-sig

child tags. Just like uid-selector tag, it requires a selector attribute which also

supports 5 selectors.

– method-sig tag. It describes the signature for a method invoked in the calling

context. Three attributes can be used for description: className, methodName, and

methodProto.

– or, and, not tag. They describe the logic relationships among child tags. They are

used to depict complex contexts which may be difficult to expressed only with uid-

selector and pcc-selector. Meanwhile, these tags can be nested together.

Besides, the policy language supports using “*” as the wild card character in some

attributes, such as context attribute in policy tag, pcc attribute in uid-context tag.

Policy Matching. To test whether a policy could match a permission request, Policy

Manager first checks the requested permission and the requestor application. When

both attributes match, Policy Manager further compares the application context. The

application context matching is relatively slow, so we use a cache to remember the

context matching results. If multiple policies are found to match, Policy Manager would

select the one that express the most fine-grained application context. Policy Manager

also supports adding and removing policies to/from the system, as well as registering

new action types to extend the policy language. The next section will show how these

policies can be used to refine current permission model.

6 Security Extensions

To demonstrate the effectiveness of context-sensitive permission enforcement, we

create security extensions for administrators and developers. All these extensions

are built upon the interfaces exposed by Policy Manager, without modifying other

FineDroid modules.
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<policy action=”deny” app=”com.android.mms” permission=”SEND_SMS” >

  <uid-selector selector=”strictcontains” >

    <uid-context uid=”^com.android.mms” pcc=”*” />

    <uid-context uid=”com.android.mms” />

      <pcc-selector selector=”contains” >

        <method-sig className=”com.android.mms.transaction.SmsReceiver” 

methodName=”beginStartingService” />

      </pcc-selector>

    </uid-context>

  </uid-selector>

</policy>

Fig. 4: Policy to fix SEND SMS permission leak in SmsReceiver.

6.1 For Administrator: Fixing Permission Leak Vulnerability

In the Android programming model, if a public component is not protected well, it may

be misused to perform privileged actions by an attacker application. As demonstrated

in [21, 24, 36], many high-risk permissions, such as SEND SMS, RECORD AUDIO are

found to be leaked in pre-installed apps and third-party apps. Next, we introduce how

to use FineDroid to prevent permission leaks. Note that we do not want to prevent all

kinds of component hijacking vulnerabilities, such as information leaks.

Leak Causes. There are two possible cases for the permission leak vulnerability.

The first case is that some application-private components are mistakenly made publicly

accessible. This may be caused by developer’s lack of security awareness or insecure

code generated by IDE. To fix such kind of leak, developers just need to mark

these components as private ones in the manifest file. In Android, intra-application

component interaction and the inter-application component interaction share the same

communication channel [16]. Thus, a single component may be designed for two

purposes: internal use and public use. The second case of permission leak is that

developers do not perform enough security checks when an internal component is for

public use. However, this case is quite difficult to handle, due to two levels of security

requirements in a single component.

Our Solution. By tracking system-wide application context, FineDroid could be

used to fix permission leak vulnerability. With inter-application context, we could

find whether a component interaction is for internal use or for public use. With

intra-application context, we could accurately specify the vulnerable flow inside

the application. Combining intra-application context and inter-application context

together, we could make a policy to prevent a vulnerable flow from using permissions

when it is invoked from an external application. For example, the policy in Figure 4

denies the SEND SMS permission request from the app com.android.mms when a

foreign application participates in the interaction and the internal execution state

of com.android.mms matches a vulnerable path (specified by the <pcc-selector>

element).

The advantages of FineDroid in preventing permission leak vulnerabilities are that

it requires no modification to the system nor the vulnerable applications and the policies

are quite easy to write. In Section 7.1, we would evaluate the effectiveness of FineDroid

in fixing real-world permission leak vulnerabilities, and show that how the policies

could be automatically generated by enhancing a permission leak vulnerability detector.
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...

<fine-permission android:package="com.flurry.android">

  <deny android:permission="android.permission.ACCESS_FINE_LOCATION" />

  <deny android:permission="android.permission.ACCESS_COARSE_LOCATION" />

</fine-permission>

...

Fig. 5: Policy to prevent Flurry Ads from requesting location permission.

6.2 For Developer: Fine-grained Permission Specification

An Android application may contain many third-party code packages. For example, it is

common for applications to embed an Ad library for fetching Ads, social network SDKs

for publishing events, payment SDKs for financial charge, analytic SDKs for marketing.

However, in this case multiple third-party SDKs from different origins (potentially with

different trust levels) will share the same privileges as the host application, violating

the principle of least privilege. Thus, a third-party SDK may abuse the permissions that

granted to the host application. For example, a popular Ad library was found to collect

text messages, contacts and call logs [1]. Unfortunately, developers have no way to

restrict the permissions that are available to certain foreign packages.

Our Solution. By tracking intra-application context, FineDroid is capable of

distinguishing the origins of permission requests inside an application. Thus, we could

build a permission sandbox inside an application where code packages from different

origins have different permission configurations. Based on the permission sandbox,

developers could declare fine-grained permission specifications in the application

manifest file to specify the permissions that could be used by each third-party SDK.

Figure 5 shows the format of this kind of permission specification. The fine-grained

permission specifications in the manifest file will be transformed to FineDroid policy

by our enhanced PackageManagerService at the install-time and added to the Policy

Manager. Note that application obfuscation [6] would not cause problems here, because

developers could modify the manifest file after code obfuscation.

7 Prototype & Evaluation

We implement a prototype of FineDroid on Android 4.1.1 (Jelly Bean), running

on both Google Nexus phones (Samsung I9250) and emulators. We also implement

the two security extensions upon FineDroid. This section evaluates these extensions

to demonstrate the effectiveness of our context-sensitive permission enforcement

framework, as well as the performance overhead introduced by our framework.

7.1 Fixing Permission Leak Vulnerability

We evaluate the effectiveness of FineDroid in fixing permission leak vulnerabilities

with two real-world vulnerabilities in Android AOSP apps: SEND SMS leak [7] and

WRITE SMS leak [8]. These two vulnerabilities are both caused by the improper

protection of public components exposed in the Mms application, which is the default

message management app.
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Fig. 6: Permission leak paths in Mms application.

Vulnerability Analysis. There are two vulnerable components in the Mms appli-

cation: SmsReceiverService which is a Service component and SmsReceiver which

is a Broadcast Receiver component. Figure 6 illustrates the exploitable paths in

this application. SmsReceiverService is intended for only internal use in the Mms

application, while it is mistakenly exported to the public. Through sending a well-

crafted Intent to SmsReceiverService, an attacker can drive the Mms application to fake

the receiving of arbitrary SMS messages (WRITE SMS leak, path a) or send arbitrary

SMS messages (SEND SMS leak, path b). SmsReceiver is designed for both internal use

and public use. However, the functionality of sending arbitrary SMS messages which

should only be used by private components is not protected properly, causing it to be

exported to the public (SEND SMS leak, path c).

Fixing the Vulnerability. Permission leak vulnerability is typically difficult to

fix manually, because it requires enforcing multiple security requirements in a single

component, such as SEND SMS leak (path c in Figure 6) in SmsReceiver. Besides, even

if carefully fixed, it also requires the re-distribution of the new application file. Based

on FineDroid, we could easily prevent permission leaks by simply writing policies to

deny the permission request occurred in the exploitable path without modifying the

application. Figure 4 shows an example of how to prevent SEND SMS leak (path c in

Figure 6) in SmsReceiver. Similarly, we could fix the vulnerability of path a and b.

Effectiveness. We created three sample apps to exploit each vulnerable path

mentioned above. The sample apps were first tested in our FineDroid prototype

with no policies. The result shows that all the three apps successfully exploited the

vulnerabilities in the Mms app. Then we added three policies (as showed in Figure 4)

to our prototype to fix the three vulnerable paths. We also ran the same three sample

apps to attack Mms again. We found that our security policies successfully prevented the

permission re-delegation attacks this time, demonstrating the effectiveness of FineDroid

in enforcing fine-grained permission use policies.

Policy Generation. The policies to fix permission-leak vulnerabilities rely on the

precise understanding of vulnerable paths among component interactions. Thus the

ideal scenario is to use together with an existing permission leakage vulnerability

detector (such as CHEX [24]). Once a vulnerable path is detected, we can automatically

generate a corresponding policy for FineDroid. Thus, the task of diagnosing vulnerable

applications and writing policies can be greatly simplified. To demonstrate the feasibil-

ity of automatic policy generation to be used together with any vulnerability detector,



13

we choose CHEX [24], a state-of-the-art tool in detecting permission leak vulnerability,

in our evaluation. However, the source code of CHEX is not available, so we could not

directly enhance CHEX for policy generation. Instead, the authors of CHEX provided

us the output of CHEX in analyzing 20 vulnerable applications, among which 10

applications are vulnerable to INTERNET permission leak. By parsing the output files,

we successfully extracted 414 vulnerable paths with detailed calling contexts. Based on

the vulnerable paths (contexts), the automatic policy generation is quite straightforward.

As showed in Figure 4, the generated policies could deny the permission request when

the vulnerable path is exploited by a foreign application. Finally, for each vulnerable

path detected by CHEX, a policy is automatically generated to fix it.

7.2 Fine-grained Permission Specification

We evaluate the effectiveness of FineDroid in providing fine-grained permission

specification by restricting the privileges of untrusted Ad libraries. In this experiment,

we use an application named Stock Watch which embeds Flurry Ads for fetching and

displaying advertisements. For demonstration purpose, we assume Flurry Ads is not

trusted by Stock Watch developers, thus the developers want to restrict the permissions

that could be used by Flurry Ads. Flurry Ads requests ACCESS FINE LOCATION

permission during the execution, and we assume the developers think this is quite

suspicious. With FineDroid, Stock Watch developers could easily prohibit Flurry Ads

from using ACCESS FINE LOCATION permission. As Figure 5 shows, they just

need to declare a fine-grained permission specification in the manifest file. During the

installation, these specifications would be transformed to policies that could be added

to FineDroid. Because we do not have the source code of the Stock Watch application,

we mimic the behavior of Stock Watch developers by repackaging the application

file to replace the manifest file. By running the new application, we could find the

ACCESS FINE LOCATION permission requests from Flurry Ads are all denied by

FineDroid, and this does not affect the normal operation of the Stock Watch application.

Similar to Stock Watch, we also tested another 20 applications to restrict the permissions

assigned to third-party libraries, including Google Ads, Tapjoy, Millennial Media.

In all these cases, FineDroid provides strong enforcement of fine-grained permission

specifications. We did encounter two cases that the applications crashed due to the

denial of some permissions requested from the Ads library. Instead of considering it

as the fault of FineDroid, we argue that developers of the Ads library should write more

robust code to handle more necessary exceptions in the future.

7.3 Performance Overhead

We have conducted several experiments to measure the performance overhead caused

by FineDroid. The experiments are performed on Google Nexus phones.

Overall Performance. We first use three performance benchmarks (Caffeine-

Mark3, AnTuTu, and Linpack) to measure the overall overhead introduced by Fine-

Droid. The results show that almost no noticeable performance overhead is observed,

with the worst overhead case at 1.99% in the Linpack benchmark.
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Permission Request Handling Performance. Most overhead of FineDroid is

introduced when handling permission requests. We implement a test app that per-

forms 10,000 times of permission requests to measure the average performance of

FineDroid in handling a single permission request. We compare the performance of

unmodified Android with FineDroid in two configurations. Context tracking is disabled

in FineDroid w/o Context, where all overhead is caused by permission interception. In

FineDroid w/ Context, context tracking is switched on and no policy is installed on the

system. Table 1 shows the results.

FineDroid introduces an overhead of 2.02 ms per request in intercepting KEP

permission requests, which is undoubtedly higher than the case of unmodified Andorid

because in that case KEP request can be handled in the application process without

communicating with Permission Manager in the system process. The overhead intro-

duced by further application context tracking is very minor (0.02 ms per request). For

AEP permissions, the interception overhead is quite minor because AEP is originally

enforced in the system process, while the context tracking overhead is more significant

because it needs to build intra- and inter-application contexts in several processes.

Permission

Type

Original

Android

FineDroid

w/o Context

FineDroid

w/ Context

Socket(KEP) 0.14ms 2.16ms ∆2.02ms 2.18ms ∆0.02ms

IMEI(AEP) 0.62ms 0.69ms ∆0.06ms 1.09ms ∆0.40ms

Table 1: Results on handling permission requests.

Policy Matching Performance. To test the overhead introduced by the policy

matching, we add policies to the system to grant the permissions requested by the test

app. Each policy is written with the same structure as Figure 4. Table 2 shows the

overhead of policy matching.

Permission

Type

FineDroid

w/o Policy

FineDroid

w/ Policy
Overhead

Socket(KEP) 2.18ms 3.06 ms 0.88ms

IMEI(AEP) 1.09ms 1.99ms 0.90ms

Table 2: Results on policy matching.

We believe the performance penalty introduced by FineDroid is acceptable because

permission request (as well as policy matching) do not frequently occur in practice.

8 Discussion

To propagate application context, FineDroid relies on Android Runtime instance

in each application to participate. Since Android Runtime is a user-space module
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in the application process, currently FineDroid cannot guarantee its integrity. Attackers

may use Java Reflection to modify Android Runtime’s private data structures. To

prevent such attacks, we instrument Reflection APIs to prevent manipulation of the

private fields which are added by FineDroid to keep application context. Because these

fields are unique to FineDroid, this kind of instrumentation would not break other

legitimate use of Reflection. Besides, adversaries may also use native code to attack

Android Runtime. Recent work on isolating native code in Android system [34]

could be incorporated to our system to prevent native code attack.

Undesirable data flows among multiple permission requests are not considered in

this paper. Actually, by providing fine-grained permission control to raise the bar for

abusing permissions, FineDroid could also be used to prevent potential risky data flows.

9 Related Work

Permission System Extensions. Aurasium [37] provides time-of-use permission grant-

ing for legacy Android apps by automatically repackaging applications to attach

user-level sandboxing code. Roesner et al. [29] introduced access control gadgets

(ACGs) which embed permission-granting semantics in normal user actions. Dr.

Android and Mr. Hide [23] provides finer semantics for coarse-grained permissions by

rewriting privileged API invocations. Apex [25] introduces partial permission granting

at installation time and runtime constraints over permission requests. SEAndroid [33]

combines kernel-level MAC (SELinux) with several middleware MAC extensions to

the Android permissions model, which could mitigate vulnerabilities in both system

and application layer. FlaskDroid [15] extends kernel-level MAC to bring mandatory

access control for all resources in Linux Kernel and Android framework. While these

works refine or extend current permission system in some degree, they do not enforce

fine-grained control over the permission use context, which is the focus of FineDroid.

Application Interaction Hardening. Felt et al. [20] proposed IPC inspection to prevent

permission re-delegation attacks by intersecting the permissions of all the applications

in the IPC call chain. However, this strategy is too rigid to allow intentional permission

re-delegations. Quire [18] provides developers with new interfaces to acquire IPC call

chain. Different from FineDroid, Quire relies on AIDL instrumentation to record the

IPC call chain. However, the technique has several limitations: First, it could only track

the IPC call chain during the invocation of AIDL-specified methods, while some system

interfaces are not specified using AIDL such as AcvitityManagerService;

Second, it is an opt-in option for developers to use these enhanced API proxies, thus an

attacker application can easily escape.

TrustDroid [14] divides apps into two isolated domains: trusted and untrusted.

However, communication problems inside a single domain are not considered. XMan-

Droid [12, 13] generally mitigates application-level privilege escalation attacks by

prohibiting any application communication if the permission union of the two apps may

pose a security risk. Saint [26] secures the application communication by providing

developers with the ability to specify fine-grained requirements about the caller and

callee. However, it could not improve the permission enforcement mechanism during

the application communication.
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AppSealer [38] is a tool to automatically fix component hijacking vulnerabilities by

actively instrumenting vulnerable apps. Compared to AppSealer, our technique of fixing

permission leak vulnerabilities does not require heavy application rewriting which is

error-prone and needs redistribution of patched apps.

Similar to FineDroid, Scippa [10] also extends Binder driver and Android

Runtime to provide IPC provenance. However, it does not cover intra-application

context which is quite important for a unified fine-grained permission system. More-

over, the IPC context propagating technique in Scippa is quite simpler than the one

designed in FineDroid which could systematically propagate IPC contexts at the level

of component-interaction, thread creation/interaction, and events.

Application Internal Isolation. To isolate in-app Ads, a separate process is introduced

by AFrame [39], AdDroid [27] and AdSplit [31] for running Ads libraries. By

intersecting the permissions that can be used by different code packages in the same

application, Compac [35] also provides fine-grained permission specification. However,

without a systematic context tracking system and a generic policy framework, Compac

could not flexibly handle permission requests that cross multiple code packages.

Compared with FineDroid, these frameworks could not flexibly regulate permission

use policies based on intra-application context.

Context-aware Access Control. Recent works on context-aware access control model

[17,26,30,32] also regulate access control rules based on context information. Different

from the notion in FineDroid, these works mostly consider the external application

context such as location, time of the day.

10 Conclusion

This paper presents FineDroid, which brings context-sensitive permission enforcement

to Android. By associating each permission request with its application context,

FineDroid provides a fine-grained permission control. The application context in Fine-

Droid covers not only intra-application context, but also inter-application context. To

automatically track such application context, FineDroid designs a new seamless context

tracking technique. FineDroid also features a policy framework to flexibly regulate

context-sensitive permission rules. This paper further demonstrates the effectiveness of

FineDroid by creating two security extensions upon FineDroid for administrators and

application developers. The performance evaluation shows that the overhead introduced

by FineDroid is minor.
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