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Abstract—This paper addresses one serious SDN-specific at-
tack, i.e., data-to-control plane saturation attack, which overloads
the infrastructure of SDN networks. In this attack, an attacker
can produce a large amount of table-miss packet_in messages
to consume resources in both control plane and data plane.
To mitigate this security threat, we introduce an efficient,
lightweight and protocol-independent defense framework for
SDN networks. Our solution, called FLOODGUARD, contains two
new techniques/modules: proactive flow rule analyzer and packet
migration. To preserve network policy enforcement, proactive
flow rule analyzer dynamically derives proactive flow rules by
reasoning the runtime logic of the SDN/OpenFlow controller and
its applications. To protect the controller from being overloaded,
packet migration temporarily caches the flooding packets and
submits them to the OpenFlow controller using rate limit and
round-robin scheduling. We evaluate FLOODGUARD through a
prototype implementation tested in both software and hardware
environments. The results show that FLOODGUARD is effective
with adding only minor overhead into the entire SDN/OpenFlow
infrastructure.

Keywords—Software-Defined Networking (SDN); Security;
Denial-of-Service Attack;

I. INTRODUCTION

Software-Defined Networking (SDN) [21] has quickly
emerged as a new promising technology for future networks,
and its reference implementation, OpenFlow [24], is becoming
widely used in recent years 1. SDN presents a physically
distributed but logically centralized controlled networking
framework. By decoupling the control plane from the data
plane, SDN is designed to support fine-grained network man-
agement policies. Current OpenFlow implementations use a
“southbound” protocol. When a switch receives a new flow
for which there is no matching flow rules installed in the flow
table (we call it a “table-miss” in this paper), the data plane
will ask the control plane for actions.

The “southbound” protocol of an OpenFlow controller
introduces considerable overhead. A table-miss could consume
resources (e.g., CPU, memory and bandwidth) in both control
plane and data plane. This leads to issues in both scalability
and security. While there are many studies and solutions
on the scalability issue [20], [12], [10], [32], [14], there is
very little research on the even more challenging security
issue. Essentially, a large number of data plane messages
will flood the control plane and could exceed the throughput
and processing capacities of the control plane. An attacker

1In this paper, we use SDN and OpenFlow interchangeably.

can exploit it by launching dedicated denial of service attack
(or data-to-control plane saturation attack) that floods SDN
networks [27], [29]. The attacker only needs to generate
a large number of anomalous packets, with all or part of
header fields of each packet are spoofed as random values.
These incoming packets will trigger table-misses and send
packet_in messages to the controller. As a result, this attack
will overload the buffer memory of network devices, generate
amplified traffic to occupy the data-to-control plane bandwidth,
and consume the computation resource of the controller in a
short time. While some existing research has already discussed
this attack and presented some solutions, e.g., AvantGuard
[29], they do not provide a comprehensive solution yet. For
example, AvantGuard can only defeat TCP-based flooding
attacks, but not others (e.g., UDP, ICMP).

In this paper we study the data-to-control plane saturation
attack in reactive controllers (e.g. POX [5] and Floodlight [6]).
The impact of this attack on different controller applications
is quite different. Each application in the controller consists of
multiple packet-processing policies. These policies are high-
level and used to generate low-level flow rules to the data
plane. The applications need to analyze each packet_in
messages, extract required information (packet header, data
path, inport and etc.) and process response OpenFlow mes-
sages. Different applications have different program logic, ar-
chitecture and throughput. Similarly, the impact of this data-to-
control plane saturation attack on the OpenFlow infrastructure
differs in target applications. For example, a load balancing
application is more vulnerable than a hub application. It is
because the former one needs more programming complexity
to handle packet_in messages and respond to traffic load
dynamics. The flow rules generated by the load balancing
application may frequently change during the saturation attack,
which means this attack could consume network resources
more quickly by attacking this application.

To defend against this attack, we have two research chal-
lenges as follows:

• How to keep the major functionality of the SDN
infrastructure working when the saturation attack oc-
curs?

• How to handle the flooding traffic without sacrificing
benign traffic?

For the first challenge, we propose a solution that is based
on proactively placing the potential rules into the switches to



guarantee the policy enforcement of the OpenFlow controller
and its applications during the data-to-control plane saturation
attack. Motivated by existing work [23], [11], [16], we
attempt to use program analysis techniques to solve the first
challenge. We define an important concept that will be used
in this paper, i.e., proactive flow rules. Proactive flow rules
are all data plane level (low-level) flow rules that can be
generated by an application based on current controller state.
The proactive flow rules represent the forwarding actions for
all possible incoming packets at this moment. In this paper, we
introduce a new approach that combines symbolic execution
and dynamic application tracking to generate proactive flow
rules. The proactive insertion of the flow rules can keep the
major functionality of the network working.

However, even with the proactive insertion of the flow
rules, the OpenFlow controller could still be vulnerable to
the overloading problem during the data-to-control plane sat-
uration attack. It is because most of flooding packets stay
outside the logic of OpenFlow controller applications, i.e., the
flooding traffic can hardly match proactive flow rules, which
will actually send back and overload the OpenFlow controller.
One simple solution to protect the OpenFlow controller can be
dropping those packets if they cannot match any existing data
plane flow rules. However, the naive drop solution inevitably
scarifies some normal traffic, which may not be covered by
current proactive flow rules. To solve the second challenge,
we migrate all the table-miss packets to a data plane cache
component, which temporarily caches the packets to protect
the data plane switches and forwards them to the controller
in a rate limited manner. The data plane cache is coordinated
by the migration agent inside the OpenFlow controller, which
provides utility to detect data-to-control plane saturation attack
and limit the uploading rate of packet_in messages from
the data plane cache.

To summarize, the contributions of our paper include the
following:

• We deeply study the behaviors of the data-to-control
plane saturation attack and analyze its impact on
different OpenFlow controller applications.

• We design FLOODGUARD, a scalable, efficient,
lightweight, and protocol-independent defense frame-
work for SDN networks to prevent data-to-control
plane saturation attack by using proactive flow rule
analyzer and packet migration. Proactive flow rule an-
alyzer module provides a new approach that combines
symbolic execution and dynamic application tracking
to derive proactive flow rules in runtime. Packet mi-
gration module migrates, caches, and processes table-
miss packets by using rate limiting and round robin
scheduling.

• We implement a prototype system and test it in differ-
ent attack scenarios in both software and commodity
hardware OpenFlow switch environments. We show
the evaluation results of the protection of both the
control plane and the data plane. Experiments show
that FLOODGUARD provides a scalable and efficient
security solution for SDN networks against data-to-
control plane saturation attacks.
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Fig. 1. Attack Process

The structure of this paper is as follows. We state the
research problem and challenges in Section II. Section III
introduces some related work. The design of FLOODGUARD
is detailed in Section IV. The implementation and evaluation
of FLOODGUARD are in Section V. At last we discuss and
conclude our work in Section VI.

II. PROBLEM STATEMENT

In this section, we introduce some background knowledge
about SDN, provide an adversary model of the data-to-control
plane saturation attack, analyze the vulnerability in different
OpenFlow applications and state our research problem.

A. Background on Flow Rule Installation

In OpenFlow networks, forwarding devices handle network
flows based on the flow rules received from a controller. The
controller installs flow rules to data plane in two approaches,
i.e., proactively and reactively. In the proactive flow installation
approach, the controller could populate the flow rules before
all traffic comes to the switch. In the reactive flow installation
approach, the controller could dynamically install or modify
flow rules. The reactive approach enables the flexible man-
agement of forwarding behaviors based on current network
situation. Thus, it could support more dynamic applications
than the proactive approach. Currently most OpenFlow enabled
networks choose the reactive approach for their management.
In our work we focus on reactive controllers and consequent
security threats against them.

B. Adversary Model

We assume an adversary could produce a large number of
microflows to an OpenFlow-enabled network by her own host
or controlling many distributed bot hosts. The attack traffic can
be mixed with normal traffic and is hard to distinguish. The
control plane and the data plane will suffer from the saturation
at the same time and their resources will be consumed in a
short time.

We start from a simple scenario to illustrate how an adver-
sary can flood the SDN infrastructure. There is an OpenFlow-
enabled switch which receives an external input stream. The
stream is mixed with traffic from both a benign host and a
bot host which is controlled by an attacker. The attacker could
generate flooding traffic and consequently launch the saturation



Application arp hub ip balancer route
Policy LLDP packet → drop srcip=1*, dstip=10.0.0.1 → dstip=192.168.0.1 dstip=192.168.0.1 → port(1)

ARP packet → broadcast srcip=0*, dstip=10.0.0.1 → dstip=192.168.0.2 dstip=192.168.0.2 → port(2)

TABLE I. SAMPLE APPLICATIONS

Controller Platform Packet In Handler Function Listening Interface
NOX def packet in callback(self, dpid, inport, reason, len, bufid, packet) core.register for packet in
POX def handle PacketIn (self, event) core.openflow
Ryu def packet in handler(self, ev) controller.ofp event.EventOFPPacketIn

Beacon public Command receive(IOFSwitch sw, OFMessage msg) beaconcontroller.core.IOFMessageListener
Floodlight public Command receive(IOFSwitch sw, OFMessage msg, FloodlightContext cntx) core.IOFMessageListener

OpenDayLight public PacketResult receiveDataPacket(RawPacket inPkt) sal.packet.IListenDataPacket

TABLE II. PACKET IN HANDLER FUNCTIONS IN DIFFERENT CONTROLLERS

attack to the OpenFlow switch. Here is a basic and typical
process of flow control in OpenFlow switches. When a table-
miss occurs, which means there is a new packet which data
plane does not know how to handle, the data plane will buffer
the packet and send a packet_in message which contains
the packet header to controller if the buffer memory is not
full. If the buffer is full, the message will contain the whole
packet instead of only its header. The attacker can exploit it
by launching dedicated data-to-control plane saturation attack
that floods SDN networks. She can generate a large number
of anomalous packets, which means all or part of fields of
each packet are spoofed as random values. These spoofed
packets have a low probability to be matched by any existing
flow entries in the switch. As a result, the flooding attack
will significantly downgrade the performance of the whole
OpenFlow infrastructure.

Figure 1 illustrates the basic process of the attack. The
first component which is affected is the OpenFlow switch. The
buffer memory will be consumed soon and the throughput is
affected a lot including the packet forwarding throughput and
the data-to-control plane communication channel throughput.
We have tested the impact of the saturation attack on an
OpenFlow switch. In the Mininet [22] environment, a software
switch is dysfunctional by about 500 packets/second of table-
miss UDP traffic. A hardware switch is a little more capable,
but still vulnerable. This part of evaluation and discussion
will be proposed in Section V. Besides the data plane switch,
the bandwidth of data-to-control plane communication channel
will also be occupied. In OpenFlow Specification 1.4 [2],
if the buffer memory of a switch is full, the packet_in
message will contain the whole body of each table-miss
packet. That means the attacker can generate amplified traffic
to occupy the data-to-control plane bandwidth. Suppose the
data plane link and communication channel have the same
capacity, amplification attack allows the attacker to consume
less resources but cause more harm. At last, the control plane
will suffer from the saturation attack, because the controller
has to process each packet_in message and then respond
to the data plane. The flooding traffic can easily overload the
computation capability of the control plane in a short time.

C. Motivation

If we are able to pre-install all flow rules into the data plane
and discard all other table-miss packets, the security problem
is solved. However, it is unrealistic due to the dynamics of
network policies. Each control application is composed of

distinct packet-processing policies. Some policies are dynamic
which means they may vary from different network situations.
For example, in a cloud network the routing policies should
be updated when the topology changes. Thus, the controller
has to update the flow rules when network state changes.
The dynamic nature makes it impossible to pre-install all
flow rules. Therefore, the application needs to analyze data
plane messages and update its packet-processing policies. As
described above, the dynamic nature can result in both the
scalability issue and security vulnerability.

For those packet-processing policies that will be dynami-
cally changed inside an OpenFlow application, we define them
as dynamic policies. Conversely, we define the unchanged
policies as static policies. For example, we suppose there is
a developer who deploys three applications, as shown in Table
I, to manage a small network. The arp_hub application is
to drop all Link Layer Discovery Protocol (LLDP) packets
and broadcast Address Resolution Protocol (ARP) packets.
The ip_balancer application is to load balance the traffic
destined to a public IP address and split the traffic based on the
source IP address. Incoming traffic with a source IP address
whose highest-order bit is 1 gets a private destination IP
address 192.168.0.1 and is forwarded to one server replica. The
remaining traffic gets another private destination IP address
192.168.0.2 and goes to the other server replica. The third
one, the route application generates routing path based on
the destination IP address. Packet-processing policies in the
arp_hub module are quite stable. However, those policies in
the other two modules may update when topology changes.
According to our definition, policies in the first module are
static policies and those in the other two modules are dynamic
policies. The reason why there exists dynamic policies is that
there should be variables sensitive to the network state in the
control application program. For example, the routing table in
the third module is a state sensitive variable which is associated
with the current network topology.

We argue that the dynamic policies make applications vul-
nerable, since dynamic policies need to be updated during the
transition of the data plane. In current OpenFlow protocol, the
controller obtains the transition information of the data plane
mainly from the packet_in messages. Hence, during the
flooding attack, a large number of packet_in messages will
consume the resource in the controller and, simultaneously,
even mislead the control plane. Also, the dynamic policies
will change unpredictably and frequently, which makes it hard
to predict the trend of them. We suppose at any time we are



able to know all the static policies and dynamic policies based
on current network state, and then we can know what kinds of
packet_in messages the control plane is able to process
immediate responses to the data plane. We cannot simply
drop other messages because many applications are learning-
based and some messages that have not been learned by the
applications may be useful in the future. These messages can
be handled later when the controller becomes relatively idle
after the attack. That kind of information will be quite useful
for the defense. For further description about our defense
solution, we introduce a new concept, i.e., proactive flow rules.

Proactive Flow Rules are all data-plane-level flow rules
which can be generated by an application based on current
controller state. In the above case in Table I, each policy
could generate one entry of flow rule. At a certain moment, we
call all these possible flow rules as proactive flow rules. The
proactive flow rules are dynamic and time-sensitive. At another
moment, the proactive flow rules may be different because
the policies have changed. Proactive flow rules represent the
range of packet_in messages which current control logic
can handle at this moment. This concept is motivated from
DIFANE [32] which introduces another similar concept called
low-level authority rules. The authority rules are cached in
the Authority Switches and need to be updated to handle
dynamics. DIFANE caches these kinds of flow rules to keep
packet processing in the data plane. We assume most of the
flooding packets are out of the control logic and we aim to use
the proactive flow rules to roughly separate the benign packets
and malicious packets. Moreover, there are still several issues
in DIFANE. For instance, there is no systematical solution to
generate and update the proactive flow rules dynamically. Our
work attempts to design a systematical solution and we will
discuss it in Section IV.

We also conduct a deep analysis of the OpenFlow program
model. Typically each control application contains a packet in
handler function to handle packet in messages from the data
plane. We summarize some popular controller platforms and
their corresponding handler functions in Table II. The handler
functions have a variety of names in different controller
platforms, but have similar features. The handler function is
event-driven. Triggered by packet_in messages, the func-
tion then may take some actions to handle this packet and
consequent flows. Even for the same input, the handler function
of an application could enforce different actions. As mentioned
above, it is because of the dynamic nature of the state sensitive
variables. For example, in the route application in Table
I, the routing table is associated with the current network
configuration and is state sensitive. Therefore, if we want to get
the proactive flow rules, we need to know the current value of
all state sensitive variables dynamically. We design a hybrid
symbolic execution algorithm which is described in Section
IV.

D. Research Challenges

The first one is to preserve major functionality of the
network infrastructure when the saturation attack occurs. To
achieve this, we design a new functional module called
proactive flow rule analyzer, which is implemented in the
control plane. It includes symbolic execution and dynamic
application tracking to derive proactive flow rules in runtime.

The proactive flow rule dispatcher component will install the
proactive flow rules directly into the OpenFlow switch.

The second challenge is to handle table-miss packets
without sacrificing benign packets. Simply dropping table-miss
packets seems one answer but obviously not a good one since
it could drop some benign packets. Therefore, we migrate
the table-miss packets to a data plane cache when the attack
occurs, and then trigger packet_in messages back to the
controller in a limited rate.

Our design meets the following objectives. First, our frame-
work is lightweight, i.e., under normal circumstances, only
the monitoring component is active but others keep dormant.
Second, our design is transparent to the controller applications
and end hosts. Third, we merely add reasonably low overhead
and latency. Finally, our solution is independent of the protocol
of attack traffic (unlike AvantGuard which only defends against
TCP-based flooding attacks).

III. RELATED WORK

SDN Scalability: The data-to-control plane saturation at-
tack is derived from the scalability problem in SDN research,
which is how the control plane handles a large-scale network.
Several papers have already studied this challenge. Onix [20]
provides a distributed controller solution. Onix introduces
a logically centralized but physically distributed controller
framework which can share the work load. DIFANE [32]
presents an approach to proactively compute low-level flow
rules, distribute and then cache these rules into the data plane
to handle a large number of incoming packets. However, it
is not easy to directly apply this approach to our problem.
We focus our problem domain on a reactive model while
DIFANE uses a different model (it assumes proactive flow
rules are given). Furthermore, a large number of generated fake
packets will still cause high communication and computation
burden in DIFANE. Our approach is a lightweight solution and
provides packet-level migration, which guarantees the trans-
parency to controller applications and end users. DevoFlow
[14] introduces mechanisms for devolving control to a switch
and finding elephant flows and micro-flows, which benefits to
measurement requirement.

SDN Software Analysis: Some studies provide methods to
analyze SDN control plane software. Pyretic [23] introduces
some features to describe the model of an application from the
abstraction point of view. Some existing studies such as NICE
[11], VeriCon [7] and [16] propose several methods to verify
different features of control applications. In [26], the authors
improve the performance of control software troubleshooting
by using a minimal causal sequence of triggering events.

SDN Security: SDN security becomes a hot research topic
in recent years. There are two main directions. SDN-supported
security research targets to use SDN technique (which is rela-
tively a new technique) to solve traditional security challenges.
Some papers such as Mahout [13] use traditional statistic based
aggregation solutions to prevent flooding attacks in OpenFlow
networks. These attacks are targeting the end hosts while the
data-to-control plane saturation attack is against the OpenFlow
network infrastructure. In addition, statistic aggregation algo-
rithms do not help because the data-to-control plane saturation
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attack utilizes micro-flows. Therefore, we argue that statistic-
based solutions are not suitable for our problem. CloudWatcher
[30] introduces the Network Security Virtualization service to
cloud networks. FRESCO [31] proposes a framework designed
to facilitate the rapid design and modular composition of
security applications. OpenSafe [8] improves the management
of network monitoring applications.

Another direction is security for SDN which aims to
protect and strengthen SDN-enabled infrastructure. Our work
belongs to this direction. AvantGuard [29] attempts to solve
the same saturation attack challenge, and it is the closest work
to ours. AvantGuard introduces a module which implements
a SYN proxy and only exposes those flows that finish the
TCP handshake. AvantGuard can effectively defeat TCP based
saturation attacks. Its limitation is obvious that it is invalid to
other protocols. Our approach aims to defeat more generic
saturation attacks in SDN, not only limited to TCP protocol.
FortNOX [25] introduces the tunneling attack and proposes
a security enforcement kernel to defend against this attack.
Rosemary [28] introduces a sandbox-based framework to safe-
guard the SDN control layer against malicious or faulty control
applications. TopoGuard [19] studies the network topology
poisoning attack and proposes an extension to mitigate against
the attack. Sphinx [15] proposes a framework to detect known
and potential attacks on SDN networks.

IV. DESIGN

To address the security problems discussed in previous
sections, we introduce FLOODGUARD, a scalable, efficient,
lightweight and protocol-independent defense framework for
SDN networks to prevent data-to-control plane saturation at-
tack. We present the detailed design of FLOODGUARD in this
section.

A. System Architecture

FLOODGUARD introduces two new functional modules to
existing OpenFlow infrastructure : 1) a proactive flow rule
analyzer module, and 2) a packet migration module. The
analyzer module is to enforce the major functionality of the
network infrastructure when the saturation attack occurs. The
packet migration module is to transmit benign network flows to
the OpenFlow controller without overloading it. A conceptual
architecture of FLOODGUARD is shown in Figure 2. The
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proactive flow rule analyzer module is implemented as a
controller application above the controller platform. In the
packet migration module, the migration agent component is
also implemented as a controller application and the data plane
cache component sits between the control plane and data plane.

We maintain a finite-state machine to manage the whole
FLOODGUARD system. The state machine is shown in Figure
3. Before all the states, FLOODGUARD has some preparation
work, i.e., using symbolic execution to generate a set of
path conditions for each packet_in handler function of
each application. Compared with traditional symbolic execu-
tion method, we not only symbolize the input variables but
also symbolize the global variables used in the packet_in
handler function. After the preparation work, FLOODGUARD
starts from the Idle State. Initially, if there is no attack, both the
proactive flow rule analyzer and the packet migration modules
keep idle. When a saturation attack is detected, FLOODGUARD
comes to the Init State. The migration agent component starts
to redirect the table-miss packets to the data plane cache. The
proactive flow rule analyzer module will dynamically track the
running controller applications and convert the path conditions
which are generated before to proactive flow rules. At the same
time, the data plane cache component begins to handle cached
packets and generate packet_in messages to the controller.
When the proactive flow rules are ready, FLOODGUARD comes
to the Defense State. The analyzer module directly installs
these rules to the data plane switches and keeps updating
these flow rules. When the attack is detected to be over,
FLOODGUARD comes to the Finish State. The migration agent
component stops migrating the table-miss packets and the data
plane cache will keep handling unprocessed packets. When
the data plane cache finishes processing all cached packets,
it will become idle again. Our framework does not need any
modification to existing SDN infrastructure and is transparent
to both the control plane and data plane.

B. Proactive Flow Rule Analyzer

The proactive flow rule analyzer module is running as an
application in the controller and consists of three components:
(i) symbolic execution engine, (ii) application tracker, and (iii)
proactive flow rule dispatcher. The architecture of the proactive
flow rule analyzer module is shown in Figure 4.
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The proactive flow rule analyzer module could be acti-
vated anytime when needed. For example, it can typically
be activated right after the detection of the saturation attack,
which is informed by (the flooding detection function in)
the packet migration module. Once activated, the analyzer
module generates the proactive flow rules and directly installs
these rules into the data plane switches. Then the analyzer
module keeps updating the proactive flow rules dynamically.
In essence, the analyzer will leverage the logic of applications
in the controller to generate proactive flow rules, which, to
a great extent, covers all the possible upcoming packets that
the application cares about. The challenge here is how to
dynamically generate proactive flow rules. We introduce a new
approach which combines symbolic execution and dynamical
application tracking to address this challenge.

In a reactive controller, the controller platform maintains
the connections to the data plane and transforms OpenFlow
messages into events. Upon the controller, OpenFlow appli-
cations provide multiple event handlers to process OpenFlow
messages (e.g., PortStatus, PacketIn, Barrier). In this paper, we
only focus on the packet_in event handler. It is because
from Section II, we know that the packet_in handler
function is the main target of flooding attacks. The input
of packet_in handler function is the packet_in event
and the output is flow rules. We use a sample application,
l2 learning application [5], and describe the corresponding
control flow graph of its packet_in handler. First, we briefly
describe the logic of this function. The input for this function is
the packet_in event. This function maintains a MAC-port
mapping table, which can be learned from the source MAC
address and incoming port of previous packet_in messages.
The function firstly checks if the destination MAC address of
the packet is a broadcast address. If so, the function just simply
broadcasts the packet. If not, the function will search this MAC
address in the MAC-port mapping table. If this MAC address
has not been learned before, the function has no idea which
port to forward it so just broadcast it. If the MAC address has
been learned before, the function installs a relative flow rule
and forward this packet to the mapping port.

The control-flow logic of packet_in handler func-
tion of the l2 learning is as follows. One for input whose
destination MAC address is broadcast (pt.mac dst =
BROADCAST ), one for input whose destination MAC ad-
dress is not broadcast and not learned before (pt.mac dst 6=
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BROADCAST?

Packet: pt

Is pt.mac_dst in 
macToPort?

no

pt.mac_dst ≠  
BROADCAST

Broadcast packet
Install rule and 
forward packet
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BROADCAST
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pt.mac_dst ∈ macToPort

pt.mac_dst ∉ macToPort

Fig. 5. Sample Control-Flow Logic

BROADCAST and pt.mac dst /∈ macToPort) and
the other for input whose destination MAC address is not
broadcast but has been learned before (pt.mac dst 6=
BROADCAST and pt.mac dst ∈ macToPort). The
BROADCAST is a constant value, and the value of the data
structure macToPort is network state sensitive 2. From our
analysis and discussion in Section II, we identify the variable
macToPort as a state sensitive variable. Suppose at a certain
point in the running cycle, macToPort has a concrete value
(i.e., {0x00000000000A : 01}. Consequently in the control-
flow logic the first two branches only generate packet_out
messages without any flow rules. Nevertheless, the third branch
may generate a flow rule: mac dst = 00 : 00 : 00 : 00 : 00 :
0A, action = output : 01, which is the proactive flow rule
we can get at this moment.

Symbolic Execution [9], [18] is a practical way to generate
proactive flow rules. Symbolic Execution is a program analysis
approach, which is capable of efficiently traversing possible
branches in a program. A symbolic execution engine will
symbolize the input of a program and then execute all the fea-
sible paths at the beginning of the program. During executing
each path, the engine records the accumulation of conditions
that lead to this path, which is called “path conditions” or
“path constraints”. For example, in l2 learning application,
the path condition for the third branch is pt.mac dst 6=
BROADCAST and pt.mac dst ∈ macToPort. When the
engine finishes the execution of all feasible paths, we get all
path conditions of the program.

For the sake of reducing runtime overhead, we choose to
run symbolic execution offline for generating proactive flow
rules. However, simply offline running symbolic execution on
the packet_in handler function as mentioned above cannot
totally solve the problem. It is because packet_in handler
function may contain state sensitive variables whose value
will dynamically change. For example, in the l2 learning
application example, the initiate value of macToPort is
empty. We can only assign macToPort as its initial value,

2The key reason it is network state sensitive is because it will dynamically
change and vary in every call back of the handler function.



which means we will lose the third branch in the generated
path conditions. To tackle the problem, we increment symbolic
execution with dynamic application tracking. In detail, when
we generate the path conditions offline, we symbolize both
the input variables and the state sensitive variables. Then
we use dynamic application tracking to locate state sensitive
variables and extract them at runtime to derive proactive flow
rules. In the l2 learning example, we first symbolize the input
variable (i.e., packet_in event) and the macToPort. We
get path conditions which are the three branches. When the
saturation attack happens, we keep tracking the application to
get the runtime value of macToPort and assign to the path
conditions. Then we dynamically convert the path conditions
to proactive flow rules.

To derive proactive flow rules, we need to locate state sensi-
tive variable, which is highly related to program dynamics. For
example, macToPort is a state sensitive variable. We find that
all state sensitive variables are global variables to the function,
which means to the handler function, the set of global variables
is a superset of the state sensitive variables. The application
program will call the handler function hundreds of times with
different value of these variables. Therefore, we decide to
symbolize input variables and all global variables used in the
handler function to generate the path conditions. Then we can
assign the value of these global variables dynamically to the
path conditions and then generate our needed proactive flow
rules. Motivated by this idea, we introduce a new approach
which combines the symbolic execution and dynamic appli-
cation tracking to meet our requirement. We summarize the
algorithm of our approach as follows.

Algorithm 1 Generation of the Path Conditions (offline)
Input: F : packet in handler function
Output: P : a set of path conditions
1: input← ∅, global← ∅
2: input = find input variables(F )
3: global = find global variables(F )
4: F ′ = symbolize(F , input, global)
5: P = symbolic execution engine(F ′)
6: return P

Algorithm 2 Converting to Proactive Flow Rules (runtime)
Input: P : a set of path conditions, global′: global variables

with real-time value assigned
Output: R: proactive flow rules
1: R← ∅
2: paths = assign value(P , global′)
3: for each path condition p ∈ paths do
4: if p.decision = Modify State Message then
5: R.add (convert(p.path condition))
6: end if
7: end for
8: return R

We first separate the whole process into two steps. In the
first step, our input is the packet_in handler function and
our desired output is the path conditions of this function. We
first find input variables (e.g. packet_in event) and the
global variables which are used in the packet_in function.
Next we symbolize both the input variables and the global

variables. Then we use traditional symbolic execution algo-
rithm to traverse possible branches, collect all path conditions
and then generate the path conditions. This step will be
relatively time consuming. However, the symbolic execution
engine component could process this step offline in advance,
which means it will not increase overhead to our system. This
step is summarized in Algorithm 1.

The second step is dynamic analysis. In the state machine,
when it goes to Init State, the application tracker component
will process the second step. It will track and assign current
value of the global variables to the path conditions. After
this process, in the path conditions only input variables are
symbolized. Then we use the proactive flow rule dispatcher
component to analyze each path condition. We only consider
the paths whose final handling decision is in a small set which
is to generate Modify State Message (defined in OpenFlow
Spec. 1.4.0) 3. At last we get the proactive flow rules that
we want. This step is summarized in Algorithm 2. Figure 4
illustrates the process of dynamically generating proactive flow
rules. In the l2 learning case as shown in Figure 5, the number
of proactive flow rules is based on how many MAC-port pairs
have been learned in the macToPort. After the proactive flow
rules are ready, the analyzer component will install them to the
data plane switches.

C. Packet Migration

Installing proactive flow rules during the attack will pre-
serve the major functionality of the network infrastructure
because those packets that mach these flow rules are what
the SDN apps mainly care about. For the unmatched packets
(i.e., table-miss packets), one may think that we could simply
drop them. However, in that case, some new network flows
will not be monitored by the controller and thus be dropped.
For example, in the above l2 learning application example,
when we generate the proactive flow rules and install them
into the switches, we may sacrifice the learning capability.
After installing the proactive flow rules, new incoming network
flows cannot not be learned by the controller. That is because
the new incoming flows have not been learned before and thus
cannot match any proactive flow rules. Therefore, we cannot
simply drop the table-miss packets. That leads to our second
challenge, i.e., how to handle the flooding packets without
sacrificing benign packets? Our idea is to temporarily cache
the table-miss packets after the installation of the proactive
flow rules. We introduce the packet migration module. The
packet migration module contains two components: migration
agent and data plane cache.

1) Migration Agent: The migration agent component is
the “brain” of the whole FLOODGUARD system. It has three
main functions. The first function is to detect the saturation
attack. Anomaly-based flooding detection is easy to get around
by an attacker who is willing to slowly execute the attack.
Only using real-time rate of packet_in messages is not
enough to detect the attack. Therefore, our detection algorithm
makes use of both the real-time rate of packet_in messages
from the data plane and the utilization of the infrastructure
(buffer memory, controller memory and CPU) to calculate
current usage percentage of the capacity of our OpenFlow

3This kind of messages will install new flow rules in data plane switches.
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network. We identify there is a potential flooding attack
based on certain anomaly threshold. When the migration agent
detects the saturation attack occurs or ends, it will trigger the
corresponding state transition in the state machine described
above.

The second task of the migration agent component is to
migrate table-miss packets to the data plane cache. When the
saturation attack is detected, it will change the system state
to the Init State, which will trigger both the proactive flow
rule analyzer and the data plane cache. The migration agent
component installs one entry of wildcard flow rule which has
the lowest priority and forwards all table-miss packets to data
plane cache. Therefore, the flooding packets will not overload
the switch or flood the controller. The data plane cache will
temporarily store all the table-miss packets. Some packets will
be given priority to trigger packet_in messages from the
data plane cache.

However, the process has one obvious challenge. In Open-
Flow protocol, a packet_in message contains both packet
header and INPORT information. Due to the addition of
data plane cache, the original INPORT information is lost
in the process of migration. When we generate packet_in
messages later in the data plane cache, we lose the original
INPORT information. To solve this problem, we utilize a
packet tag to preserve INPORT information. In OpenFlow
specification, some fields are used for matching packet headers.
We can borrow some reserved fields to tag table-miss packets
(e.g. 8 bits TOS). Therefore, we modify the wildcard flow rule
mentioned above which is to migrate the table-miss packets. In
our implementation, we install multiple wildcard rules instead
of only one rule. When the controller detects the flooding
attack, it installs several wildcard rules to migrate table-miss
packets with encoded INPORT information into tag. For each
port there is a corresponding wildcard rule. We add one
matching condition which matches the incoming port and also
add one action which preserves the INPORT information to the
TOS field. For example, one wildcard rule could be: “inport =
1, actions : set-tos-bits = 1, output : data plane cache”. If the
ingress switch has 6 ingress ports, we need 3 bits to encode
INPORT information and the number of wildcard rules is 6. In
the data plane cache, when we need to generate packet_in
messages, we can decode the INPORT information from the
TOS field. The whole process is shown in Figure 6.
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When the data plane cache generates packet_in mes-
sages, it cannot directly send the messages to the controller.
It is because the controller platform distinguishes different
datapaths (switches) from different connections (e.g., TCP
session). If the data plane cache directly sends messages to
the controller, the data plane cache will be identified as a new
datapath. The third function of the migration agent component
is to solve this issue. The data plane cache will send the
packet_in messages to the migration agent component.
Then the migration agent will raise packet_in events with
the original datapath information to other applications in the
controller. Also, the migration agent instructs rate limit to data
plane cache based on the utilization of system resource and the
rate of incoming packet_in messages.

2) Data Plane Cache: Data plane cache is a ma-
chine/device that temporarily caches table-miss packets during
the saturation attack. During the data-to-control saturation
attacks, most of the flooding traffic will be redirected the
data plane cache instead of flooding the OpenFlow infras-
tructure. The data plane cache, as shown in Figure 7, has
three functions: packet classifier, packet buffer queue, and
packet in generator. When a migrated table-miss packet arrives
in data plane cache, the packet classifier parses the header of
the packet and attaches it to its corresponding buffer queue.
Specifically, there are four packet buffer queues inside data
plane cache based on the packet protocol, i.e., TCP, UDP,
ICMP, and Default. Each packet buffer queue is based on FIFO
(first-in, first-out) and embraces tail drop scheme, i.e., when
new packets come to a full packet buffer queue, the earliest
coming packet inside the packet buffer queue will be dropped.
Among those four packet buffer queues, we adopt round-robin
scheduling algorithm to pick the queue header packet for future
generating packet_in messages. The insight behind the
round-robin-based packet buffer queue lies in the observation
that an attacker normally exploit a specific protocol to launch
attacks, e.g., TCP SYN flooding attack, UDP flooding attack,
and ICMP flooding attack. Even if the attacker knows how our
scheduling manner works and attacks the various protocols, the
effect of the manner is the same as just using one queue and
has no drawbacks. Lastly, the packet in generator converts the
scheduled packets into packet_in messages by decoding
the INPORT information from the tag added before and sends
them to the OpenFlow controller. The sending rate of packet in
generator is controlled by the migration agent inside the remote
OpenFlow controller.
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D. Handling Dynamics

During the flooding attack, proactive flow rules may vary
due to network dynamics. For example, in the ip balancer ap-
plication, the change of traffic in different flows will lead to the
re-generating of flow rules. If we still use previous proactive
flow rules in the data plane, it will lead to unpredictable results.
Therefore, the proactive flow rules should keep consistent with
current network state. To handle the dynamics, in the proactive
flow rule analyzer module we constantly update the proactive
flow rules. We have several steps to update the proactive flow
rules, as illustrated in Figure 8. By frequently referencing to the
global variables, any change of value can be easily identified
by the application tracker component. Then this component can
find corresponding path conditions and regenerate the proactive
flow rules. At last, the control plane will update the latest
proactive flow rules to the data plane switches. The variation
should be quite simple as adding or removing a few matching
rules. In the case shown in Table I, if the incoming traffic with
a source IP address whose highest-order bit is 1 gets a private
destination IP address which changes to 192.168.0.2 and the
remaining traffic changes to 192.168.0.1, the change can be
detected by the analyzer. Then the proactive flow rule analyzer
regenerates the proactive flow rules and reports the variation
of two flow rules to the data plane switches. Consequently,
the flow table in the OpenFlow switch has the latest matching
rules which represents the current network state.

There is a tradeoff between the performance and the
accuracy. We can update the rules every time after a change.
That will bring high accuracy, but also introduce relatively high
overhead. We can also update the rules after a certain number
of changes happen. That will increase the performance but
reduce the accuracy. We can also update the rules based on a
constant time interval (e.g., 1ms). We think the decision should
be based on the actual situation and system features.

E. Discussion

One issue in the deployment is that how many data plane
caches are necessary for a large number of OpenFlow switches.
Ideally, we only need to deploy one data plane cache to serve
all switches. However, to be more scalable, we could also use
a set of data plane caches, with each in charge of a subset of
switches (e.g., a subnet of an enterprise network or a rack of
a cloud network).

Another concern is that the size of TCAM memory in
switches may not be enough to install all proactive flow rules.
Note that in our design, we do not add new extra rules. Instead,
we just proactively install those rules in advance. If the TCAM
memory is really limited, we have another design option which
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is to install and update the proactive flow rules into the data
plane cache. In the data plane cache, for those packets who
can find a match, we provide them a higher priority to trigger
packet_in messages. However, the system needs to sacrifice
some performance for this design option. There is a tradeoff.
According to the actual situation, the network administrator
could make a decision between the two options.

V. EVALUATION

In this section we introduce our implementation of FLOOD-
GUARD and evaluate the performance and overhead of our
framework.

A. Implementation

We implement FLOODGUARD and test into both software
and hardware OpenFlow environments. In the software en-
vironment, we use Mininet [22] to emulate the OpenFlow-
enabled network data plane. In the hardware environment,
we use an OpenFlow-enabled commercial LinkSys WRT54GL
switch with Pantou [4]. The proactive flow rule analyzer mod-
ule is implemented as an application upon the POX controller
[5], a lightweight OpenFlow controller platform. We modify
the concolic execution engine in the NICE [11] project to
implement our symbolic execution engine and use STP [17]
as the path constraint solver. We implement the data plane
cache as a software system in approximately 1,000 lines of
C++ code.

B. FloodGuard Defense Effects

We first evaluate and compare two scenarios: (i) testing an
application with existing OpenFlow network, and (ii) testing
the same application with FLOODGUARD. We have two kinds
of test environments. One is a hardware switch environment
that includes a POX controller, an OpenFlow switch (LinkSys
WRT54GL), a server machine that implements data plane
cache and three clients. We also have a software environment,
in which we use Mininet [22], a popular SDN emulation
tool. One client is the attacker who launches a UDP flooding
attack to the switch. The other two clients keep normal
communicating with each other. The POX controller is running
the l2 learning application which discovers the topology and
provides basic forwarding services. The test environment is
shown in Figure 9.

We first measure the bandwidth between the two clients
with and without flooding attacks. The attacker keeps gen-
erating different rates of UDP flooding traffic to the switch.
We evaluate the impact on bandwidth under different attack
rates with and without using FLOODGUARD. Since software



Application State Sensitive Variable (Type) Description
l2 learning macToPort (dictionary) {mac address : INPORT}
l3 learning arpTable (dictionary) {IP address : mac address and INPORT}
ip balancer servers (list) IP addresses of duplicated servers

service ip (IPaddr) IP addresses of services
live servers (dictionary) {IP address : mac address and INPORT} of live duplicated servers

memory (dictionary) {four tuples of packet header : flow record}
of firewall firewall (dictionary) {packet patterns : TRUE or FALSE}

table (dictionary) {switch data path : mac address}
mac blocker blocked (set) mac addresses of blocked hosts

TABLE III. THE STATE SENSITIVE VARIABLES IN APPLICATIONS

FloodGuard

OpenFlow

Fig. 10. Bandwidth in Software Environment

FloodGuard

OpenFlow

Fig. 11. Bandwidth in Hardware Environment

switches and hardware switches have different performance
and capacity, we measure the bandwidth in both software and
physical switch environments. We use an open source tool iperf
to measure the available bandwidth between two clients.

The results in software environment and hardware en-
vironments are shown in Figure 10 and Figure 11. In our
design, without the saturation attack, FLOODGUARD should
have no impact on the data plane. This has been verified in
our bandwidth evaluation. FLOODGUARD does not affect the
bandwidth of traffic forwarding. In the software environment,
without FLOODGUARD, the bandwidth is about 1.7Gbps when
there is no attack. When we start the saturation attack and
increase the attack rate, the bandwidth goes down quickly.
The bandwidth decreases in half after about 130 packets per
second (PPS) of traffic. The whole network is dysfunctional
after an attack rate of 500 PPS. While using FLOODGUARD the
bandwidth also starts from about 1.7Gbps without the attack.
Even though we increase the attack rate up to 500PPS (Packets
Per Second), the bandwidth keeps almost unchanged. In this

sense, FLOODGUARD can protect the software switch well.

In the hardware environment, the results also show the
good protection of FLOODGUARD. Without FLOODGUARD,
the bandwidth also quickly goes down with the increase of
the attack rate. The bandwidth starts from about 8.4Mbps and
decreases in half after about 150 PPS. With an attack rate after
1000 PPS, the hardware switch is almost dysfunctional. By
using FLOODGUARD, the bandwidth keeps as about 8.3Mbps
under an attack of less than 200 PPS. While after a rate of 200
PPS, the bandwidth will also decrease slowly. That is because
our switch does not have the ternary content addressable
memory (TCAM) but instead uses the OpenWRT [3] firmware
which implements a software flow table. The software flow
table cannot reach the same level efficiency as TCAM. Even
then, we can still see that FLOODGUARD provides significant
good protection and saves more resources. It is expected that
with a real OpenFlow hardware switch, FLOODGUARD will
have better protection results.

Next we will show our evaluation of the protection impact
on the control plane. We illustrate how FLOODGUARD can
protect the controller. We choose five applications for our
evaluation: l2 learning, ip balancer, l3 learing, of firewall
and mac blocker (we downloaded the first four applications
from [5] and of firewall from [1])). We simultaneously run
these five application in the controller and use an attacker
to launch the saturation attack with a rate of 100 PPS in
the hardware switch environment. We keep monitoring the
resource consumption of each application (we choose the CPU
utilization of each application as the indicator of how many
resources it consumes). In Figure 12 we show the evaluation
results.

We can see the protection effects of FLOODGUARD in the
figure. The flooding attack starts at about 0.6s. We can observe
that the CPU utilization of each application increases quickly
and reaches a peak at about 0.8s. Then the CPU utilization
begins to go down slowly because of the installation of the
migration flow rules. When we can also observe the impact of
the data plane cache, the utilization does not go down immedi-
ately to the initial level. Instead, the utilization maintains at a
medium level for some time. At about 1.5s, the CPU utilization
of all the applications goes back to the the initial level. We can
observe from the results that FLOODGUARD provides effective
protection to the control plane. The saturation attack does not
consumes many resources of the control plane.

C. Overhead Analysis

In this section we show our evaluation about the overhead
of FLOODGUARD. First we measure the overhead of symbolic-
execution engine and proactive flow rule dispatcher, which



Fig. 12. CPU Utilization under the Flooding Attack

OpenFlow OpenFlow + FLOODGUARD
Total Total Data Plane Cache After Migration

130ms 157ms 30ms 127ms

TABLE IV. AVERAGE DELAY OF THE FIRST PACKET IN EACH NEW
FLOW

seem to be time-consuming components. To generate the
path conditions, running symbolic execution engine for each
application takes relatively long time which is more than ten
seconds. However, from Section IV we know Algorithm 1 can
be processed offline in advance, which means it will not add
any overhead to the runtime performance of FLOODGUARD.
Thus, the overhead of symbolic execution engine is not a
concern.

At runtime, we need to dynamically dispatch proactive flow
rules. This part of overhead cannot be omitted. We keep using
the five controller applications. In Table III we provide the state
sensitive variables in each application and their descriptions.
For each application mentioned above, we test the average
overhead of generating proactive flow rules. The results are
shown in Figure 13. The logic in every application has different
complexity. For most cases the overhead is less than 2ms.
We can see that the worst case is about 9ms in of firewall
application. That is because this application contains relatively
more complex data structure, which the proactive flow rule
dispatcher takes more time to analyze the path conditions. The
overhead is still acceptable for our system.

We also evaluate the average time delay of the whole
migration process in the physical environment. We generate
a new benign TCP connection under the UDP flooding attack
and we will let the first handshake packet trigger table-miss
(by not installing relevant proactive flow rules which may
be generated at this time) in order to measure the migration
overhead. The scenario is the same as shown in Figure 9 and

Fig. 13. Overhead of Generating Proactive Flow Rules

the result is shown in Table IV. Without flooding traffic it
takes an average time about 130ms to process and forward
the first packet of a new flow in the original OpenFlow
network. However, when flooding attacks occur, the delay
will become infinite. FLOODGUARD can detect and prevent
such attacks meanwhile will inevitably bring some overhead.
During the flooding attack, the first handshake packet of
a new TCP connection will trigger table-miss and will be
forwarded to the data plane cache with almost no delay.
Since the system is under the UDP flooding attack, the TCP
buffer queue in the data plane cache is relative idle. It takes
about 30ms to process the packet. After that, the procedure
of re-triggering a packet_in message, setting up new flow
rules and forwarding the packet takes about 127ms. To sum
up, FLOODGUARD increases about a total of 27ms overhead
(20.8%) in this scenario. When new flow rules are set up in
the switch, there is no more delay for the subsequent packets
in this flow. Although FLOODGUARD unavoidably adds some
overhead of time delay, the tradeoff is that it can cache flooding
packets and protect both the controller and the switches. Thus
FLOODGUARD makes the OpenFlow network more secure
against flooding attacks.

VI. CONCLUSION

In this paper, we propose FLOODGUARD to prevent the
data-to-control plane saturation attack by using proactive flow
rule analyzer and packet migration. When the saturation attack
is detected by FLOODGUARD, the packet migration module
will redirect the table-miss packets in the OpenFlow switch
to the data plane cache. At the same time, the proactive flow
rule analyzer module will dynamically track the runtime value
of the state sensitive variables from the running applications,
convert generated path conditions to the proactive flow rules
dynamically and install these flow rules into the OpenFlow
switches. Then the data plane cache will slowly send the table-
miss packets as packet_in messages to the controller by
using rate limiting and round-robin scheduling algorithm. We
present a prototype implementation tested in both a software
environment and a commodity hardware OpenFlow switch
environment with real attack scenarios. The evaluation results
demonstrate the effectiveness of FLOODGUARD and show that
our system only add minor overhead.
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