
Principled Reasoning and Practical Applications of
Alert Fusion in Intrusion Detection Systems

Guofei Gu
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332, USA

guofei@cc.gatech.edu

Alvaro A. Cárdenas
Department of EECS

University of California
Berkeley, CA 94720, USA

cardenas@cs.berkeley.edu

Wenke Lee
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332, USA

wenke@cc.gatech.edu

ABSTRACT
It is generally believed that by combining several diverse intrusion
detectors (i.e., forming an IDS ensemble), we may achieve better
performance. However, there has been very little work on
analyzing the effectiveness of an IDS ensemble. In this paper,
we study the following problem: how to make a good fusion
decision on the alerts from multiple detectors in order to improve
the final performance. We propose a decision-theoretic alert fusion
technique based on the likelihood ratio test (LRT). We report
our experience from empirical studies, and formally analyze its
practical interpretation based on ROC curve analysis. Through
theoretical reasoning and experiments using multiple IDSs on
several data sets, we show that our technique is more flexible and
also outperforms other existing fusion techniques such as AND,
OR, majority voting, and weighted voting.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Network]: Security and Pro-
tection; B.8.2 [PERFORMANCE AND RELIABILITY]: Perfor-
mance Analysis and Design Aids

General Terms
Security

Keywords
Intrusion detection, alert fusion, IDS ensemble, likelihood ratio
test, ROC curve

1. INTRODUCTION
Diversity is a well-established approach for increasing the

reliability of systems: if we want a computer service to be always
available, we can use diversity to make it more difficult for an attack
to take down an entire set of diverse computers or mechanisms.
In Intrusion Detection Systems (IDSs), different detectors provide
complementary information about the patterns to be classified.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS ’08, March 18-20, Tokyo, Japan
Copyright 2008 ACM 978-1-59593-979-1/08/0003 ...$5.00.

Some detectors1 are effective in detecting a certain type of attack,
while others aim to detect different types. A single intrusion
detection algorithm (or anomaly classifier) cannot easily detect all
kinds of intrusions/anomalies. Similarly, different classifiers are
likely to make different kind of errors on normal data. Thus, a
reasonable approach is not to rely on any single classifier for a
decision, but a fusion rule to combine diverse classifiers to reach
a final decision.

Now suppose we have a set of diverse IDSs reporting on the
same event. If some IDSs output an alarm while others do not,
should the fusion rule output an alarm? This is the so-called IDS
fusion problem. A conservative (or, security-conscious) fusion rule
will always output an alarm whenever one of the underlying IDSs
outputs an alarm. However, this simple approach is inadequate in
many situations. It does not filter the alerts from underlying IDSs
and does not resolve conflicting votes from the IDSs (i.e., when
some say “normal” and others say “attack” or “suspicious”). As a
result, it produces as many alarms as the sum of all alarms from all
the underlying IDSs. And since it does not provide a confidence
attribute to the alarms, security analysts can be overwhelmed by
the need to inspect a large number of alerts (including many false
alarms).

In this paper, we make the following contributions:

• We propose the use of the likelihood ratio test (LRT)
technique as a principled and practical way of combining
different alarm reports.

• We study the effectiveness of the LRT rule empirically by
using several IDSs on two different data sets and comparing
its performance to several other fusion approaches.

• We provide a novel theoretical analysis of the LRT rule, and
the resulting binary decision functions. We also show the
practical intuition of the LRT rule when applied to the IDS
fusion problem, and provide a novel practical interpretation
of these results using ROC curves.

• We test the robustness of the LRT fusion rule with respect
to possible parameter estimation errors (these parameters
include the false positive rate, false negative rate, and base
rate).

Our analysis shows that the LRT rule has several key character-
istics:

1Although there are some difference between the terms of detector,
sensor, and classifier, they are basically the same components in
our model (Figure 1). In the rest of the paper, we may use
IDS/detector/sensor/classifier interchangeably.

• If the risk model is known (i.e., if we have the knowledge
of the operating costs of the IDS, and the likelihood of an
attack), the LRT rule can be shown to be the fusion rule that
minimizes the average cost.

• Instead, if we do not assume any costs, we can use Neyman-
Pearson theory to show that by tuning a threshold, we find the
optimal tradeoff between false alarms and missed detections.

• Finally, if we do not make any assumption, the LRT fusion
rule can be seen as a principled ranking algorithm, placing a
level of suspicion on each event, depending on which IDSs
output alarms (and which ones did not). A ranking algorithm
will thus help the operators of IDSs identify and check only
the most suspicious events (given their time constraints).

Our results also show that our approach outperforms other fusion
approaches (e.g., AND, OR, majority voting, weighted voting) in
achieving the lower overall cost in various risk scenarios, and in
providing a principled ranking algorithm for alarms.

The paper is organized as follows. Section 2 reviews related
work. In Section 3 we formalize the IDS fusion problem and
describe our LRT-based alert fusion technique. In Section 4 we
discuss the effectiveness of our approach by comparing it with
other methods using several IDSs on two different data sets. In
Section 5 we provide a novel interpretation of the LRT ensemble,
and theoretically analyze why the LRT fusion rule is a better choice
than other approaches. In Section 6 we discuss several extensions.
Section 7 summarizes the paper and outlines further work.

2. RELATED WORK
There are several ways for combining classifiers in the machine

learning literature. For ensemble methods [29, 14] such as bagging
[8], or boosting [17], the goal is to generate different classifiers
by resampling or reweighing the training data set. The decision
rules applied to the generated classifiers are majority voting or
weighted voting. In contrast, our method takes any given set of
binary classifiers and finds optimal combination rules from a more
general space of functions (i.e., our fusion rules are not restricted
to be majority voting or weighted voting).

Another method for combining classifiers is stacking [51].
Stacking trains a meta-learner to combine the predictions of several
base classifiers. This meta-learner is in general, a machine learning
algorithm such as a neural network, or a support vector machine.
The problem with these algorithms is that their classification rules
are difficult to interpret, and that their objective is to minimize
the probability of error; a metric that is not well suited for the
evaluation of intrusion detection systems [9, 30, 20]. Our method,
however, can be considered to be a stacking approach with the
LRT rule as a particular meta-classifier. We have showed that LRT
performs well and can outperform previously proposed stacking
approaches [5]. In this paper we show how the LRT rule can
be easily interpreted. Furthermore, we show how the LRT is
particularly well suited for the complex trade-off between false
positive rate (FP , the probability that the IDS outputs an alarm
in case of no actual intrusion), and false negative rate (FN ,
the probability that the IDS outputs no alarm when an intrusion
actually occurs).

Recently, IDS researchers have also proposed and applied other
machine learning techniques [31, 13, 18, 46, 28, 26, 27, 40]. Lee
et al. [31] applied meta-classification to improve accuracy and
efficiency, and to make data mining based IDSs more adaptable.
Didaci et al. [13] and Giacinto and Roli [18] applied three different
meta-classification methods proposed in [52] to the outputs of three

neural networks trained on different feature sets from the KDD
tcpdump data. Kruegel et al. [28] proposed to use Bayesian
networks to improve the aggregation of different detector outputs.
In [26, 27], Kruegel and Vigna proposed several Web anomaly
detectors and combined them using weighted voting. In [40],
Perdisci et al. proposed an ensemble (using majority voting) of
several one-class SVM classifiers (using different feature set) to
harden payload-based anomaly detection systems. In [6], Bass
pointed out that the art and science of (multisensor) data fusion is
applicable to intrusion detection, and discussed several challenges
in IDS fusion. Shankar [44] applied the data fusion technique to
detect and track rapidly propagating intrusions. Valeur et al. [47]
proposed a comprehensive framework for intrusion detection alert
correlation, partially including alert fusion. This work showed
that by combining multiple classifiers to detect intrusions, we can
improve accuracy to some degree, however, none of these efforts
explored the theoretical or practical advantages of the LRT rule.

When combining alerts from different IDSs, we need to
distinguish between alert fusion [6, 44, 47] and alert correlation
[47, 12, 41, 39, 11]. The alert fusion problem is the combination
of alerts representing independent detection of the same attack
occurrence [47], while the alert correlation problem attempts to
group alerts and provide a more succinct, high-level view of the
intrusions attempts (typically done via attack graphs or attack
scenarios). Compared to alert correlation, alert fusion is a very
narrow and specific process. However, there is very little work
defining a formal and principled framework for alert fusion where
the operational performance is evaluated under clearly defined
metrics. In this paper we address this concern.

One of our main evaluation metrics is cost. In cost-based
analysis there were several efforts. In the machine learning field,
Adacost [16] is an enhanced Adaboost that considers cost factors.
However the interpretation of the output of an ensemble using
these techniques is mostly based only on good empirical results,
limiting the understanding that an IDS analyst must have when
receiving an alarm. In the intrusion detection area, Lee and
Fan [30, 15, 45] were among the first to explore cost-sensitive
approaches for intrusion detection. A very detailed case-example
of identifying costs in a large network was done by Arora [3].
Although identifying the associated costs is not an easy task, it is
essential for risk management; a major component of an overall
strategy for information security. In this paper we study the cost-
aware structure for the alert fusion problem.

3. DECISION-THEORETIC ALERT
FUSION FOR AN IDS ENSEMBLE

3.1 Formal Model of IDS Fusion
In our IDS fusion model, each intrusion detector analyzes the

data (e.g., network traffic), and outputs whether it is anomalous or
normal. Formally, we can model the observation of each data unit
(packet or flow, depending on the analysis unit of the detector) with
two status, either normal (H0) or anomaly (H1). In the ensemble,
we assume each detector have the same unit of analysis (same
granularity of alert, see [19] for an extended discussion on handling
other cases). Each IDSi (i = 1, ..., n; n ≥ 2) observing the
data unit (e.g., network packet) makes its own decision yi as H1

(in this case it outputs yi = 1) or H0 (it outputs yi = 0). All
the decisions of individual detectors (which form a decision vector
~Y = {y1, ..., yn}) will be gathered at a fusion center, and a global
decision will be made (Figure 1). y0 is the final decision reported
to the network security administrator.

IDS1
 IDS2
 IDSn

Alert Fusion Center

Data unit

with status H0 or H1

y1

y2

yn

y0

Figure 1: Alert fusion for an IDS ensemble

To perform a cost-based analysis, we need specifically define
cost Cij , which is related to a situation in which IDS outputs
Hj while Hi is the real output. C01 is the cost of FP (i.e.,
P (H1|H0)). C10 is the cost of FN (i.e., P (H0|H1)). C00 is
the cost of true negative (P (H0|H0), the probability that the IDS
indicates normal when no intrusion occurs), and C11 is the cost
of detection (also called true positive, P (H1|H1), the probability
that the IDS outputs an alarm when an intrusion occurs). In most
cases, we can just set C00 = C11 = 0 because we assume an
IDS involves no cost (in terms of loss of information or services
in the protected network) if it does the right thing. (We will use
this setting throughout the entire paper.) Now we can define an
expected cost function Cexp, which reflects the overall Bayesian
risk.

Cexp =

1∑
i=0

1∑
j=0

CijPiP (Hj |Hi), (1)

where Pi is the prior probability of Hi, i = 0, 1. Thus, Cexp is the
expected mean value of cost over all possible situations. In the IDS
literature, P1 is called base rate [4] that indicates the probability
of each data unit being malicious (H1) (or, the prior fraction of
intrusion in the entire data stream). In a cost-based analysis case,
Cij should always be pre-defined by administrators according to
the risk model of their networks [3]. We will briefly discuss an
unbiased estimation method of Pi later in the paper.

We further define the probability of false positive (FP) and the
probability of detection (1 − FN) corresponding to detector i,
denoted as PFi and PDi, respectively. The overall probability of
false positive and the overall probability of detection of the IDS
ensemble are denoted as PF and PD , respectively.

PF =
∑

~Y

P (y0 = 1|~Y)P (~Y |H0)

PD =
∑

~Y

P (y0 = 1|~Y)P (~Y |H1)

Here the sum over ~Y indicates that all the possible values of ~Y
be taken and summed up. Then we can expand Cexp in Eq(1) using
PF and PD .

Cexp = C01P0PF + C10P1(1− PD)
= C01P0PF − C10P1PD + C10P1

= C01P0

∑
~Y P (y = 1|~Y)P (~Y |H0)

−C10P1

∑
~Y P (y = 1|~Y)P (~Y |H1) + C10P1

(2)

3.2 Decision-Theoretic Alert Fusion Based on
LRT

The likelihood ratio test (LRT) is a statistical test of the
goodness-of-fit between two test models. Based on LRT technique,
which is commonly used in data fusion, we have the following
theorem [49, 22]. It provides an optimal decision algorithm for
combining alerts of the IDS ensemble.

THEOREM 1. Given that every IDS makes its own decision, the
following fusion rule can minimize the expected cost Cexp

{
If P (~Y |H1)

P (~Y |H0)
> C01P0

C10P1
, Output y0 = 1

If P (~Y |H1)

P (~Y |H0)
< C01P0

C10P1
, Output y0 = 0

(3)

This algorithm tells us that if the left part of the equation is
greater than the right, then the final decision yields output y0 = 1
(anomaly); otherwise, it yields output y0 = 0 (normal). If they are
equal, we can arbitrarily pick either decision.

Note that in order to use this rule, we need to know C01P0
C10P1

and
P (~Y |H1)

P (~Y |H0
. We now discuss our interpretation of these parameters.

Finding the exact distribution P (~Y |Hi) of a multidimensional
random variable ~Y is, in general, a very hard problem. In fact, a
large body of research in the machine learning community focuses
precisely on models to approximate unknown multidimensional
distributions [21]. A fundamental result in approximating distri-
butions is the bias-variance trade-off. This result says that as
the complexity of our model increases (i.e., as the number of
parameters increases) the variance of the model also increases, i.e.,
the approximation to P (~Y |Hi) is very dependent on the training
data, but it cannot generalize to other domains other than the one
associated with the collected data. Similarly, if the complexity of
the model is small (i.e., if the number of parameters used is very
small), the bias of the model will be large, i.e., the model will not
have enough parameters to approximate the real distribution. This
concept is illustrated in Figure 2.

We therefore make a very common approximation to the
joint distribution by assuming conditional independence of the
detectors:

P (~Y |Hi) = P (y1|Hi)P (y2|Hi) · · · P (yn|Hi). (4)

With this approximation, in order to compute the joint distribu-
tion of the ensemble, we only need to estimate 2n parameters: n
probabilities of detection (PDi), and n probabilities of false alarm
(PFi), as opposed to the 2×(2n−1) parameters required to model
the precise multinomial distributions P (~Y |H1) and P (~Y |H0).

The conditional independence assumption is a very common
technique to obtain an approximation of the joint distribution, and
this assumption has been applied successfully in several intrusion
detection scenarios [3, 28], and in machine learning scenarios
(most notably by the naïve Bayes classifier [21]). We will comment
more on the practical effects of this assumption in Section 6.

Note that there is a difference between complete independence
and conditionally independence. In our conditional independence
assumption, we still allow for correlations such as the fact that if

C
la
s
s
ifi
c
a
ti
o
n
 E
rr
o
rs

Model Complexity

Training Data

Test Data

High Bias
Low Variance

Low Bias
High Variance

Low High

L
o
w

H
ig
h

Figure 2: Bias-variance trade-off: with more parameters to
model a distribution, we can obtain a more accurate result,
but because we have finite training data (and possibly non-
stationary distributions), we cannot estimate reliably all these
parameters and thus our variance increases.

one detector raises an alarm, this increases the likelihood of the
other detector firing an alarm.

Regarding the knowledge of the cost and the base-rate, although
several research has presented a very thorough analysis of risks and
operating costs [3] (and thus have a reliable estimate for C01P0

C10P1
),

such information in general may not be available in practical
scenarios. Therefore, we show in Section 5 how to use and interpret
the LRT rule even if we do not know these parameters.

For simplicity, it is also convenient to use the log-likelihood
ratios. Now we can have the following fusion/decision rule:

{
If

∑
i∈S0

log
(1−PDi)
(1−PF i)

+
∑

j∈S1
log

PDj
PF j

> log
C01P0
C10P1

, y0 = 1

If
∑

i∈S0
log

(1−PDi)
(1−PF i)

+
∑

j∈S1
log

PDj
PF j

< log
C01P0
C10P1

, y0 = 0

(5)

where S0 is the set of all detectors i, yi ∈ ~Y , and yi = 0; S1 is
the set of all detectors j, yj ∈ ~Y , and yj = 1. Note in this form,
we can also consider Eq. (5) as a special form of weighted voting.

4. EXPERIMENT EVALUATION
In order to evaluate the performance of our LRT ensemble,

we performed several experiments using multiple IDSs on two
different data sets to show its practical application. We will provide
theoretic reasoning in the next section.

In the evaluation, we will compare the following existing
common ensemble decision/fusion rules:

• AND rule: only if all the detectors report anomaly (yi = 1
for all i = 1..n), then y0 = 1; otherwise, y0 = 0.

• OR rule: if any detector reports anomaly, then y0 = 1; only
if all detectors report normal, then y0 = 0.

• Majority (MAJ) rule: if most (at least half) of the detectors
report anomaly, then y0 = 1, otherwise, y0 = 0.

• Weighted voting (VOT) rule: treat the decision 1, 0 as 1,−1,
and use weighted voting y0 = sign(

∑
i αiy

′
i), here αi is

the weight assigned to detector i and αi = 1
2

ln (1−εi
εi

)
[17]. This gives more weight on the detector with less
classification error rate.

• LRT rule: our cost-aware decision rule based on the LRT
fusion algorithm.

These rules are selected because they are simple/intuitive in
nature, and most commonly used in machine learning and intrusion
detection literature.

4.1 Experiment Using Machine Learning
Based IDSs on KDD Data Set

Our first experiment used KDD cup 1999 data set [1], which was
produced from the 1998 DARPA Intrusion Detection Evaluation
program [33]. The raw data includes about nine weeks of TCP
dump network traffic containing normal traffic and many attacks.
Lee and Stolfo et al. [31] further processed data based on three
categories of derived features, i.e., basic features of individual
TCP connections, content features within a connection suggested
by domain knowledge, and traffic features computed using a
two-second time window (please refer to [31] for detail). We
acknowledge the limitation/flaw of this data set as criticized in [36,
35]. The reason we choose this as our initial study is because it
is the only well-studied, documented and public trace for intrusion
detection. We will further comment on this shortly after we show
the experiment results.

In this experiment, we chose
kddcup.data_10_percent.gz as the training data set
and corrected.gz as the testing data set. The training set
(75M uncompressed) is about 10% of the full data set and contains
494,020 records. The testing data (45M uncompressed) with
corrected labels has 311,029 records, among which 60,593 are
normal and 250,436 are intrusions. Every record is labeled only
using 0 (normal) or 1 (anomaly) in the experiment.

We used several machine learning based IDSs to construct the
IDS ensemble. Specifically, we chose four different machine
learning algorithms, i.e., DT (decision tree algorithm, specifically,
C4.5), NB (Naïve Bayes classifier), KNN (K-Nearest Neighbor,
specifically, we set k = 9), and SVM (Support Vector Machine,
specifically, we use the LIBSVM [10] tool) [48]. Most of
the algorithms are described in [37]. All of them have been
successfully applied to intrusion detection [2, 23, 32]. We used
all these four machine learning-based IDSs (DT, NB, KNN, and
SVM) to build an IDS ensemble.

Table 1 reports the accuracy of each detector and fusion rule.
Note that here we have not involved cost factors yet, but simply
show accuracy in terms of the detection rate (PD), the false positive
rate (PF), and the total error rate (ε). Since the LRT rule requires
cost factors (which define the threshold the LRT rule uses for
finding its final decision), it is not shown in the table. From the
table we can see that for these four single detectors, DT and KNN
achieve slightly better accuracy than NB in terms of PD, PF and
ε. SVM obtains the lowest false positive rate among four, however,
also the lowest detection rate.

For the fusion result, the AND rule achieves the lowest false
positive rate (0.00066014). The OR rule has the highest detection
rate (0.9185) and the lowest total error rate. The MAJ and VOT
rules have some balance between false positive rate and false
negative rate, compared with the AND and OR rules.

Now we will involve a cost factor analysis. In the experiment,
since we have all the running results, we can compute the final
total cost related to the total number of false positives and false
negatives. We define

Ctotal = N01C01 + N10C10,

where N01 is the number of false positives in testing, and N10 is
the number of false negatives in testing. Thus, Ctotal reflects the
final overall cost.

We want to cover as many risk scenarios as possible (with

Table 1: Accuracy of each detector and fusion rule (ensembling four IDSs)
DT NB KNN SVM AND OR MAJ VOT

PD 0.9103 0.9016 0.9080 0.876 0.8662 0.9185 0.9027 0.9066
PF 0.017609 0.023204 0.0058423 0.0036473 0.00066014 0.028931 0.0040269 0.016669
ε 0.075636 0.083767 0.075212 0.10053 0.10789 0.071254 0.079092 0.078446

different weights of cost for false alarms and missed attacks) that
could occur. Assume the minimum unit of cost value is 1, we first
fix C10 = 1 and vary C01 to obtain its effect (simulating the cases
that false positive is equal or more important than false negative)
on different rules. Then, we fix C01 = 1 and vary C10 to simulate
the cases that the cost of false negative is equal or greater than that
of false positive. Thus, we verify the efforts of these fusion rules
in various cost scenarios (with different setting of C01 and C10).
Figure 3(a) and (b) show Ctotal for different rules in these two
settings.

0 2 4 6 8 10
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8
x 10

4

C
01

C
to

ta
l

AND
OR
VOT
LRT

(a) Fix the cost of FN
(C10 = 1) in all the cases,
vary the cost of FP (C01).

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

C
10

C
to

ta
l

AND
OR
VOT
LRT

(b) Fix the cost of FP
(C01 = 1) in all the cases,
vary the cost of FN (C10).

Figure 3: Total cost for different rules in different risk
scenarios (ensembling four IDSs). The LRT rule obtains the
lowest overall cost in most of the scenarios.

Generally speaking, we can still claim that the LRT rule performs
the best. The MAJ and VOT rules achieve almost identical
performance in the experiment. This is intuitive because all of the
these four IDSs have similar total error rates that result in the effect
of weights in VOT similar to that in MAJ. Thus, we only draw
the VOT rule in the figures. The VOT rule performs well, but still
worse than the LRT rule. The AND rule has a nearly stable cost in
Figure 3(a). The reason is because it has the lowest false positives
so that a slight change of the cost of FP does not have a significant
effect. In many scenarios, the OR rule performs as well as the LRT
rule (as shown in Figure 3(b)), but it does not perform well when
the cost of FP is larger than 4, as indicated in the right part of
Figure 3(a). In some cases, the OR rule outperforms LRT (left part
of Figure 3(a)). Some possible reasons are as follows:

1. The four IDSs are not ideally independent. If we use Eq(5)
and assume independence, we may obtain incorrect joint
conditional density of P (~Y |Hi) when this assumption does
not hold.

2. The KDD data set is flawed [36, 35] as we mentioned before.
In addition, the distribution of the testing data is greatly
different from that of the training data. And the base rate
in the testing data set is too high (P1 = 0.8, which is unreal
because we know in practice the fraction of intrusion among
all data is very low [4]). Since the OR rule can greatly
improve the detection rate (reduce false negatives), and since

most of the testing data are anomalous, the OR rule can
achieve good performance in KDD data set. However, the
OR rule also increases the false positives, thus, when the cost
of false positive increases, it will cause very high overall cost
as indicated in the right part of Figure 3(a).

Due to these reasons, our experiments with the KDD data set
could be considered as a bad (if not the worst) situation. Yet the
LRT technique still achieved good results. Thus, the experiments
still confirm that LRT is an effective cost-aware fusion rule (even
when the independent assumption may not hold well) and performs
the best in most of the risk scenario cases.

Having noticed the flaws of the KDD data set, we conducted
another experiment by replacing KDD data set with a real network
traffic trace. At the same time, we also used some real IDSs instead
of machine learning based IDSs.

4.2 Experiment Using Real IDSs on Real
Traces

We collected a real trace at a Web server in our campus network.
The trace contains about 30 minutes HTTP traffic, around 5 million
packets. We divided the trace into two halves, one for training (for
anomaly IDSs), and the other for testing. And we injected HTTP
attacks into the testing set, using tools such as libwhisker [42].
Finally we got a testing set with base rate P1 = 0.00082, which
is relatively realistic [4].

We constructed the IDS ensemble using three real IDSs,
namely, Snort [43] version 2.3, NetAD (Network Traffic Anomaly
Detector, [34]), and PAYL (Payload Anomaly Detection, [50]).
Snort is a packet level signature based NIDS. NetAD and PAYL are
two packet level anomaly based IDSs. PAYL uses byte frequencies
in the payload as the normal profile. NetAD calculates a score
based on selected fields in the first 48 bytes (of which 40 bytes are
in IP and TCP header, 8 bytes are in the payload) of each packet.
If this score exceeds a threshold, then an intrusion alert is issued.
Since the original code of NetAD is specific to the DARPA data set,
we did a few small modifications and set the rate limiting using 5
second time window instead of 1 minute. Clearly, these three IDSs
are very different in their feature sets and detection algorithms. We
expect these differences would demonstrate a strong evidence of
diversity and independence (but we cannot formally prove it).

Table 2 shows the accuracy of these three IDSs and some fusion
rules (except the LRT rule, which again requires cost factors to
define the threshold). We can see that these three IDSs have
different performance in terms of their FP and FN . PAYL
detected most of the attacks, and Snort produced the least false
positives. For the fusion rules, similar to the result from the
previous experiment, the AND rule obtains the lowest overall false
positive rate but the worst detection rate (zero in this case). The
OR rule achieves the highest detection rate as well as the highest
false positive rate. The MAJ and VOT rules are still identical in
the experiment (although VOT assigns different weight to different
IDS, it still generates the identical combinational decision result as
MAJ in our data set). Thus, we only show the result of VOT rule.

The overall cost of running different fusion rules on the alerts

Table 2: Accuracy of each detector and fusion rule (ensembling three real IDSs)
Snort PAYL NetAD AND OR MAJ VOT

PD 0.016 0.99896 0.1037 0 0.999 0.1198 0.1198
PF 0.0000237 0.00336 0.004 0.0000025 0.007 0.00035667 0.00035667
ε 0.00082758 0.0034 0.0047 0.00082 0.007 0.0011 0.0011

generated by these three real IDSs are shown in Figure 4. We
manipulate the cost factors to demonstrate various risk scenarios.

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

C
01

C
to

ta
l

AND
OR
VOT
LRT

(a) Fix the cost of FN
(C10 = 1) in all the cases,
change the cost of FP (C01).

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

C
10

C
to

ta
l

AND
OR
VOT
LRT

(b) Fix the cost of FP
(C01 = 1) in all the cases,
change the cost of FN (C10).

Figure 4: Total cost for different rules in different risk scenar-
ios (ensembling three real IDSs). The LRT rule outperforms
other rules (it obtains low overall cost in most of the scenarios.)

From Figure 4(a), we can see that the AND rule achieves similar
stable performance as the LRT rule when the cost of FP is greater
than the cost of FN . This is because the AND rule can greatly
reduce false positives, and thus reducing the total cost (a similar
reason discussed above). However, the AND rule also reduces the
detection rate; thus, when the cost of false negative increases, it will
still cause high total cost (as shown in Figure 4(b)). The OR rule no
longer performs well in this experiment. It keeps a relatively stable
cost in Figure 4(b) because it has a very low false negative rate;
and thus, the slight change of the cost of FN does not significantly
affect the total cost. In this experiment, the LRT rule again obtains
the lowest total cost in most of the risk situations. We conclude that
the LRT rule outperforms other methods in achieving lower cost in
our evaluation.

Note that in this experiment, we have a realistically low base
rate (i.e., P1 = 0.00082), compared to the higher base rate in the
previous experiments using KDD data. Except for the LRT rule,
none of other methods can obtain low cost in both experiments.
This means the LRT rule is adaptive to the base rate. It is also
adaptive to the setting of cost factors. Whatever the cost factors
are (whatever the risk scenarios are), it always achieves very low
overall cost in our experiments, while other fusion techniques
cannot.

5. FORMAL INTERPRETATION AND
REASONING ABOUT THE LRT
ENSEMBLE

In this section we introduce a formal interpretation to analyze the
LRT ensemble rule. To present also the intuition behind the LRT
ensemble rule, we make use of receiver operating characteristic
(ROC) curves. The ROC curve is a two dimensional graph that
shows the performance of a detector in terms of its false alarm rate
PF (in the x-axis), and its detection rate PD (in the y-axis). We say

that an ROC curve defined by the probability of detection f1(x)
(where x is a given probability of false alarm) dominates an ROC
curve defined by f2(x) if for every x, f1(x) ≥ f2(x).

The relationship between the ROC curves and the expected cost
function defined in Eq. (1) has been studied in the context of
intrusion detection in [9]. In particular it is known that the lines
with the same expected cost in the ROC space can be represented
as lines with slope

τ =
C01P0

C10P1
. (6)

Note that τ as defined in Eq. (6) is also the threshold for the rule in
Eq. (3). This dual nature of τ will help us understand the intuition
behind the LRT ensemble rule.

This relationship between ROC curves and the expected cost
implies that the ensemble rule that minimizes the expected cost for
any fixed costs (C01 and C10) is an ensemble rule that is part of an
optimal ROC curve (i.e., an ROC curve that dominates any other
ROC curve achievable as a function of ensemble rules). In this
section, we show how to derive this optimal ROC curve using the
LRT ensemble rule.

5.1 Understanding the LRT Rule
First, we consider the simple case when we have two IDSs

available and want to obtain the optimal ensemble from the
information available from the two. Assume the performance of
IDSi is (PFi, PDi), where i ∈ {1, 2}. In Figure 5 we can see the
ROC curves for two IDSs that we will use in the remaining of this
section.

0 1
0

1

P
FA

P
D

IDS
1

IDS
2

Figure 5: IDSi is represented as a point (PFi, PDi). Any point
below the dotted lines is suboptimal (i.e., it never minimizes the
expected cost function).

Let

l(~Y) =
P (~Y |H1)

P (~Y |H0)
(7)

So for example,

l(00) =
(1− PD1)(1− PD2)

(1− PF1)(1− PF2)

and

l(10) =
PD1(1− PD2)

PF1(1− PF2)

Assuming PFi < PDi, it is easy to show that the likelihood
function l satisfies the following partial order l(00) < l(10) <
l(11) and l(00) < l(01) < l(11). A graphical representation can
be seen in Figure 6(a).

l(00)

l(01) l(10)

l(11)

(a) Partial order of the like-
lihood function for the com-
biation of two IDSs.

l(000)

l(001) l(010) l(100)

l(011) l(101) l(110)

l(111)

(b) Partial order of the like-
lihood function for the com-
bination of three IDSs.

Figure 6: Partial order of the likelihood function for the
combination of IDSs

Given the above partial order for l, there are five regions for τ in
[0,∞) with different optimal rules (examples shown in Figure 7):

• For 0 ≤ τ ≤ l(00), it is clear from Eq. (3) that the
IDS ensemble will always output y0 = 1. Therefore the
performance of the ensemble rule is (PF , PD) = (1, 1).
This operating point can be interpreted as an ensemble that
always outputs an alarm, no matter what the decision of each
individual IDS is. An example of this operating region can
be seen in Figure 7(a).

• For l(00) ≤ τ ≤ min {l(01), l(10)},

Pr
[
l(~Y) > τ

]
= Pr

[
~Y = 01 ∨ ~Y = 10 ∨ ~Y = 11

]

This probability under H0 equals PF = PF1 + PF2 −
PF1PF2, and under H1 equals PD = PD1+PD2−PD1PD2.
This operating point can be interpreted as the OR rule for
making an ensemble, since the LRT ensemble outputs an
alarm when either IDS1 or IDS2 (or both) outputs an alarm.
An example of this operating region can be seen in Figure
7(b).

• For min {l(01), l(10)} ≤ τ ≤ max {l(01), l(10)}, the
performance of the ensemble depends on whether l(01) <
l(10), which implies (PF , PD) = (PF1, PD1) or l(10) <
l(01), which in turn implies (PF , PD) = (PF2, PD2)

2. This
operating point can be interpreted as choosing one IDS only,
i.e., there is always an IDS that performs better than the other,
and therefore the LRT ensemble will choose this IDS and
ignore the alarms of the other! An example of this operating
region can be seen in Figure 7(c).

• For max {l(01), l(10)} ≤ τ ≤ l(11),

Pr
[
l(~Y) > τ

]
= Pr

[
~Y = 11

]

2The relation l(10) = l(01) implies that (PF1, PD1) and
(PF2, PD2) are in the same performance line of the point for τ ∈
(l(00), min {l(01), l(10)}) and τ ∈ (max {l(01), l(10)} , l(11)),
and therefore this case can be ignored.

This probability under H0 equals PF = PF1PF2, and under
H1 equals PD = PD1PD2. This operating point for the LRT
ensemble can be interpreted as the AND rule, since the LRT
ensemble will only output an alarm if both, IDS1 and IDS2

have output an alarm. An example of this operating region
can be seen in Figure 7(d).

• For l(11) ≤ τ ≤ ∞, the LRT ensemble will never output an
alarm. Therefore, (PF , PD) = (0, 0). An example of this
operating region can be seen in Figure 7(e).

The result of this analysis can be seen in Figure 7(f). Depending
on τ , there are five different operating points for an LRT ensemble
of two IDS. Output no alarm, Apply the AND rule, Choose IDS1

(in this case), Apply the OR rule, and Always output an alarm. We
can see in this plot that the operating point of IDS2 is suboptimal
and therefore it cannot minimize the expected cost function. Notice
also that for the same false alarm rate as IDS2, a randomization
between the OR rule and IDS1 achieves a better probability of
detection.

Note also that since the LRT ensemble depends on τ , it is not
a fixed rule but a rule that depends on the costs and the base rate.
For example, the AND ensemble rule is only optimal for costs and
base rates such that max {l(01), l(10)} ≤ τ ≤ l(11). Similarly,
the OR ensemble rule is only optimal for costs and base rates such
that l(00) ≤ τ ≤ min {l(01), l(10)}. Therefore, as we change the
costs and the base rate, we expect the optimal operating point of
the LRT ensemble to be shifting among several points to minimize
the overall cost function, while other ensemble rules can only hope
to minimize the cost function for a very small range of operating
conditions.

A similar analysis can be done for the combination of more
than two IDSs. For example for the ensemble of three IDSs, the
AND ensemble rule corresponds to τ < l(111) but greater than
the likelihood containing two alerts, and the OR ensemble rule
corresponds to τ greater than l(000) but smaller than any likelihood
containing at least two alerts. With more than two IDSs we can
also analyze the the majority rule, which can initially be thought
to be the operating point in the LRT ensemble that minimizes
the expected cost function for τ greater than any likelihood
with a minority of alarms and smaller than any likelihood with
a majority of alarms (max {l(001), l(010), l(100)} < τ <
min {l(011), l(101), l(110)}).

However, the partial order shown in Figure 6(b) shows that in
this case the above equation might not always hold. For example,
when l(101) < l(010), we should believe more if there is an alarm
from IDS2 alone, than when the other IDSs output an alarm and
IDS2 does not.

Finally, it is important to point out that even in the case when the
costs C01 and C10 are unknown, the LRT ensemble rule can be used
by trying different threshold values τ . By selecting different values
of τ , the LRT outputs 2n different ensemble rules. We emphasize
that the LRT rule can be used even if we do not know the costs or the
base-rate; furthermore, even in this case, we still obtain theoretical
performance guarantees.

Neyman-Pearson theory [38] states that the LRT for some fixed
τ is a more powerful test for its size; therefore, no other test has
higher probability of detection for the same bound on the false
alarms. The operator of an IDS can then select the appropriate
τ based on the performance of the ensemble rules, while having a
principled guarantee that by tuning τ , the optimal tradeoff between
false alarms and detection rates is achieved.

This 2n optimal rules considered by the LRT test are a significant
reduction from the set of all possible ensemble rules. To quantify

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
τ =0.25000

P
FA

P
D

Do not use any IDS

AND

IDS
1

IDS
2

OR

Always fire an Alarm

(a) An example for 0 ≤ τ ≤ l(00)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
τ =0.66667

P
FA

P
D

Do not use any IDS

AND

IDS
1

IDS
2

OR

Always fire an Alarm

(b) An example for l(00) ≤ τ ≤
min {l(01), l(10)}

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
τ =1.50000

P
FA

P
D

Do not use any IDS

AND

IDS
1

IDS
2

OR

Always fire an Alarm

(c) An example for min {l(01), l(10)} ≤
τ ≤ max {l(01), l(10)}

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
τ =4.00000

P
FA

P
D

Do not use any IDS

AND

IDS
1

IDS
2

OR

Always fire an Alarm

(d) An example for max {l(01), l(10)} ≤
τ ≤ l(11)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
τ =9.00000

P
FA

P
D

Do not use any IDS

AND

IDS
1

IDS
2

OR

Always fire an Alarm

(e) An example for l(11) ≤ τ ≤ ∞
0 1

0

1

P
FA

P
D

ROC of IDS1
ROC of IDS2
ROC of LRT Ensemble

AND

Choose IDS
1

OR

(f) The ROC of the LRT ensemble outper-
forms the ROC of each individual IDS

Figure 7: Examples for different τ

this reduction, note that an ensemble rule is any function that takes
inputs from ~Y ∈ {0, 1}n and outputs y0 ∈ {0, 1}. Therefore,
the size of the set of all possible ensemble rules is 22n

. Given a
particular ordering of the likelihood ratio, the LRT rule excludes
22n − 2n suboptimal decision rules. We clarify this fact in the
following section.

5.2 Practical Interpretation of the LRT
Note that in practice we do not need to perform the detailed

formal analysis of the previous subsection, or compute the partial
order. In practice, we only need to compute the likelihood ratios
l(~Y) for every possible output ~Y and then sort them.

In order to exemplify this approach, consider again the IDSs in
Table 2. In particular, let y1 denote the output of Snort, y2 denote
the output of PAYL, and y3 denote the output of NetAD. We can
now compute the likelihood ratio for every possible combination
of the outputs; for example l(101) = 182.63. After computing all
likelihood ratios, we obtain the following order:

l(000) < l(001) < l(100) < l(101) < l(010) < l(011) < l(110) < l(111). (8)

The LRT ensemble rule then just tells us the optimal combination
of rules that an operator of an IDS can use to obtain optimal
performance. Assume for example that the original τ is such that
l(101) < τ < l(010). Then, by looking at Eq. (8), we conclude
that the optimal LRT rule is y0 = 1 if and only if

~Y = 010 ∨ 011 ∨ 110 ∨ 111.

This LRT rule can be easily simplified using Boolean algebra.
Formally, we have: y0 = ȳ1y2ȳ3 + ȳ1y2y3 + y1y2ȳ3 + y1y2y3,
which can be simplified to y0 = y2 (See Figure 8(a)).

If the original τ misses too many intrusions, then we need to find
an ensemble rule that outputs more alarms. A natural choice is to

l(000) l(001) l(010)l(100) l(011)l(101) l(110) l(111)

τ

τ =⇒ y0 = ȳ1y2ȳ3 + ȳ1y2y3 + y1y2ȳ3 + y1y2y3

= y2

(a) The optimal rule for l(101) < τ < l(010) is
to output an alarm whenever y2 = 1 (i.e. whenever
PAYL outputs an alarm).

l(000) l(001) l(010)l(100) l(011)l(101) l(110) l(111)

τ
′

τ
′

=⇒ y0 = y1ȳ2y3 + ȳ1y2ȳ3 + ȳ1y2y3 + y1y2ȳ3 + y1y2y3

= y1y3 + y2

(b) The optimal rule for l(001) < τ ′ < l(101) is
to output an alarm if y2 = 1 or if both y1 = 1 and
y3 = 1.

l(000) l(001) l(010)l(100) l(011)l(101) l(110) l(111)

τ
′′

τ
′′ =⇒ y0 = ȳ1y2y3 + y1y2ȳ3 + y1y2y3

= y2(y1 + y3)

(c) The optimal rule for l(010) < τ ′′ < l(011) is to
output an alarm if y2 = 1 and this is supported by
either y1 = 1 or y3 = 1.

Figure 8: Practical interpretation of the LRT

select a new τ ′ such that l(001) < τ ′ < l(101). By inspecting Eq.
(8) again, we conclude that the optimal LRT ensemble rule for τ ′

is to output an alarm if and only if both y1 and y3 output an alarm
or if y2 outputs an alarm. Formally, y0 = y1y3 + y2 (see Figure
8(b)). If we are still missing too many alarms then we can keep
decreasing τ .

Similarly, if the original τ generates too many false alarms, then
by selecting τ ′′ such that l(010) < τ ′′ < l(011) the optimal rule
is to output an alarm whenever y2 = 1 except when both y1 and
y3 vote against an alarm. Formally, y0 = y2(y3 + y1) (see Figure
8(c)).

It is also important to note that the ordering given in Eq. (8),
excludes rules such as the majority voting rule3 or the rule y0 = y1

(to name just a few), because they are never optimal for any τ (i.e.,
they never minimize the expected cost for any C01 and C10).

In summary, besides having strong theoretical results, the LRT is
also a very practical, intuitive and principled way to combine IDS
alerts. The interpretation it provides is that the output of the LRT
ensemble rule is an alarm only when the right combination of IDSs
produce alerts, and where the “right combination” is determined
by τ and the ordering of the likelihood ratios.

5.3 A Ranking Interpretation
In the last sections we have shown that even without the

knowledge of C01, C10 and Pi, the LRT rule gives the most
powerful test once we have selected τ based on a desired level of
false alarms. In this section we go even further: we show that our
method can still be used practically even without the need to set the
threshold τ .

Notice that any event in the system can be given a confidence
attribute based on its LRT score. With this confidence score the
operators of IDSs will examine the most dangerous alerts first, and
if they have time, sort through the less suspicious alarms. For
example, for the set of IDSs shown in Table 2, the importance
of the events can be ordered as in Eq. (8). Thus, all events with
l(111) will be the highest-priority events, then all events labeled as
l(110), and after this, the events with l(011) etc. Therefore, if an
IDS analyst has to decide to investigate a report where only y1 and
y2 output an alarm, versus an event where only y2 and y3 output
alarms, the higher score of l(110) over l(011) should indicate
that investigating the first report should take precedence over the
second. This ranking interpretation will help the IDS analysts to
spend their time in the most suspicious events.

6. DISCUSSION

6.1 Estimation of Parameters
FP, FN of IDSs are estimated from trace-driven evaluation, just

like any other practically used classifiers. The operator of IDSs may
obtain them from the IDS providers, a third party (such as NSS
labs, http://www.nss.co.uk), or from his own evaluation.
In the latter case, the operator tests the IDSs using a sample data
from the operation environment (he may also inject attacks). To
have a ground truth, the operator could manually examine all the
sample data/alerts, or use some sampling strategy (e.g., randomly
pick some percentage). In practice, one could avoid manually
examining all the sample data by assuming it is mostly benign [50]
because the chance of intrusion is probably really low.

Machine learning researchers have given some bounds with
certain confidence on the estimation of the true error based
on an observed error over a sample of data [37]. Given an

3Recall that the majority voting rule is optimal only if there
is a τ such that max {l(001), l(010), l(100)} < τ <
min {l(011), l(101), l(110)}). However Eq. (8) tells us that for
these IDSs, no such τ exists. This makes sense because the values
of Table 2 suggest that “outputting an alarm whenever Snort and
NetAD vote for an alarm and PAYL votes against it, and not
outputting an alarm whenever PAYL votes for it but not the other
two IDSs” is not a good rule.

observed sample error es, with approximately N% (e.g. 99%)
probability, the true error et will lie in the very small interval

es ± zN

√
es(1−es)

n
, where n is the number of records in sample

data (could be very large to reduce the error bound), zN is a
constant related to the confidence interval N% we want to reach.
For example, if we want a 99% confidence interval then zN =
2.58. Thus, we could assume the estimated FP , FN from the
sample data (which is a representative sample of a real situation)
are close to the ones in the real situation (in other words, they are
relatively stable and can be used in Eq. (5)).

We can use a heuristic approach that estimates the prior
distribution of intrusion (the base rate). All we need is an alert
rate (ra) of the IDS, which is the fraction of generated alerts across
the entire data set. As we know, this alert rate can be computed as
ra = P1(1− FN) + (1− P1)FP .

Thus, we can approximately estimate the base rate as

P1 =
ra − FP

1− FN − FP
, (9)

which provides an unbiased estimation of the real base rate. We
then also obtain P0 = 1− P1.

The calculation of P1 can be done periodically during the
operation of the IDS if the fusion needs to be online, or done once
for the whole history data if the fusion occurs off-line.

6.2 Robustness of LRT Fusion in Tolerating
Parameter Estimation Errors

In practice, the estimated false positive rate FP , false negative
rate FN may deviate from the exact (real) values (denoted as
F̃P , ˜FN) to certain degree (e.g., the real data may somewhat vary
from the evaluation data, or there is an adaptive adversary). Also,
the base rate estimated using Eq. (9) can deviate from the real value
due to estimation errors of FP, FN . One may worry about the
performance of LRT fusion in these situations, i.e., whether and
how robust it is to tolerate possible parameter estimation errors.
It is very hard to perform a formal analysis on the effect of error
in estimating parameters on the LRT fusion algorithm. Thus, we
conducted a set of simulation experiments to see how the LRT
can tolerant the error of parameter estimation in IDS alert fusion
scenarios.

We now assume the estimated parameters can deviate±σ% from
the real (exact) values. That is, the estimated FP can vary from
F̃P (1 − σ) to F̃P (1 + σ). Similarly, the estimated FN can lie
in [˜FN(1 − σ), ˜FN(1 + σ)]. We call σ as the estimation error
tolerance bound. We do not assume specific error bound on the
base rate, because it is estimated using Eq. (9) so it will definitely
involve error due to the errors of FP, FN .

We simulated three distinct detectors (with different detection
performance, i.e., different FP, FN) running on a data set with
10,000 events, of which 100 are intrusions (this stands for a base
rate of 1%), and generated the alerts. The analysis of the resulted
alerts showed that (˜FP1 = 0.052, ˜FN1 = 0.11), (˜FP2 =

0.0182, ˜FN2 = 0.14), (˜FP3 = 0.0089, ˜FN3 = 0.23). We
then ran the LRT algorithms on these three alert sets to fuse a final
decision. In the process, we assume the FP, FN in use deviate
±σ% from exact values. We chose different values of σ to test the
robustness of LRT on this estimation error bound. For each σ, we
ran a thousand times of LRT fusion on the entire alert sets. In each
LRT fusion on the entire alert sets, we uniformly and randomly
chose FP, FN within the range FP ∈ [F̃P (1− σ), F̃P (1 + σ)],
FN ∈ [˜FN(1−σ), ˜FN(1+σ)]. The purpose is to see the effect of
using (inaccurate) parameters with certain error bound in the LRT

fusion.
We conducted simulation experiments on three cost scenario

setting.

• The cost of FN is higher than that of FP (i.e., C10 > C01).
In other words, it is more important to detect all attacks
than to obtain fewer false alarms (recall the military network
example). We set C01 = 1, C10 = 10 in this case.

• FP is as important as FN , or simply, the cost of FN is
equal to that of FP (i.e., C01 = C10 = 1).

• The cost of FN is less than that of FP (i.e., C10 < C01). In
other words, it is more important to reduce false alarms rather
than to catch all attacks (recall the example with a single
overloaded operator). In this case we set C01 = 10, C10 =
1.

0 20 40 60 80 100
0

20

40

60

80

100

Estimation Error Tolerance Bound (%)

R
ob

us
tn

es
s

(%
)

C
01

=C
10

=1
C

01
=10,C

10
=1

C
01

=1,C
10

=10

Figure 9: Robustness: simulation result. Estimation errors
are allowed. We vary this estimation error tolerance bound.
Robustness stands for the probability of having the exact
same fusion results on the entire alert sets as using the exact
parameters.

The results are shown in Figure 9. We use a robustness metric,
which is defined as the probability of having the exact same
fusion result on the entire alert data as the situation using the
actual FP/FN/P1. The probabilities (parameters) p are chosen
uniformly and randomly from [p ∗ (1 − σ), p ∗ (1 + σ)] and σ is
the estimation error tolerance bound for both FP and FN . For
instance, a 100% estimation error (σ = 100%) means FN3 can
range from 0 to 0.46, FP1 can range from 0 to 0.104. Even for
the estimation error tolerance bound of 100%, LRT algorithm can
achieve the same result on the entire alert data as using the actual
parameters with a probability higher than 50% in all the three given
cost scenarios. For a reasonably small estimation error tolerance
bound (e.g., 20%), LRT algorithm is very robust compared with
using the exact parameters.

The simulation results show that the LRT algorithm is a
robust fusion technique to tolerate parameter estimation error to
a reasonable certain degree.

6.3 The Conditional Independence Assump-
tion

We can relax the conditional independence assumption of
Eq. (4) by introducing a more complex approximation to the joint
distributions.

A way to introduce more complexity in our approximation
is to model the dependence relations between IDSs. We can

model the relations using a dependency tree, or more generally,
a causal Bayesian network or a graphical model [37, 25, 24].
If the inference relationship can be modeled as a dependance
tree, we can perform MIMIC (Mutual-Information-Maximizing
Input Clustering) technique [7] to compute the approximate joint
distribution. For the construction of causal Bayesian networks,
there is work [25, 24] in the machine learning area that can
be directly applied to obtain an accurate inference network
(dependance relationship), so that we could calculate a more
accurate approximation of the joint conditional density.

All these techniques will, however, require substantial efforts by
any IDS operator implementing a fusion rule. These additional
efforts might deter the IDS operators from implementing more
complex approximations to model the joint distribution.

As it stands, the conditional independence assumption is the
most practical way to approximate the joint conditional density
since any IDS operator can use this approximation by only
estimating the performance of each individual IDS. While the
conditional independence assumption might not guarantee theoret-
ically optimal rules, it is still an efficient and principled method
for fusing information, as shown in our experiments and in other
practical applications [3, 28, 37, 21].

Creating more accurate models that avoid the “high variance”
problem, and comparing their effectiveness as fusion rules in IDSs
against more practical approximations (such as the conditional
independence assumption), is a challenging problem and one we
plan to explore in future work.

6.4 A Robust Consideration for Cost Evalua-
tion

We showed in previous section that the LRT technique is very
robust to parameter estimation errors up to a certain degree.
Here we propose another robust way to evaluate the expected (or
total) cost to address the concern of a possible large deviation of
estimation errors and uncertainties of the parameters in practice.
For a robust evaluation with uncertain parameters, we again
consider the situation where the estimated base rate, false positive
rate and false negative rate deviate from the actual values to certain
degree. Now instead of calculating the expected (or total) cost
with a static setting of parameters, we use a range (bounded with
largest possible deviation to tolerate estimation errors), and among
all possible final cost values, we take the highest value (which
stands for the worst cases with all possible situation of estimated
parameters) as the final result. By doing this, we are actually
finding the highest cost against the worst situation with worst
possible estimation errors (similar to the idea in [9]). Thus, we
can make sure that this final cost is robust in a sense that it is the
upper-bound in all cases of possible estimated range of parameters.
The real cost evaluation is guaranteed to be better than this robust
result given the largest possible estimation error bound.

6.5 Runtime Performance
The runtime performance of our LRT fusion rule is efficient. For

example, we test the running time in the first experiment using four
IDSs. It only takes 0.187 seconds to finish LRT fusion processing
on all 311,029 records, which is about 0.6 microseconds per record
(on a machine with 512M memory, 2.4GHz Pentium IV processor,
Windows 2K OS). Although it is poorer than the performance of
the AND rule and the OR rule (about 0.2 microsecond/record),
the runtime of our LRT fusion is almost as good as that of the
VOT fusion rule, which is about 0.5 microsecond per record. We
can improve the computation efficiency if we calculate the log
probabilities and thresholds once off-line, store them and simply

use them in the actual fusion decision (instead of calculating again).
In addition, if we consider the fact that the fusion is primarily
performed only when there are alerts generated by IDSs (or even
performed off-line), the LRT rule is computationally efficient
enough for practical usage.

6.6 Multi-class Extension
The LRT technique discussed so far is on two-class (anomaly

or normal) alert fusion. It can also be extended to multi-class
situation. The extension is similar to the method of extending two-
class SVM to multi-class cases, i.e., we can use a tree structure to
perform LRT along some tree path (i.e., it is a sequence of two-class
LRT runs). For example, we run the first LRT to decide whether it
is class 1 or not, the second LRT to decide whether it is class 2 or
not, and so on. The running time (the number of LRT run) is at
most O(m), at least O(log(m)), where m is the number of classes
to classify.

7. CONCLUSION AND FUTURE WORK
In this paper, we proposed a decision-theoretic alert fusion

technique for an IDS ensemble and reported our empirical
experience from using this technique in practice. We provided
formal interpretation of the LRT ensemble based on ROC curve
analysis, and discussed the reasoning of why it is better than other
approaches. We empirically verified its effectiveness in practice
through experiments using several machine learning based IDSs
and real IDSs on multiple data sets. The theoretical reasoning
and empirical results show that this approach outperforms other
existing fusion techniques in practice in terms of achieving low
overall cost. Furthermore, this technique is adaptive to different
base rates and different risk scenarios (or cost models). In addition,
in our simulation test, we showed that this approach can tolerate a
reasonable bound of parameter estimation error.

It is also important to notice that the LRT fusion rule is not only
an optimal rule in the sense that it minimizes the expected cost, but
also optimal in a Neyman-Pearson [38] way. That is, the LRT rule
maximizes the probability of detection for a given upper bound on
the false alarm rate. The intuition for this notion of optimality can
be reflected in the analysis done in Section 5, where the ROC of the
ensemble was shown to have superior performance to the ROC of
the individual detectors. However, due to space constraints we omit
the detail analysis of this property in this paper. For future work, we
will study robust and realistic approaches to involve probabilistic
techniques and inference models. And we plan to further explore
how to obtain better independent (diverse) detectors, which is a
very important and interesting problem for IDS research.

The LRT ensemble rule is not limited to applications in intrusion
detection. However, we have not encountered a formal treatment
of the rule as presented in this paper in other applications such
as machine learning. We are currently exploring its use in more
general classification systems and voting algorithms, and plan to
extend this work to other applications.

8. ACKNOWLEDGMENTS
This work is supported in part by NSF grant CCR-0133629, the

Army Research Office contract W911NF0510139 and by TRUST,
which receives funding from NSF grant CCF-0424422. The
contents of this work are solely the responsibility of the authors
and do not necessarily represent the official views of NSF and the
U.S. Army.

9. REFERENCES

[1] Kdd cup 1999 data.
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html,
2005.

[2] Nahla Ben Amor, Salem Benferhat, and Zied Elouedi. Naive
bayes vs decision trees in intrusion detection systems. In
SAC ’04: Proceedings of the 2004 ACM symposium on
Applied computing, pages 420–424, New York, NY, USA,
2004. ACM Press.

[3] Anish Arora, Dennis Hall, C. Ariel Pinto, Dwayne Ramsey,
and Rahul Telang. Measuring the risk-based value of it
security solutions. IT Professional, 6(6):35–42, Nov.-Dec.
2004.

[4] S. Axelsson. The base-rate fallacy and its implications for
the difficulty of intrusion detection. In Proceedings of ACM
CCS’1999, November 1999.

[5] Marco Barreno, Alvaro A. Cardenas, and J. D. Tygar.
Optimal roc curve for a combination of classifiers. In
Proceedings of Neural Information Processing Systems
(NIPS) 20, 2008.

[6] Tim Bass. Intrusion detection systems and multisensor data
fusion. Commun. ACM, 43(4):99–105, 2000.

[7] J. De Bonet, C. Isbell, and P. Viola. Mimic: Finding optima
by estimating probability densities. Advances in Neural
Information Processing Systems, 9, 1997.

[8] L. Breiman. Bagging predictors. Machine Learning,
24(2):123–140, 1996.

[9] Alvaro Cardenas, John Baras, and Karl Seamon. A
Framework for the Evaluation of Intrusion Detection
Systems. In Proceedings of the 2006 IEEE Symposium on
Security and Privacy, Oakland, California, May 2006.

[10] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for
support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[11] F. Cuppens and A. Miege. Alert correlation in a cooperative
intrusion detection framework. In Proceedings of IEEE
Symposium on Security and Privacy 2002, 2002.

[12] Herve Debar and Andreas Wespi. Aggregration and
correlation of intrusion-detection alerts. In Proceedings of
the 4th International Symposium on Recent Advances in
Intrusion Detection (RAID’01), 2001.

[13] Luca Didaci, Giorgio Giacinto, and Fabio Roli. Ensemble
learning for intrusion detection in computer networks.
http://citeseer.ist.psu.edu/533620.html.

[14] Thomas G. Dietterich. Ensemble methods in machine
learning. Lecture Notes in Computer Science, 1857:1–15,
2000.

[15] W. Fan, W. Lee, S. Stolfo, and M. Miller. A multiple model
cost-sensitive approach for intrusion detection. In
Proceedings of The Eleventh European Conference on
Machine Learning (ECML’00), 2000.

[16] W. Fan, S. Stolfo, and J. Zhang. Adacost: cost-sensitive
boosting. In Proceedings of International Coference on
Machine Learning (ICML’99), 1999.

[17] Y. Freund and R. E. Schapire. Experiments with a new
boosting algorithm. In Thirteenth International Conference
on Machine Learning (ICML), pages 148–156, 1996.

[18] G. Giacinto and F. Roli. Intrusion detection in computer
networks by multiple classifier systems. In Proceedings of
16th International Conference on Pattern Recognition (ICPR
2002), 2002.

[19] Guofei Gu, Prahlad Fogla, David Dagon, Wenke Lee, and

Boris Skoric. Measuring intrusion detection capability: An
information-theoretic approach. In Proceedings of the 2006
ACM Symposium on Information, Computer, and
Communication Security (ASIACCS’06), March 2006.

[20] Guofei Gu, Prahlad Fogla, David Dagon, Wenke Lee, and
Boris Skoric. Towards an information-theoretic framework
for analyzing intrusion detection systems. In Proceedings of
the 11th European Symposium on Research in Computer
Security (ESORICS’06), September 2006.

[21] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The
Elements of Statistical Learning. Springer-Verlag New York,
Inc., 2003.

[22] Imad Y. Hoballah and Pramod K. Varshney. Distributed
Bayesian signal detection. IEEE Transactions on
Information Theory, 35(5):995–1000, 1989.

[23] Wenjie Hu, Yihua Liao, and V. Rao Vemuri. Robust support
vector machines for anomaly detection in computer security.
In Proc. 2003 International Conference on Machine
Learning and Applications (ICMLA’03), 2003.

[24] Finn V. Jensen. Bayesian Networks and Decision Graphs.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2001.

[25] Michael I. Jordan, editor. Learning in graphical models. MIT
Press, Cambridge, MA, USA, 1999.

[26] C. Kruegel and G. Vigna. Anomaly Detection of Web-based
Attacks. In Proceedings of the 10th ACM Conference on
Computer and Communication Security (CCS ’03), pages
251–261, Washington, DC, October 2003. ACM Press.

[27] C. Kruegel, G. Vigna, and W. Robertson. A Multi-model
Approach to the Detection of Web-based Attacks. Computer
Networks, 48(5):717–738, August 2005.

[28] Christopher Kruegel, Darren Mutz, William Robertson, and
Fredrik Valeur. Bayesian Event Classification for Intrusion
Detection . In Proceedings of the Annual Computer Security
Applications Conference (ACSAC 2003), Las Vegas, NV,
December 2003.

[29] Ludmila I. Kuncheva. Combining Pattern Classifiers:
Methods and Algorithms. Wiley, 2004.

[30] W. Lee, W. Fan, M. Miller, S. Stolfo, and E. Zadok.
Cost-sensitive modeling for intrusion detection and response.
Journal of Computer Security, 10(1,2), 2002.

[31] Wenke Lee and Salvatore J. Stolfo. A framework for
constructing features and models for intrusion detection
systems. ACM Transactions on Information and System
Security (TISSEC), 3(4):p.227–261, 2000.

[32] Yihua Liao and V. Rao Vemuri. Using text categorization
techniques for intrusion detection. In 11th USENIX Security
Symposium, August 5–9, 2002., pages 51–59, 2002.

[33] R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines, K. P.
Kendall, D. McClung, D. Weber, S. E. Webster,
D. Wyschogrod, R. K. Cunningham, , and M. A. Zissman.
Evaluating intrusion detection systems: The 1998 darpa
off-line intrusion detection evaluation. In Proceedings of the
2000 DARPA Information Survivability Conference and
Exposition (DISCEX’00), 2000.

[34] M. Mahoney. Network traffic anomaly detection based on
packet bytes. In Proceedings of 18th ACM Symp. on Applied
Computing, pages 346–350, November 2003.

[35] M. Mahoney and P. Chan. An analysis of the 1999
darpa/lincoln laboratory evaluation data for network anomaly
detection. In Proceedings of the 6th International Symposium
on Recent Advances in Intrusion Detection (RAID’03), 2003.

[36] John McHugh. Testing intrusion detection systems: A
critique of the 1998 and 1999 darpa off-line intrusion
detection system evaluation as performed by lincoln
laboratory. ACM Transactions on Information and System
Security, 3(4), November 2000.

[37] Tom Mitchell. Machine Learning. McGraw-Hill, 1997.
[38] J. Neyman and E. S. Pearson. On the problem of the most

efficient tests of statistical hypotheses. Philosophical
Transactions of the Royal Society of London, Series A,
Containing Papers of a Mathematical or Physical Character,
231:289–337, 1933.

[39] Peng Ning, Yun Cui, and Douglas S. Reeves. Constructing
attack scenarios through correlation of intrusion alerts. In
Proceedings of the 9th ACM Conference on Computer &
Communications Security (CCS’02), 2002.

[40] Roberto Perdisci, Guofei Gu, and Wenke Lee. Using an
ensemble of one-class svm classifiers to harden
payload-based anomaly detection systems. In Proceedings of
the IEEE International Conference on Data Mining
(ICDM’06), December 2006.

[41] Phillip A. Porras, Martin W. Fong, and Alfonso Valdes. A
mission-impact-based approach to infosec alarm correlation.
In Proceedings of the 5th International Symposium on
Recent Advances in Intrusion Detection (RAID’02), 2002.

[42] Rain Forest Puppy. Libwhisker official release v2.1, 2004.
Available at http://www.wiretrip.net/rfp/lw.asp.

[43] Martin Roesch. Snort: Lightweight intrusion detection for
networks. In LISA, pages 229–238, 1999.

[44] M. Shankar, N. Rao, and S. Batsell. Fusing intrusion data for
detection and containment. In Proceedings of
MILCOM2003, 2003.

[45] Sal Stolfo, Wei Fan, Wenke Lee, Andreas Prodromidis, and
Phil Chan. Cost-based modeling for fraud and intrusion
detection: Results from the jam project. In Proceedings of
the 2000 DARPA Information Survivability Conference and
Exposition (DISCEX ’00), 2000.

[46] Eric Totel, Frederic Majorczyk, and Ludovic Me. COTS
diversity intrusion detection and application to web servers.
In Proceedings of RAID’2005, September 2005.

[47] F. Valeur, G. Vigna, C.Kruegel, and R. Kemmerer. A
Comprehensive Approach to Intrusion Detection Alert
Correlation. IEEE Transactions on Dependable and Secure
Computing, 1(3):146–169, July-September 2004.

[48] V.N. Vapnik. The Nature of Statistical Learning Theory.
Springer, 1995.

[49] P. Varshney. Distributed Detection and Data Fusion.
Spinger-Verlag, New York, NY, 1996.

[50] Ke Wang and Salvatore J. Stolfo. Anomalous payload-based
network intrusion detection. In Proceedings of RAID’2004,
September 2004.

[51] D. H. Wolpert. Stacked generalization. Neural Networks,
5:241–259, 1992.

[52] L. Xu, A. Krzyzak, and CY Suen. Methods of combining
multiple classifiers and their applications to handwriting
recognition. IEEE Trans. Systems Man Cybernet,
22(3):418–435, 1992.

