
PRIDE: A Practical Intrusion Detection System for Resource Constrained Wireless
Mesh Networks

Amin Hassanzadeh, Zhaoyan Xu, Radu Stoleru, Guofei Gu, Michalis Polychronakis*

Department of Computer Science and Engineering, Texas A&M University
* Computer Science Department, Stony Brook University, USA

{amin, z0x0427, stoleru, guofei}@cse.tamu.edu, mikepo@cs.stonybrook.edu

Abstract

As interest in wireless mesh networks grows, security challenges, e.g., intrusion detection, become of paramount
importance. Traditional solutions for intrusion detection assign full IDS responsibilities to a few selected nodes.
Recent results, however, have shown that a mesh router cannot reliably perform full IDS functions because
of limited resources (i.e., processing power and memory). Cooperative IDS solutions, targeting resource
constrained wireless networks impose high communication overhead and detection latency. To address these
challenges, we propose PRIDE (PRactical Intrusion DEtection system for resource constrained wireless mesh
networks), a non-cooperative real-time intrusion detection scheme that optimally distributes IDS functions
to nodes along traffic paths, such that intrusion detection rate is maximized, while resource consumption is
below a given threshold. We formulate the optimal IDS function distribution as an integer linear program
and propose algorithms for solving it effectively and fast (i.e., practical). We evaluate the performance of our
proposed solution in a real-world, department-wide, mesh network. An earlier version of this article appeared
in ICICS 2013 [1] and the current article is significantly extended with new technical contents.

Keywords: wireless mesh network, intrusion detection, resource constraints, integer linear program, system
implementation

1. Introduction

Wireless Mesh Networks (WMN) are self-managing
networks that provide Internet, intranet, and other
services to mobile and fixed clients using a multi-
hop multi-path wireless infrastructure consisting of
mesh nodes [2, 3, 4]. They have emerged as a cost-
effective broadband network technology for services
in large remote areas where no networking infrastruc-
ture is available, e.g., rural connectivity in Zambia [5],
cost-efficient VoIP in South Africa [6] and disaster re-
sponse [7, 8]. One example of a WMN is depicted in
Figure 1. As shown, a wireless mesh network serves
as the backbone communication infrastructure among
WiFi networks, ad hoc networks, sensor networks and
the Internet. It is important to remark the lack of a
vantage point for the network traffic, due to the peer-
to-peer nature of communication.

As the interest in WMN grows, security issues,
especially intrusion detection, become of paramount
importance. Due to the decentralized nature of WMN,

researchers have proposed distributed solutions for
network-wide intrusion detection. Distributed solu-
tions do not rely on a single vantage point (e.g., gate-
ways in traditional IDS in wired networks) as there
always could be internal traffic in WMN to be mon-
itored (as shown in Figure 1). The state-of-the-art
distributed solutions can be categorized as: i) moni-
toring node solutions; and ii) cooperative solutions.

Monitoring node solutions [9, 10, 11, 12, 13, 14,
15] assign the same set of IDS functions to monitor-
ing nodes (note: each monitoring node is responsi-
ble for a distinct part of the network). This allows
(potentially) all nodes to perform intrusion detection
engine by overhearing their neighbors’ traffic utilizing
the open nature of wireless medium. These solutions,
however, have high false negative rates in resource
constrained networks. This is because some IDS func-
tions cannot be executed on monitoring nodes with
limited resources (e.g., processing power and mem-
ory). A related work [16] investigates challenges in
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applying off-the-shelf IDS (Snort [17] and Bro [18])
on mesh devices and proposes a lightweight (i.e., cus-
tomized) IDS for WMN. The proposed lightweight
IDS requires less memory and decreases the packet
drop rate, when compared to off-the-shelf IDS. These
achievements, however, are at the price of detect-
ing fewer types of network attacks (smaller detection
coverage), since most IDS functions are not imple-
mented.

Cooperative solutions (e.g., hierarchical [19, 20]
or group-based [21, 22] cooperation) distribute IDS
functions to multiple cooperative nodes, in order to
achieve higher detection rate and lower IDS load.
These solutions, however, incur high communication
overhead and high latency in attack detection. This
is because nodes have to exchange their local obser-
vations with other nodes running different IDS func-
tions. Considering the relatively high traffic rates in
WMN, caused by mesh clients and external hosts as
shown in Figure 1, the communication overhead of
cooperative IDS [23, 22] degrades the network per-
formance and delays intrusion response.

This research is motivated by the fact that neither
monitoring nodes nor cooperative IDS techniques can
practically solve the intrusion detection problem in
WMN. As we will show in Section 2, the fact that
WMN are resource constrained poses significant chal-
lenges for intrusion detection.

Our idea is to use the domain knowledge from
security administrator about the WMN traffic, and
distribute IDS functions more efficiently. More pre-
cisely, a security administrator, knowing the rout-
ing paths of the traffic in the WMN, would employ
a traffic-aware framework that optimally places IDS
functions on the nodes along the routing paths. For
example, the idea of interference-load aware rout-
ing metric [24] in WMN, aims to route the mesh
traffic through congestion free areas and provides a
traffic-aware framework for the security administra-
tor. The information about the busiest and most
frequently used paths in the WMN is obtained from
routing algorithms (e.g., OLSR) and network moni-
toring tools (e.g., tcpdump). Furthermore, it is ob-
served [8] that when deploying WMN for disaster re-
sponse, the points of interest, i.e., the physical loca-
tion of data sources (e.g., Search & Rescue Robots)
and destinations (e.g., Command and Control Cen-
ter), and consequently the traffic paths are always
known (as shown in Figure 1).

A related idea for traffic-aware IDS deployments

in wired networks has been proposed [25], where dif-
ferent IDS responsibilities (i.e., different portions of
network traffic) are assigned to each node along the
traffic paths while ensuring that no node is over-
loaded. However, as we will show in Section 2, [25]
cannot be directly applied to WMN since it assumes
that each node performs all IDS functions - infeasi-
ble for resource constrained mesh devices. Our pro-
posed solution has no communication overhead for
the detection process, has no detection latency (i.e.,
it provides real-time intrusion detection, in contrast
to cooperative IDS) and it has a higher detection rate,
when compared with monitoring node solutions. In
our proposed solution, each node along a routing path,
runs a distinct and customized IDS. This customized
IDS (technically a subset of IDS functions) allows re-
source conservation. The combination of distinct IDS
along the path allows for a complete set of IDS func-
tions to be applied to the entire network traffic. More
precisely, our research makes the following contribu-
tions:

• It demonstrates that distributing IDS functions
along routing paths increases the intrusion de-
tection rate and decreases the average memory
load.

• It formulates a novel IDS function distribution
problem, called Path Coverage Problem (PCP),
with the objective to maximize the detection
rate while ensuring that nodes are not over-
loaded by IDS functions.

• It presents PRIDE, a protocol implemented to
solve PCP effectively and fast, based on an In-
teger Linear Program (ILP).

• It presents results obtained from a real pro-
totype system implementation and an evalua-
tion in a real-world, department-wide, deployed
wireless mesh network.

This article is an extension of a previously pub-
lished research [1] that investigated the problem of
deploying intrusion detection systems in resource con-
strained wireless mesh networks, and proposed a pro-
tocol that optimally distributes IDS functions on mesh
nodes to conserve resources consumed by each node
while achieving a high detection rate.

The rest of this article is organized as follows. We
show the inability of mesh devices in running off-the-
shelf IDS in Section 2 and present the state of art so-
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lutions in Section 3. The system and security models
considered in this article are presented in Section 4.
We formulate the problem of optimal IDS function
distribution in Section 5. PRIDE and the challenges
in modeling IDS memory consumptions are presented
in Section 6. We evaluate the performance of PRIDE
and compare it with the state-of-the-art solutions us-
ing a real system implementation in Section 7 and
conclude in Section 8.

When compared with its previous version (ICICS
2013 [1]), the current article is significantly extended
with new technical contents:

1. We have studied two more realistic attack sce-
narios, insider and outsider multi-hop attacks
against a WMN router/host, and considered
them in the system evaluation section;

2. Section 3 is a new section that reviews state-of-
the-art solutions proposed for intrusion detec-
tion in resource-constrained infrastructure-less
wireless networks;

3. Section 6.1 presents Snort memory consump-
tion modeling using extensive experiments. This
section investigates the accuracy of our memory
consumption model and rule file modularization
considered in the ILP problem formulation;

4. Section 7 of this article is significantly extended
with more details about our real-world, department-
wide mesh network and the experiment settings
used in our system evaluation;

5. Section 7.1 of this article is a new section ex-
plaining the effect of OLSR routing protocol on
the proposed mechanism in real-world system
implementation;

6. We have added Section 7.2 to this article for ex-
plaining the intrusion detection evaluation tools
we have used in our system implementations.
This section shows how we modified the Rule-
to-Attack tools to generate real-time exploits;

7. Section 7.3 of this article is a new section that
presents all details about Snort rule file modu-
larizations, the rule files and exploits we have
used in our experiments, and the alerts gener-
ated for each attack in our system evaluation;

8. We have also added Section 7.6 that evaluates
the PRIDE’s performance for attackers who are
aware of the PRIDE protocol (i.e., PRIDE-aware
attacks). This section evaluates intrusion detec-
tion rates of the PRIDE protocol for PRIDE-
aware attacks.

2. Motivation and Background

The research presented in this article is motivated
by the challenges we faced when we attempted to de-
ploy a common off-the-shelf IDS with a full config-
uration (i.e., configured to detect the largest set of
attacks) on existing WMN router hardware. When
loading Snort [17] with its full configuration on a Net-
gear WNDR3700 router, the router crashes because
the RAM is not sufficiently large. In the remaining
part of this section we describe in detail the hardware
capabilities of our mesh routers, background informa-
tion on Snort, and experimental results that illustrate
how different Snort configurations of increasing com-
plexity and detection capabilities impact the memory
load of the router.

The Netgear WNDR3700 router has an Atheros
AR7161 processor running at 680MHz, 64MB RAM,
8MB flash memory. It has two wireless cards with
Atheros AR9223-bgn and Atheros AR9220-an chipsets,
working on 2.4GHz and 5GHz, respectively. The op-
erating system on the router is the most recent release
of OpenWrt (i.e., Backfire 10.03.1), a Linux distribu-
tion for embedded networking devices, with kernel
version 2.6.32.10. We emphasize that our mesh hard-
ware is more powerful (in terms of processing and
memory resources) than devices used in some exist-
ing real world deployments [6, 5, 3]. Although in
this research we focus mainly on Netgear WNDR3700
router hardware, later in this section we present our
experience and results with more sophisticated and
expensive mesh hardware, e.g., Meshlium Xtreme [26]
which has a 500MHz CPU, 256MB RAM, 8/16/32GB
disk memory and WiFi, Zigbee, and GPRS wireless
interfaces.

The router runs Snort [17], an off-the-shelf intru-
sion detection system. Snort’s detection engine is
based on thousands of detection rules (categorized in
multiple rule files, corresponding to known network
threats) and several preprocessors. All files are listed
in “snort.conf”, a global configuration file. Upon ac-
tivating each rule file in “snort.conf” and running
Snort, all detection rules present in the rule file are
loaded in memory and are used for packet investi-
gation. A full Snort configuration activates all pre-
processors and rule files. A customized configuration
activates only some preprocessors and rule files (i.e.,
IDS functions), thus, the network traffic is analyzed
by fewer detection functions.

The intrusion detection in Snort is performed by
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packet-level rule matching. Each packet is prepro-
cessed, following preprocessing directives for extract-
ing possible plain-text content. The preprocessed
packet is then inspected by Snort detection rules,
to expose whether it is an intrusion attempt or not.
Preprocessors parse network packets and provide ab-
stract data for some high-level detection rules in the
rule files. It is important to note that a rule file that
contains high-level detection rules has preprocessor
dependency. This dependency means that the rule
file cannot be activated (i.e., Snort generates an er-
ror message and stops) unless all the preprocessors
required by its rules (usually one or two preproces-
sors) are also activated. From here on, we refer to a
Snort rule file as an “IDS function.”

To understand how different Snort configurations
impact the memory load on the Netgear WNDR3700
and Meshlium Xtreme, we performed several exper-
iments. Once the firmware boots on a typical mesh
router (e.g., Netgear), the memory utilization will be
between ∼20% to ∼30%, depending on the size of
kernel and services it initially performs. We refer to
this memory utilization of firmware kernel as the base
memory load. We have experimentally observed that
it is infeasible to lower the base memory load below
∼15% by customizing the kernel during compilation.
Moreover, the it is very likely to have higher base
memory loads when activating networking and rout-
ing services to WMN routers. Additionally, running
Snort causes two types of memory loads to the router:
1) static, the initial load imposed by packet capturing
modules, preprocessors, detection rules, etc. when
Snort is loaded; 2) dynamic, the variable load im-
posed by stateful preprocessors (e.g., Stream5 ) which
is a function of the traffic load and some configuration
parameters.

We first investigate the static memory load of
Snort on the routers when no network traffic is ap-
plied. We have observed that a typical memory load
on a Netgear WNDR3700 router is ∼30% and on the
Meshlium Xtreme router it is ∼60%. This accounts
for OS firmware and various services (OLSR routing,
DHCP, etc.). Without preprocessors or rule files ac-
tive, loading Snort on Netgear WNDR3700 increases
memory load to 43% (“Snort(S)” in Figure 2). Mem-
ory load increases to 46% if preprocessor Stream5 is
activated (“S+str5” in Figure 2), and to 48% if pre-
processors http-inspect, smtp and ftp-telnet are also
activated (“S+4Pre” in Figure 2).

The memory load of a rule file is a function of the

number of detection rules in it and the pattern match-
ing algorithm Snort uses (e.g., Aho-Corasick). For
example, using ac-bnfa-nq search method, “dos.rules”
which has 20 detection rules and requires the Stream5
preprocessor, increases memory load to 47% (“S+dos”
in Figure 2). A very large file such as “spyware-put”
(“SpyConf” in Figure 2) which contains ∼1,000 rule
files increases the RAM load to 70%. The memory
load caused by activating a set of rule files also de-
pends on their sizes. For example, activating 20 small
rule files (i.e., 10 rules per file on average) and the
Stream5 preprocessor (which the rules require) in-
creases memory load to 49%. Activating two large
rule files, “spyware-put.rules” and “backdoor.rules”
(“SpyBack” in Figure 2) increases memory load to
98%. We have experimentally verified that adding
a few small rule files on top of “spyware-put.rules”
and “backdoor.rules” causes the router to crash. We
have observed a similarly overloaded operation for the
Meshlium Xtreme router, where a full configuration
Snort increases the memory load to 98.5%, leaving
almost no room for processes/services beyond stock
deployment. We also emphasize here the rapid in-
crease in the number of Snort rule files (i.e., currently
about 70 files) and their sizes as functions of the num-
ber of threats. Some rules might not be needed in a
particular setting, but conversely, that setting might
require many more rules of some other kind (e.g., cus-
tom signatures for suspicious or blacklisted domains,
which can increase significantly).

Dynamic memory load, imposed by Stream5 when
tracking traffic sessions, is the other considerable type
of Snort memory load since almost all rule files re-
quire this preprocessor. Two configuration param-
eters of Stream5, max tcp and memcap, specify the
maximum simultaneous TCP sessions it tracks (simi-
larly, max udp, max icmp, and max ip) and the maxi-
mum buffer size for TCP packet storage, respectively.
We have experimentally observed that the value of
max tcp affects both dynamic and static memory loads.
When using the Snort version available on the Open-
Wrt development tree, the default configuration has
max tcp=8192. Choosing max tcp=100,000, imposes
∼10% more static load than default “S+Str5” to the
routers. Moreover, this value allows more simulta-
neous TCP sessions to be inspected which also im-
poses more dynamic load and may cause the router
to crash at high traffic rates (note: we observed that
for max tcp≥150,000 the router crashes if a simple
HTTP request is sent using the Linux wget tool).

4



Throughout this article, we use the default setting,
i.e., max tcp=8192, and consider the maximum dy-
namic load this setting imposes on the router. Hence,
from here on, the total memory load of Stream5 is as-
sumed to be its static load plus its maximum allow-
able dynamic load. It is worth mentioning that al-
though hardware improves, also transmission speeds
get faster, the amount of traffic that needs to be in-
spected grows, and the complexity of the applied pro-
cessing increases. Hence, the fundamental challenge
for a resource-limited node to handle ever-increasing
traffic still remains.

In addition to RAM, processing power (CPU) is
also limited on current mesh hardware. Consequently,
investigating the impact of Snort IDS on this limited
resource might seem worthwhile. Experimentally we
have found that network traffic, actually, has a much
larger influence on CPU utilization than executing
Snort IDS functions. Our experimental results are
depicted in Figure 3 where we enabled tcp track

and icmp track in Stream5 and used hping3 to gen-
erate TCP and ICMP traffic. As shown, for an ex-
tremely high traffic rate, both lightweight and heavy
Snort configurations impose more than 95% CPU uti-
lization. Similar with our result, it was shown [16]
that even a lightweight IDS exhausted the CPU when
traffic rate was extremely high. However, as shown
in Figure 3, “S+dos”, a lightweight IDS configura-
tion, imposes less processing load than “SpyBack”, a
heavyweight IDS configuration, when the traffic rate
is not high. Consequently, our main concern in this
research is the reduction of RAM utilization as we
have experimentally observed that it also improves the
CPU utilization in regular traffic rates (as shown in
Figure 3).

3. Related Work

As the first step towards providing dynamic and
cost effective network services in environments with
no network infrastructure, wireless mesh networks are
becoming more popular. As an instance of real WMN
implementations the rural wireless mesh network project
in Zambia [5] provides telephony and internet access
in some remote physical areas. Moreover, the lack
of cellular network in disaster areas has convinced
researchers [7, 8] to propose mesh networks as a cost-
efficient and easy-to-deploy solution in order to pro-
vide networking services in disaster situations. In ad-
dition to these applications, mesh networks have been

deployed in academic and research centres as test-bed
for developing and evaluating networking protocols
for WMN [27, 3].

As wireless mesh networks become a popular choice
for offering wireless services, security challenges grow
in importance [28]. Due to the variety of services and
protocols used in WMN, these networks are suscepti-
ble to different attacks and security threats [29], i.e.,
not only WMN specific attacks (Sinkhole, Wormhole,
Rushing, etc.), but also traditional TCP/IP based at-
tacks (Scanning, Buffer Overflow, IP Spoofing, etc.).

The problem of intrusion detection in wireless mesh
networks has received considerable attention from the
research community. Some existing solutions address
specific attacks (e.g., Man-in-the-Middle and Worm-
hole attacks [30, 31], Grayhole attack [32, 33, 34], Pol-
lution [35] and Jamming [36] attacks, message fabri-
cation attack [37], and attacks against scheduling [38],
QoS [39] or anonymity [40] in WMN). Other solutions
are general IDS solutions for mesh networks, which
consider memory, processing [16, 41], and energy [14]
constraints. In [41], a set of technical challenges asso-
ciated with IDS solutions in mesh networks are pre-
sented. The authors provide interesting evaluation
results on the CPU utilization of a Netgear WG302
router and propose an initial design of a modular IDS
but do not evaluate their solution. Performance eval-
uations of the Netgear WG302 mesh router, when
running off-the-shelf IDS have also been reported [16].
The authors propose a lightweight open source IDS
that outperforms off-the-shelf IDS solutions with re-
spect to CPU utilization and packet drop rates. How-
ever, the proposed solution detects only a limited
number of network attacks, since many of the IDS
functions are not implemented because they require
significant resources.

Due to the decentralized nature of wireless mesh
networks, researchers [9, 10, 11, 12, 13, 14, 15, 42] pro-
pose monitoring node solutions. In a monitoring node
solution, a minimum subset of nodes are strategically
selected to perform intrusion detection to monitor
the entire network. Recently, optimized solutions for
assigning the optimal set of channels to a given set
of monitoring nodes in a multi-radio multi-channel
WMN are proposed [11, 12, 13, 15]. The problem is
formulated as an ILP and solved with rounding tech-
niques. For example, in [12], the expected number
of active users monitored by the monitoring nodes is
defined as the quality of monitoring (QoM) metric.
The authors investigate the problem of maximizing

5



QoM by optimally assigning sniffers to communica-
tion channels based on the information obtained from
user activities.

In [14], an energy efficient monitoring technique is
proposed for intrusion detection in battery powered
WMN. Since the number of IDS functions running
on the monitoring node is limited by the amount of
available resources, these solutions only detect a lim-
ited number of attacks even though all communica-
tion links and network traffic are monitored. Since
the number of services provided by WMN is expected
to increase (e.g., delay tolerant services [8], VoIP ser-
vices [6]), fewer resources will be available for intru-
sion detection. Consequently, the intrusion detection
rate is expected to degrade. As an alternative, co-
operative IDS [20, 22, 21, 23] have been proposed.
They distribute IDS functions to all nodes, thus help-
ing lower resource consumption and increase detec-
tion rate. However, since the higher detection rate is
obtained through message exchange, it is not an effi-
cient approach in highly loaded WMN. We note here
that term cooperative refers to any message exchange
required for detection process (that PRIDE does not
have) not for role assignments (e.g., [22, 23] require
message exchange for both detection process and role
assignments).

In order to reduce the processing and memory
loads, and increase detection rates, non-cooperative
traffic-aware solutions have been proposed. They dis-
tribute IDS functions to multiple nodes (i.e., each
node runs an individual customized IDS) located on
network traffic paths. A research in wired networks [25]
proposed a scheme where each node along a network
path has enough static memory space to execute a full
Bro IDS (i.e., infeasible for WMN nodes as we showed
they simply crash). To save resources on the dynamic
part of memory (processing and memory that would
be allocated based on traffic), each node investigates
only a portion of the network traffic (e.g., each node
is responsible for inspecting only a few packets of a
session). This requires changes in TCP/IP header to
assign a hash value to each packet and also changes
in the IDS for accurate packet selection and investi-
gation. It is worth mentioning that WMN nodes, as
shown earlier, do not have enough static memory to
run a full IDS, and running a customized IDS will
reduce the detection rate regardless to the traffic vol-
ume. Our proposed solution requires no changes to
the IDS and TCP/IP protocol stack, only to how rule
files are organized. Consequently, our proposed solu-

tion which avoids executing a full IDS on nodes, may
prove more practical.

4. System and Security models

The system we are considering in this research is
as specified by the IEEE 802.11s WLAN Mesh Stan-
dard [2]. The system consists of: i) mesh access points
(AP) connecting mesh clients (from now on we will
refer to them as “clients”) to the mesh network; ii) a
wireless mesh backbone; and iii) a gateway, connect-
ing the mesh network to the Internet. The network
traffic is either external, i.e., between clients and ex-
ternal hosts (external to the mesh), or internal, i.e.,
between two hosts1 inside the mesh network. Ex-
amples of external and internal traffic are shown in
Figure 1. Our system also requires the presence of
a base station – a computer which periodically and
securely (i.e., secured with neighborhood keys [43])
collects, via a middleware, information about mesh
nodes: processing/memory loads, traffic information,
etc. Based on the collected information, the base sta-
tion assigns intrusion detection functions to nodes.

4.1. Security and Attacker Model

The IDS we are considering in this research is
Snort [17]. We chose Snort because it is a main-
stream off-the-shelf IDS that consumes less resources
than other IDS, e.g., Bro (as it was experimentally
shown [16]). Moreover, Snort is readily available for
our mesh hardware, as part of the OpenWrt develop-
ment tree. To the best of our knowledge, there is no
port of Bro to the mesh hardware we have available.
Assigning a Snort IDS function to a node is equiva-
lent to activating a rule file in the Snort configuration
file on that node. As we showed in Section 2, activat-
ing a rule file imposes a specific amount of memory
load to the device, thus, a limited number of rule
files can be activated when running Snort on the de-
vice. We use the default search method of Snort, i.e.,
ac-bnfa-nq, as we experimentally observed that it
consumes the minimum memory among all low mem-
ory search methods, e.g., lowmem.

In this article, we consider multi-hop attacks where
the attacker and the target are connected to the mesh
network at different APs (Note: we will evaluate the

1A host inside the mesh is either a client or a local server
(e.g., a local FTP server) connected to the mesh routers.
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performance of our solution at the presence of single-
hop attacks in Section 7.6). Thus, the attack traffic
(malicious packet(s)) is routed across multiple nodes.
The attacker can be either an insider or outsider. An
insider attacker is a client, connected to a mesh AP,
running attacks against a target (a router or host)
several hops away. An outsider attacker is an exter-
nal host attacking a router or a host in the mesh net-
work (e.g., the attack traffic travels through internet
and reaches the target over the mesh backbone).

As two realistic attack scenarios, insider and out-
sider multi-hop attacks against a WMN router/host,
we refer to the attacks we launched against routers in
DistressNet WMN [8] [44] during a demo at Disaster
City R©, College Station, Texas, in May 2012. In-
sider: a mobile client connected to an AP launched
multiple port scan attacks against all routers (i.e.,
other APs or relay nodes) in the WMN. Outsider:
an external client connected to the DistressNet net-
work through internet and launched remote root ex-
ploits against Dropbear SSH configured on the mesh
routers.

5. Preliminaries and Problem Formulation

In this section, we formulate the optimal distri-
bution of IDS functions as an optimization problem
and we propose a method to solve it. Although Snort
is our target IDS (and present a problem formulation
that uses Snort terminology), we believe that other
IDS can be analyzed similarly, if their internals and
functionality are publicly available. For example, in
Di-Sec [45], a security framework recently proposed
for wireless sensor networks, the sub-components of
M-Core can be modeled as Snort preprocessors while
the detection and defense modules play the same roles
as Snort rule files.

5.1. IDS Function Distribution

We denote the number of nodes and number of
links in the wireless mesh network by N and Q, re-
spectively. Considering the information collected from
the nodes, we denote the number of nodes and links
actively contributing in traffic routing by n (n ≤
N) and q (q ≤ Q), respectively. Thus, we model
the wireless mesh network (i.e., after removing idle
nodes/links) as a reduced graph G = {V,E}, where
V is the set of nodes {v1, v2, · · · , vn}, and E is the
set of links {e1, e2, · · · , eq}. An example of a re-
duced graph, in Figure 4, V = {v1, v2, ..., v9} and
E = {e1, e2, ..., e8}.

We denote the set of routing paths for the net-
work traffic by P = {p1, p2, · · · , pl}, where set Pi =
{vj | vj is located in pi} and Pi ⊆ V . In Figure 4 two
paths are present: p1 and p2. Additionally, we de-
note by matrix Tl×n the mapping between nodes and
paths, i.e., tij = 1 iff node j is located on path i. For
the example shown in Figure 4, the matrix T is as
follows:

T =

[
1 1 1 1 1 0 0 0 0
0 0 1 0 0 1 1 1 1

]
.

We denote the set of all IDS functions by F =
{fk | fk is a set of detection rules} with size K (i.e.,
|F| = K). We denote the set of IDS preproces-
sors by C = {cr |∃ fk ∈ F that requires cr} of size
R (i.e., |C| = R). For the example in Figure 4,
F = {f1, f2, ..., f7} and C = {c1, c2}. The dependency
between IDS functions and preprocessors is stored in
matrix DK×R where dkr = 1 means that activation of
function fk requires the activation of preprocessor cr.
For the example shown in Figure 4, the matrix DT is
as follows:

DT =

[
1 1 1 1 0 0 0
0 0 0 0 1 1 1

]
.

Let w : {F , C} −→ [0, 1] be a cost function that

assigns memory load wf
k and wc

r to IDS function fk
and IDS preprocessor cr, respectively. Consequently,
vectorsW f = [wf

1 , w
f
2 , · · · , w

f
K ] andW c = [wc

1, w
c
2, · · ·

, wc
R] represent memory loads for the IDS functions in

F and for the IDS preprocessors in C, respectively (we
remark that wc

Stream5 is the summation of its static
load and its maximum dynamic load). We denote by
B = [b1, b2, ..., bn] the base memory load (i.e., without
IDS functions loaded) of all nodes.

Finally, we use vector Λ = [λ1, λ2, · · · , λn] (also
called Memory Threshold) to represent the maximum
allowable memory load after IDS functions are loaded.
Memory threshold is an important parameter. It is
typically set by a network administrator based on the
number of active services in the mesh network and the
memory space they require.

Definition 5.1. An IDS Function Distribution,
A = {(vj ,Fj , Cj)| vj ∈ V, Fj ⊆ F , and Cj ⊆ C}, is
a distribution of IDS functions in the network, such
that node vj only executes IDS functions Fj and their
corresponding preprocessors Cj.
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For example, the IDS Function Distribution in
Figure 4 is:

A = {(v1, {f2, f7}, {c1,c2}), (v2, {f6}, {c2}), ...
..., (v9, {f6, f7}, {c2})}.

We represent an IDS Function Distribution by
matrices Xn×K and Zn×R, corresponding to IDS func-
tions and preprocessors active on each node, respec-
tively. For X, xjk = 1 iff IDS function fk is activated
on node vj . For Z, zjr = 1 iff preprocessor cr is acti-
vated on node vj . Matrices X and Z for the network
in Figure 4 are:

X =



0 1 0 0 0 0 1
0 0 0 0 0 1 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 1 1 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1


,Z =



1 1
0 1
1 0
0 0
1 1
1 0
1 0
1 1
0 1


.

Considering the above mathematical formalism,
the dependencies between IDS functions and prepro-
cessors can now be represented more compactly as:

zjr =

{
1 if (X · D)jr ≥ 1
0 if (X · D)jr = 0

(1)

Equation 1 indicates that preprocessor cr must
be activated on node vj if there exists at least an
IDS function fk requiring cr, assigned to it. It is
important to note that zjr = min{1,ΣK

k=1xjkdkr} and
zjr ∈ {0, 1}.

After the IDS Function Distribution, the total
memory load for node vj becomes:

Lj = bj + Σcr∈Cjw
c
r + Σfk∈Fj

wf
k

where wc
r ∈ W c and wf

k ∈ W f . It is important to
mention that an IDS Function Distribution in which
Lj > λj , i.e., the load Lj is greater than threshold
λj , for any node vj , is deemed infeasible.

From a network security administrator point of
view, we aim for an IDS Function Distribution where
all IDS functions are activated on each path. This
means that the entire network traffic will be investi-
gated by all IDS functions (albeit at different times),
eliminating the possibility of false negatives.

Definition 5.2. For a given path pi and its corre-
sponding set of nodes Pi, Coverage Ratio (CR) is
defined as CRi = |Ui|/K, where Ui =

⋃
vj∈Pi

Fj is the
set of IDS functions assigned to nodes along the path.
Path pi is called covered if CRi = 1 (Ui = F), i.e.,
for ∀fk ∈ F , ∃ vj assigned by Fj such that fk ∈ Fj.

Considering the effect of IDS Function Distribu-
tion on the memory load of each node and the desired
distribution of IDS functions to the nodes, in order
to achieve higher intrusion detection rate, we define
Path Coverage Problem (PCP) as follows:

Definition 5.3. Path Coverage Problem (PCP)
Given G = {V,E}, a set of paths P in WMN, the de-
pendency matrix D, and vectors W f and W c, find
a distribution A = {(vj ,Fj , Cj)| vj ∈ V and Fj ⊆
Fand Cj ⊆ C}, such that 1

l

∑
pi∈P CRi is maximized

and Lj ≤ λj ∀vj ∈ V .

PCP is an NP-hard optimization problem which
has the objective of maximizing the average coverage
ratio, while guaranteeing that memory loads on nodes
are below a memory threshold. The NP-hardness of
PCP can be proven from reducing the classic Mul-
tiple Knapsack Problem (MKP) to Single path PCP
(SPCP) in polynomial time. If SPCP is NP-hard,
then PCP is also NP-hard when applying the same
proof. Although a lower memory threshold λj al-
lows more additional processes to execute on the mesh
router, it makes solving PCP much more difficult.

5.2. Optimal IDS Function Distribution

We formulate PCP as an Integer Linear Program
(ILP) that can be solved by an ILP solver. The ob-
jective function is maximizing the average coverage
ratio of all paths. Additionally, preprocessor depen-
dency and memory threshold are considered as ILP
constraints. More specifically, the ILP formulation is
as follows:

maximize
1

l
(1T · T)(X · 1) (2)

subject to: BT + Z ·W cT + X ·W f T ≤ ΛT (3)

(T · X)ik ≤ 1 ,∀i, k (4)

zjr ≥
(X · D)jr

K
, ∀j, r (5)

zjr ≤ (X · D)jr ,∀j, r (6)

xjk, zjr ∈ {0, 1} , ∀j, k, r (7)
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To better understand the mathematical formula-
tion of the objective function, one can expand it as
1
l Σ

l
i=1Σ

n
j=1Σ

K
k=1tijxjk where tij = 1 means node vj

is located on path pi and xjk = 1 means node vj is
assigned by function fk. In other words, the average
CR has to be maximized.

Constraint 3 limits the memory load on every
node vj , i.e., ΣR

r=1zjrw
c
r + ΣK

k=1xjkw
f
k , to be less than

its memory threshold λj . Most importantly, (to en-
sure that we can formulate PCP as a linear program),
this constraint computes the total memory load as the
sum of individual memory loads of preprocessors and
rule files. Obviously, one needs to investigate if this
linearity assumption always holds (we will discuss this
in the next section). Constraint 4 ensures that only
one copy of each function is assigned to the nodes
along each path. Constraints 5 and 6 ensure that if
an IDS function is assigned to a node, its required
preprocessors are also assigned to the node. As pre-
sented in Equation 1, zjr = 1 if at least one of the IDS
functions assigned to node vj requires preprocessor cr,
otherwise zjr = 0. The maximum number of func-
tions that require a specific preprocessor is at most
K. Hence, Constraint 5 ensures that 0 < zjr ≤ 1 if
there is a function assigned to node vj that requires
preprocessor cr. On the other hand, if none of the
functions assigned to node vj requires preprocessor
cr, then Constraint 6 enforces zjr to be zero. Taking
into account Constraint 7, i.e., zjr has to be either 0
or 1, Constraint 5 enforces zjr = 1 if preprocessor r is
required on node j, otherwise, Constraint 6 enforces
zjr = 0.

6. PRIDE: Challenges and Solutions

Considering the aforementioned ILP formulation
for PCP, we investigated two major challenges that
impact the accuracy and time complexity of a solu-
tion. First, we experimentally observed that the total
memory load of multiple Snort rule files is generally
linear (i.e., it is equal to the sum of their individual
memory loads), but not always (e.g., for some small
rule files and certain rule types). This influences the
accuracy of our proposed model for calculating the
total memory load on each node (i.e., Challenge 1).
Next, one can observe that the complexity of ILP de-
pends on the number of paths in the network, the
path lengths, the number of IDS functions, the num-
ber of preprocessors, and the memory threshold. For
example, considering the number of Snort preproces-

sors (i.e., more than 20) and the number of Snort rule
files (i.e., more than 60), for single path pi, the num-
ber of ILP constraints grows to more than 1400×|Pi|,
where |Pi| is the path length. Additionally, a lower
memory threshold λj increases the number of infea-
sible solutions, thus requiring more iterations for the
ILP solver. Hence, the ILP performance degrades as
network size increases or memory threshold decreases
(i.e., Challenge 2). In this section, we investigate the
aforementioned challenges and propose techniques to
overcome them. Finally, we present PRIDE protocol
that distributes IDS functions to the nodes effectively
and fast (i.e., practical).

6.1. Memory Consumption Modeling

Experimentally, we observed that when activat-
ing multiple small rule files (i.e., containing at most
50 detection rules), Snort memory load is much less
than the sum of individual memory loads. However,
we observed that when multiple large rule files (i.e.,
containing more than 250 detection rules) were ac-
tivated, the memory load is closer to the sum of the
rule file’s individual memory loads. When a rule file is
activated, depending on: 1) the number of detection
rules it has; 2) the preprocessors it activates (if al-
ready not activated); and 3) the Snort search method,
a different amount of memory load will be imposed to
the node. In this subsection we investigate how the
aforementioned three factors impact our assumption
about memory load linearity (i.e., constraint 3).

Every Snort detection rule has the following struc-
ture:

[alert_type] [protocol] [src][src_port] -> [dst]

[dst_port]:[Options][ContentMetaData][Operations].

The string patterns of each rule are organized in
an automaton, which has a tree-like structure, thus,
we expect a sub-linear behavior when activating new
rules. Besides the strings, Snort keeps additional
information per rule in its internal data structures,
and this increases linearly with the number of rules.
The metadata for each rule usually consumes more
memory than the strings contained in the rule (most
strings are small, and many rules do not even have
string patterns). In order to investigate the linear-
ity of memory load, we put all detection rules in a
single rule file and then measured the memory load
for different number of detection rules being enabled.
Since in addition to preprocessor dependency, there
exists a dependency between detection rules of each
Snort rule file, we had to remove all dependencies
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Algorithm 1 Dependency Relaxation

1: Pr = {set of all preproc. directives}
2: Rr = {set of all Snort detection rules}
3: while ∃pr ∈ Pr do
4: Kr ← GET KEY S(pr)
5: end while
6: for ∀r ∈ Rr do
7: Hr ← GET KEY S(r)
8: for ∀h ∈ Hr do
9: if h ∈ Kr then

10: RLX(r, h)
11: for ∃r′ 6= r and r′ B r do
12: RLX(r, h, r′)
13: end for
14: end if
15: end for
16: end for

(i.e., dependency relaxation) so that we could arbi-
trarily add/delete rules and change the size of the file.
For this, we removed all keywords that appear in the
options. Algorithm 1 presents how the dependency
relaxation is implemented.

Given the set of Snort preprocessing directives
and Snort detection rules, Algorithm 1 first creates
two sets Pr and Rr (Lines 1, 2). Next, for each pre-
processing directive in Pr, the Algorithm extracts a
set of keys that are keywords dependent to the pre-
processing directive (Lines 3-5). The extraction is
based on our intimate/expert knowledge about pre-
processing directives. Next, for each rule in Rr it
extracts all keywords seen in the rule (Line 7). Since
one rule may depend on several preprocessing direc-
tives, the Algorithm examines each extracted key-
word (Line 8) and checks whether it exists in set Kr
or not. If it exists, the Algorithm removes the key-
word from the rule (Lines 9, 10). The Algorithm also
examines if any of the other rules have a dependency
on the current rule r and its keyword h (Line 11).
If so, the keyword will be also removed from rule r′

(Line 12).
After all dependencies are removed, we can arbi-

trarily enable/disable each detection rule in the sin-
gle large file. We group the rules in two ways: i) by
simply concatenating their files (”regular” case) and
ii) by shuffling them into the single file (”shuffled”
case) and plot Snort’s memory consumption as we
increase the number of loaded rules in each case. We
performed the experiment for the ac-bnfa-nq and

lowmem search methods. Figures 5(a) and 5(b) de-
pict the results for the ac-bnfa-nq and lowmem search
methods, respectively. Thus, irrespective of rule or-
der and search method, we observe a linear behavior
(consistent to our intuition, as explained above) when
adding blocks of 250 rules to the set of active rules.
Although the string patterns from all rules are or-
ganized in a single automaton for fast string search-
ing (which alone would result to a sub-linear memory
consumption pattern) the observed linear behavior
is due to other dominant rule-specific data that in-
crease with the number of rules. Such data includes
the descriptive message to be printed in the alert,
reference numbers and identification codes, numerous
other keywords like rawbytes, byte test, and pcre,
as well as other rule metadata. We use these findings
to address the non-linearity of memory load for the
variable-size rule files in the following subsection.

6.2. Rule Files Modularization

To reduce the complexity of the problem the ILP
solver faces (i.e., Challenge 2), we propose to reduce
the number of individual preprocessors and IDS func-
tions, which would result in a decrease in the num-
ber of constraints in ILP. Our proposal is to group
multiple IDS functions together and consider them
as a single function. From here on, we refer to each
group of rule files as a “detection module” and use
the term “group” for a group of preprocessors. If a
detection module is assigned to a node, all rule files
in that module will be activated. We experimentally
observed that grouping rule files not only reduces the
problem complexity (Challenge 2), but also decreases
the variance in memory load estimation (Challenge
1). When several small rule files are grouped in a
single detection module, it acts as a larger rule file
(same as a block of 250 rules), and the estimated
memory load is more accurate. In addition, consid-
ering the preprocessor dependency mentioned in Sec-
tion 5, an efficient rule file grouping reduces the num-
ber of preprocessor dependencies. For example, if two
rule files require the same preprocessor(s), they can
be grouped in the same detection module. Similarly,
multiple preprocessors required for the same rule files,
can be grouped together. Hence, when activating a
new detection module, the load imposed by rules’ data
structure dominates the load imposed by the new ac-
tivated preprocessor (that can be ignored). This is
very similar to the behavior observed in Figures 5(a)
and 5(b) in the absence of preprocessors.
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Grouping rule files together, however, has a dis-
advantage when the memory threshold set by the
system administrator is very low. For low memory
thresholds, we cannot assign larger modules to nodes,
which results in low coverage/detection ratio. Con-
sequently, despite the positive aspects of grouping
small rule files together, memory threshold forces us
to avoid large detection modules. Unfortunately, there
already exist large detection modules. For example,
the memory space required by the “backdoor” rule
file is twice the memory space required by a detection
module with 25 small rule files. This illustrates the
need to also split extremely large rule files into some
smaller ones (i.e., creating several detection modules
out of a large rule file).

We thus define “modularization” as the procedure
that, for a given set of IDS functions (e.g., Snort rule
files), i) groups small IDS functions together in order
to reduce the problem complexity and load estimation
error, and ii) splits large IDS functions into several
smaller functions so that they can be activated with
low memory thresholds.

6.2.1. Rule File Splitting

When splitting a rule file, we consider the depen-
dency between detection rules and the dependency
between preprocessors and detection rules. This is
to ensure that two dependent rules along with all of
their essential preprocessing directives are included
in the same split rule file. In order to split a rule
file into several detection modules, we first pre-parse
each detection rule and specify its preprocessing de-
pendency in advance. For example, a detection rule
using TCP traffic match (i.e., protocol:TCP) requires
the Stream5 preprocessor directive, which enforces all
HTTP-relevant rule files to also contain the same di-
rective. We summarize all these preprocessing depen-
dencies before splitting the rule files.

In addition, rule dependency is expressed by the
options’ keywords, e.g., “flowbits.” To meet the rule
dependency requirements, we parse each detection
rule and specify whether the rule contains such key-
words or not, if it does, it must be relevant. For
example, the “flowbits” options can help us maintain
the stateful check in a set of Snort detection rules.
When some keys are set by “flowbits” in a detection
rule, every other detection rule which does not set the
“flowbits,” is dependent on that detection rule. Sim-
ilarly, the keyword “rev:VALUE” in a detection rule,
that identifies revisions of Snort rules, denotes that it

is related to a detection rule whose “sid” is “VALUE.”
Thus, using these two types of dependency, we split
large rule files properly.

6.2.2. Proposed Modularizations

We propose three modularizations with different
numbers of detection modules and different sizes. We
then compare the execution time of the solver, i.e.,
Matlab ILP solver, for each modularization. Our
modularizations are based on the size of the rule files
and also preprocessor dependencies, such that the
memory loads of detection modules are roughly same
and the rule files in each detection module require the
same preprocessors.

In the first modularization, the entire set of Snort
rule files is classified into 23 detection modules where
6 different groups of preprocessors are required. The
average memory load of the 23 detection modules is
3.98% and the standard deviation is 1.68%. The sec-
ond modularization consists of 12 detection modules
of average memory load 6.76% and standard devia-
tion 2.31%, while the third modularization has only
6 detection modules of average memory load 15.06%
and standard deviation 1.88%. The second and the
third modularizations require three groups of prepro-
cessors. Details about each modularization, e.g., the
rule files in each module, are provided in Section 7.

Figure 6 shows the execution time of the ILP
solver when solving the problem for different lengths
of a single path. As depicted in Figure 6, 12-module
and 6-module configurations are much faster than 23-
module configuration, especially for longer paths (i.e.,
more complex problems). With these two modular-
izations, the ILP solver finds the optimal solution in
less than 2 sec, which is very fast, thus practical in
real deployments. The longer execution time for the
6-module configuration, comparing to the 12-module
configuration, is because of its larger detection mod-
ules that increase the number of infeasible solutions
for a given memory threshold (increasing the solver’s
execution time). We use 6-module and 12-module
configurations in our system evaluations.

6.3. PRIDE Protocol

Given a modularization chosen for the IDS con-
figuration, PRIDE periodically collects the local in-
formation from the nodes, removes idle nodes from
the network, i.e., those not contributing in the traffic
routing, and optimally distributes IDS functions to
the nodes along traffic paths. If the reduced graph
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Algorithm 2 PRIDE Protocol

1: Data Collection(V,E,N,Q)
2: Relaxation(V,E, n, q)
3: Path Extract(V,E, P )
4: P = P
5: g = 0
6: while ∃ pi ∈ P do
7: g + +
8: Sg = {pi}
9: P = P\{pi}

10: while ∃ pj ∈ Q and
⋃

pk∈Sg

(Pj ∩ Pk) 6= ∅ do

11: Sg = Sg ∪ {pj}
12: P = P\{pj}
13: end while
14: end while
15: for ∀Sg do
16: Vg = {vj |vj ∈ Pi and pi ∈ Sg}
17: for ∀Vg do ILP(Vg, P )

is disconnected, each graph component is considered
as a sub-problem and solved separately. Algorithm 2
presents PRIDE protocol.

Given the set of nodes, the protocol first collects
information from nodes and then produces the re-
duced sets V and E by removing idle nodes/links
(Lines 1, 2). Next, the set of active routing paths P
is extracted in Line 3. Given P , the Algorithm creates
the set P of unvisited paths (Line 4), and then de-
fines variable g as the number of sub-problems (Line
5). For every unvisited path pi in set P (Line 6), the
Algorithm first creates a new sub-problem Sg (Lines
7, 8) and marks it as a visited path (Line 9). The Al-
gorithm then searches P to find any unvisited path pj
which is connected (two paths are connected if they
are in the same component of the reduced graph) to
at least one path in the current Sg (Line 10). If so,
the corresponding path pj will be added to the cur-
rent sub-problem Sg and removed from P (Lines 11,
12). When no more paths in P can be added to the
current Sg, the Algorithm increases g and creates a
new sub-problem. This process repeats until there is
no unvisited path in P. Next, for every sub-problem
Sg, the Algorithm creates the corresponding set Vg as
the set of nodes located on the paths of component
Sg (Lines 15, 16). Finally, the Algorithm runs ILP
on the nodes and paths of each sub-problem Sg (Line
17).

7. System Implementation and Evaluation

In this section, we evaluate the performance of
PRIDE in a department-wide mesh network. Our
mesh network (as shown in Figure 7) consists of 10
Netgear WNDR3700 routers deployed in a 50×30m2

rectangular area (Note: comparing with other testbeds,
DistressNet [8] with eight nodes, SMesh [3] with four-
teen nodes, and QuRiNet [46] (a large-scale research
platform) with thirty nodes, PRIDE uses an average
size testbed.). The presence of the walls in this area
makes it a suitable environment for a multi-hop mesh
network. Additionally, the “tx-power” parameter in
the network configuration file of OpenWrt is used to
adjust the communication range of the routers. The
routers use OLSR version 0.6.1 as the routing proto-
col (as part of the OpenWrt development tree) and
provide mesh connections on their 5GHz wireless in-
terfaces. In Figure 7, each node is labeled with its
local subnet IP address. We will refer to the nodes
using the third number in the subnet IP address, e.g.,
192.168.5.0 is node 5. Some routers work as Mesh Ac-
cess Points (MAP), e.g., node 3, and provide network
access for the clients on the 2.4GHz wireless interface.
Node 9 is the network gateway that connects WMN
to the Internet. PRIDE periodically (i.e., 5 minutes
in the current implementation) collects nodes/traffic
information and runs ILP. This interval can be opti-
mally chosen by administrator in dynamic networks.

As briefly explained in Section 4, our system also
requires the presence of a base station, e.g., a com-
puter that periodically and securely collects process-
ing/memory loads and traffic information of WMN
nodes and performs PRIDE to find the optimal rule
assignment, and finally broadcasts the results to the
entire network in a secure way. The data collec-
tion and security function assignment is implemented
through our previous research [43] that uses neigh-
borhood keys to securely, and optimally broadcast a
message from the base station to every WMN nodes.
In order to minimize the communication overhead of
rule assignment mechanism, we use a binary string
of size (n×K) bits, where n is the number of nodes
receiving the message and K is the number of de-
tection modules in each modularization. After pro-
ducing the results, base station generates n block of
size K bits, where each block corresponds to a node
ID (e.g., block one for Node 1) and each bit in a
block corresponds to a detection module. Upon re-
ceiving the message, each node reads its correspond-
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ing block to figure out what detection modules, and
consequently what preprocessors, it has to activate
on its intrusion detection engine.

We evaluate the intrusion detection rate (cover-
age ratio) and average memory load of nodes. The
parameters that we vary are the Path Lengths (PL)
and memory threshold (λ). In all our experiments,
the memory thresholds of all nodes are considered
equal (for simplicity) and some of the preprocessors
(e.g., perfmonitor) are not used as they are not acti-
vated by default or not required by rule files. Since
the maximum path length in our mesh network is
4 hops, we consider 2-hop, 3-hop and 4-hop paths
(PL = 2, 3, and 4). We consider two different paths
for each given PL (six paths in total) in our evalua-
tion. For example, in the 2-hop scenario (PL = 2),
P1 = {5, 10} and P2 = {9, 10}, and in the 3-hop sce-
nario, P1 = {5, 10, 8} and P2 = {9, 10, 8}. The initial
memory load on the routers is ∼ 30% (as caused by
DHCP, OLSR, and other services). We vary the Snort
memory threshold from 30% to 60% (i.e., 60% ≤
λ ≤ 90%). Since implementing the related traffic-
aware solution [25] on the mesh devices is infeasible
(as shown in Section 2), we compare PRIDE with
monitoring node solutions ( [9, 10, 14]). We imple-
ment a monitoring node solution [14] to which we re-
fer as “MonSol”. MonSol first selects the optimal set
of nodes that can monitor all traffic paths and then
monitoring nodes load detection modules (based on
the indices of detection modules shown in Table 1)
up to a given memory threshold. If a monitoring node
monitors at least one link of a given path, the entire
path is considered as monitored.

7.1. The Effect of Route Changes

We use OLSR routing protocol (version 0.6.1) as
part of the OpenWrt development tree available on
the URL below: “http://downloads.openwrt.org/bac
kfire/10.03.1/ar71xx/packages/.”

OLSR is a proactive link-state routing protocol
optimized for ad hoc networks that uses hello mes-
sages and also topology control messages to discover
and broadcast link state information. We have exper-
imentally observed that even static WMN topologies
and routing paths are subject to change in both in-
door and outdoor deployments. This is because of a)
link-quality variations caused by weather, noise and
other radio signals; b) mobility of clients and their re-
quested services that result in changes of WMN rout-
ing paths; and c) node failure (e.g., running out of

power) or node replacement (e.g., administrative rea-
sons) during network lifetime. Hence, it is very im-
portant to ensure that the network information peri-
odically collected by the base station reflects the most
recent network topology of the WMN.

Since the aforementioned changes in communica-
tion links directly affect the OLSR routing table of
WMN routers, we use OLSR routing table of the
nodes for network topology extraction. More pre-
cisely, each router logs its routing table every five sec-
onds (chosen experimentally) and reports the state of
its communication links after five minutes, i.e., those
links that are available for the majority of samples in
the last five minutes sampling period are considered
available in the final report.

7.2. Intrusion Detection Evaluation Tool

We define the intrusion detection rate as the ra-
tio between the number of detected attacks and the
number of detectable attacks by all modules. For ex-
ample, for the 12-module configuration, we ran 12
distinct attacks for each path where each attack can
be detected by only one of the detection modules (i.e.,
because the corresponding detection rule is put in
that module), and then measure the number of de-
tected ones. To generate attack traffic, we modify
an open source Snort test framework - the Rule to
Attack (R2A) tool. R2A is a rule-based tool which
parses each Snort detection rule and generates an ex-
ploitation packet targeting that rule. We modify the
R2A’s source code to generate real-time exploits for a
given set of detection rules. The exploits, as listed in
Table 2, are launched against the multi-hop remote
target through wireless mesh links. If the module
that can detect the attack is assigned to the nodes
along the path, then the attack is detected and rele-
vant alerts are generated.

7.3. Snort Rule Sets and Modularizations

The Snort rule files we used in our experiments
and evaluations are shown in Table 1. The second
column, namely “Size”, specifies the number of de-
tection rules in each rule file. Columns “M6”, “M12”,
and “M23” specify the index of the detection module
that each file belongs to, when that modularization
is used. For example, in the 6-module configuration,
both “community-nntp” and “shellcode” are put in
the first detection module, however, in the 12-module
configuration, “community-nntp” belongs to the first
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detection module and “shelcode” belongs to the sec-
ond one. As depicted in Table 1, “backdoor” and
“spyware-put” are split into 4 and 5 smaller files, re-
spectively.

The amount of memory load caused by each de-
tection module in 6-module and 12-module configu-
rations are shown inthe lower part of Table 1. As de-
picted, the average memory load of detection modules
in the 6-module configuration is much higher than the
12-module configuration. We omit the details about
memory loads in the 23-configuration here since it is
not used in the system evaluation.

Depending on the rule files and modularizations
we use, the attacks chosen for intrusion detection
evaluation may change. In order to evaluate the de-
tection rate of PRIDE, we choose one or two rule
files from each detection module and give them to
the R2A tool as the input file. We also provide the
IP address of multi-hop targets for R2A so that the
attack exploits (malicious traffic) will be sent to the
target through a multi-hop network path. Upon run-
ning each attack, the detection modules distributed
along the path generate corresponding intrusion de-
tection alarms. Table 2 specifies the rule files chosen
from each detection module of the 12-module config-
uration and also the number of alarms generated by
the corresponding detection module. It is worth men-
tioning that the same files are used for the 6-module
configuration. For example, in order to generate ex-
ploit(s) against module 1 in the 6-module configura-
tion, all rule files in module 1 and module 2 of Table 2
are used, as they are all grouped in the module 1 of
the 6-module configuration (according to Table 1).

7.4. Proof-of-Concept Experiment

When assigning IDS functions to multiple nodes
on a path, each node can detect only a subset of at-
tacks depending on the detection modules it executes.
As a proof-of-concept experiment, we show that dis-
tributing two IDS functions to two nodes generates
exactly the same alerts as if both detection modules
were assigned to a single node (e.g., MonSol). For
that purpose, we used two routers and one laptop
connected wirelessly to each router (one laptop was
the attacker and the other was the target). We ran
a customized Snort on each router (monitoring the
mesh traffic) ensuring that every Snort rule file is ac-
tivated on at least one of the routers. We then gener-
ated two R2A exploits such that their corresponding
rule files, e.g., “dos.rules” and “exploit.rules”, were

activated on routers 1 and 2, respectively. When run-
ning attacks, the Snort on node 1 generated 4 alerts,
while the one on node 2 generated 10 alerts (real-time
detection, unlike cooperative IDS). We repeated the
experiment where only node 1 was running Snort and
both rule files were activated on node 1 (many other
rule files were deactivated due to memory constraint).
In this experiment, node 1 generated exactly the same
14 alerts upon launching the same exploits. Hence,
we have shown that PRIDE can distribute IDS func-
tions to nodes along a path such that network packets
are inspected by all IDS functions.

7.5. Effects of Memory Threshold and Path Length

Given the network paths in our test-bed mesh
network, we evaluate the intrusion detection rate of
PRIDE and the average memory load on nodes, us-
ing 6-module and 12-module configurations. For each
modularization, we change λ and PL as our evalua-
tion parameters to see their effects on PRIDE perfor-
mance. Given a memory threshold, we show PRIDE
can achieve higher detection rate than MonSol.

Figure 8 shows the effect of memory threshold and
path length on intrusion detection rate and average
memory load on the nodes when using the 6-module
configuration. As depicted in Figure 8(a), maximum
detection rate for MonSol is 50% which occurs when
λ = 90%. However, PRIDE can achieve 100% detec-
tion rate even in a lower memory threshold (e.g., at
λ = 80% for PL = 4 and PL = 3). This is because
more than one node is assigned with IDS functions
and packets are inspected by more detection modules.
In this modularization, for a low memory threshold
(e.g., λ = 60%), only module 3 can be activated on
the nodes, and thus, PRIDE cannot achieve a higher
detection rate than MonSol. Figure 8(b) depicts the
average estimated memory load on the nodes for dif-
ferent memory thresholds. It can be observed that
PRIDE usually impose less memory load than Mon-
Sol, especially for the longer paths, since the modules
are distributed to multiple nodes.

The results for the same evaluations performed on
the 12-module configuration are shown in Figure 9.
As depicted in Figure 9(a), the intrusion detection
rate for the 12-module configuration is higher than
the detection rate for the 6-module configuration (for
the same memory threshold). This is because the size
of the detection modules in the 12-module configura-
tion is smaller than for the 6-module configuration,
which allows more modules to fit in the small free
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memory spaces. In contrast with the 6-module con-
figuration, where at low memory thresholds the de-
tection rate was similar to MonSol, in the 12-module
configuration the detection rate at 60% (a low mem-
ory threshold) is higher than for MonSol. This is be-
cause more modules are activated on the nodes even
at this low memory threshold. The average estimated
memory loads for this modularization are shown in
Figure 9(b). Similar to the 6-module configuration,
it is observed that the 12-module configuration usu-
ally impose less memory load than MonSol solution
for the longer paths.

When considering PRIDE and MonSol, one can
observe that for an adversary it will be significantly
harder to compromise multiple IDS nodes (as in PRIDE),
than a single monitoring node (as in MonSol). A com-
promised IDS node in PRIDE implies the loss of few
IDS functions while, in MonSol, it means the loss of
the entire set of activated functions on the monitoring
node (i.e., higher vulnerability). Hence, in addition
to achieving higher detection rates and lower memory
loads, PRIDE provides a higher degree of IDS attack
tolerance than MonSol.

We also compare the estimated memory loads and
the actual memory loads of the two configurations in
all of the experiments, i.e., different memory thresh-
olds and path lengths. Figures 10(a) and 10(b) show
the difference between estimated memory load and
actual load measured on the routers when using 6-
module and 12-module configurations, respectively.
One can see that the difference is below ∼5%, thus
giving confidence in our ILP formulation and memory
consumption modelling. It is also worth mentioning
that the estimated values for the 12-module configu-
ration are closer to the real values than the 6-module
configuration because the modules are roughly the
same size as 250-rule blocks.

Figure 11 shows the ILP solver execution time for
PL = 3 and PL = 4, and for each modularization. As
depicted, the execution time of the algorithm ranges
from a few seconds to tens of seconds, thus making it
practical for real world deployments. As shown, the
lower the memory threshold is, the longer the execu-
tion time is. This is because lower memory thresholds
increase the number of infeasible solutions and the
solver requires more iterations to obtain feasible and
optimal solutions. As shown in Figure 11, the execu-
tion time increases with the path length as well. As
mentioned in Section 6, this is because the number
of ILP constraints (i.e., the problem complexity) is a

direct function of path length.

7.6. PRIDE-aware Attacks

This section evaluates PRIDE’s performance for
PRIDE-aware attacks. We categorize PRIDE-aware
attacks in two levels of severity: 1) the attacker is
aware of PRIDE in the WMN but cannot compro-
mise the secure communication between nodes and
the base station (Level 1); 2) the attacker is aware
of PRIDE and also the content of secure information
exchanged between nodes and the base station (Level
2). Obviously, the latter type of attack is more severe
and very difficult to defend. In fact, the second attack
type assumes that the attacker has broken the secure
communication link (i.e., secured with neighborhood
keys [43]) between the base station and all routers and
has access to all information (i.e., memory loads and
traffic paths) and the IDS distributions. Unlike our
attacker model presented in Section 4, we assume that
a PRIDE-aware attacker can launch an attack against
an intermediate node in a traffic path (not necessarily
the multi-hop destination on the path). This type of
attack sounds reasonable because a PRIDE-aware at-
tacker aims to compromise some intermediate nodes
running specific detection modules, and finally attack
the destination.

We concentrate on Level-1 attack because the pos-
sibility of running Level-2 attack in WMN depends on
the robustness of key distribution and also encryption
mechanisms used in wireless networks, which is out
of our scope in this article. In Level-1 attack, the
attacker can not produce the same IDS distribution
(to find the most beneficial node to be compromised)
as the base station produces. This is because the
ILP solutions depend on information collected from
WMN nodes (securely sent to the base station) and
the initial random solutions. Thus, we consider an at-
tacker that knows WMN nodes are assigned some IDS
functions but does not know which node is running
which module. The attacker first connects to an AP,
then chooses a node (destination or an intermediate)
as the target and a random type of attack (i.e., an
attack among those detectable by 6 or 12 modules),
and finally launches the attack. It is obvious that
the average detection rate for the PRIDE-aware at-
tacks against destination nodes is always equal to the
PRIDE coverage ratio (i.e., as shown in Figures 8(a)
and 9(a)). Hence, we only consider attacks against
intermediate nodes.
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We perform an experiment to evaluate the PRIDE
performance (detection rate) when a PRIDE-aware
attacker at Level 1 runs attacks against intermediate
nodes. Considering the IDS distributions produced
for our real-world WMN, with the detection rates
shown in Figures 8(a) and 9(a), we ran 1000 ran-
dom attacks for each modularization. In each of 1000
attacks, the attacker chooses a random intermediate
node and a random attack (among those detectable
by 6 or 12 modules). If the corresponding detection
module is not activated on the nodes along the path
(starting from the attacker AP towards the interme-
diate node) the attack cannot be detected, otherwise
it is detectable. Figures 12(a) and 12(b) show the
average detection rate for Level-1 PRIDE-aware at-
tacks against intermediate nodes, for 6-module and
12-module configurations, respectively. As depicted,
the detection rate increases as the λ increases. We ob-
serve that the 12-module configuration has a higher
detection rate than the 6-module configuration (for
the same reason we explained about average detec-
tion rate in PRIDE). One may argue about the de-
tection rate for (PL=4) in the 6-module configuration
that decreases at higher memory thresholds. This is
because we perform all 1000 random attacks against
a specific IDS distribution used in our real test. In
that experiment, for higher thresholds, most of the
IDS modules were assigned to the destination, thus,
intermediate nodes ran less IDS modules and were
unable to detect attacks. The same argument applies
for (PL=3) in the 12-module configuration.

PRIDE was shown (in Figures 8(a) and 9(a)) to
achieve 100% detection rate for WMN with routes of
at least 3 hops long and memory thresholds above
∼ 70% (i.e., reasonable assumptions for real-world
WMN applications). On the other hand, undetectable
PRIDE-aware attacks are those targeting intermedi-
ate nodes in a multi-hop source-destination path pro-
tected with detection modules. In fact, this is similar
to launching single-hop or 2-hop attacks while the
path considered by the security administrator is at
least 3 hops long (similarly for lower memory thresh-
olds than what the security administrator has consid-
ered). Hence, taking into consideration that almost
all of traffic paths in WMN are multi-hop and PRIDE
is a detection mechanism proposed for multi-hop at-
tacks, which is a realistic assumption for WMN, the
∼ 60% detection rate shown in our experiments is a
considerable detection rate.

An alternative method for detecting Level-1 PRIDE-

aware attack is to force the algorithm to assign spe-
cific modules (e.g., those including detection rules for
IP sweep and port scanning attacks as these are the
first step in multi-step compromising attacks) to the
nodes close to the source node in a routing path. This
may help early nodes in a multi-hop attack to detect
the trial and error attacker behavior.

7.7. Distributed Approach

Although we showed that PRIDE can achieve high
detection rates by solving an ILP in less than a minute,
one may argue about the communication overhead
of IDS Function Distribution (i.e., not for the detec-
tion process as in cooperative IDS) caused by the
message exchange between nodes and the base sta-
tion. In addition to the message complexity, the time
complexity increases as network size grows. Thus,
the centralized approach seems not suitable for very
large WMN (e.g., 100+ nodes) as its time and mes-
sage complexity increases. The message complexity
of the IDS Function Distribution in the centralized
algorithm proposed for PRIDE is O(n log n). Since
this communication overhead is due to the message
exchange between mesh nodes and the base station,
distributed IDS Function Distribution might be in-
tuitively an alternative. In a distributed mechanism,
however, the message complexity is O(n2) if nodes re-
quire to exchange their routing information with each
other. Thus, a question that arises here would be “Is
it possible for the nodes actively contributed in the
traffic routing to randomly choose an IDS configura-
tion and still achieve reasonable intrusion detection
(path coverage) rates for WMN paths?” It is obvious
that such a distributed approach, that is very fast and
incurs no communication overhead for IDS Function
Distribution, will provide a locally optimal solution
since the decision is made based on the local informa-
tion available on each node. However, the centralized
approach in PRIDE produces the optimal IDS func-
tion distribution based on global information about
WMN routing paths.

In order to compare the centralized approach in
PRIDE with the distributed IDS Function Distribu-
tion mechanism, we implemented a distributed mech-
anism where each active node, based on its mem-
ory threshold, randomly chooses the set of detection
modules it can perform. The average path cover-
age rates for 100 random solutions produced for the
WMN topology and its corresponding paths shown in
Figure 7 are depicted in Figure 13. When compar-
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ing to the results shown in Figures 8(a) and 9(a),
the centralized approach outperforms the distributed
approach in most of situations, especially when there
is enough memory for activating multiple detection
modules. It is worth mentioning that although the
centralized approach achieves higher detection rates
at the price of higher communication overhead, it is
very important to achieve 100% detection rates (at
higher prices) in mission critical scenarios and a sub-
optimal solution will not be accepted as an applicable
solutions.

8. Conclusions and Future Work

In this article, we have shown that intrusion detec-
tion in WMN requires significant resources, and that
cooperative and monitoring node-based solutions are
not practical for WMN. To address these challenges,
we propose a solution for an optimal distribution of
IDS functions. We formulate the optimal IDS func-
tion distribution as an integer linear program and
propose algorithms for solving it effectively and fast
(i.e., practical). Our solution maximizes intrusion de-
tection rate, while maintaining the memory load be-
low a threshold set by network administrators. We
have investigated the performance of our proposed
solution in a real-world, department-wide, deployed
WMN.

Looking to the future, we plan to investigate how
Stream5 parameters, e.g., “max tcp,” can be chosen
optimally for each node, based on the traffic load it
faces. This way, two nodes with the same memory
space available but different traffic rates, will dedicate
their memory spaces to the static and dynamic loads
differently.
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Appendix: Symbols and Parameters

In this section, we represent the definitions of all
of symbols and parameters used in the entire article.
Table 3 depicts all symbols categorized in different
groups based on their relevance.

18



Figure 1: A typical mesh network providing network services for a variety of users.
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Figure 5: Linearity of memory consumption in different search algorithms as the number of activated rules increases: a) AC-bnfa-
nq; b) Lowmem.
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Table 1: Snort rule sets, modularizations, and memory load associated to each module used in our experiments

Rule File Size M6 M12 M23 Rule File Size M6 M12 M23

community-nntp 1 1 1 2 shellcode 25 1 2 3
community-oracle 1 1 1 2 ddos 30 1 2 3
x11 2 1 1 2 pop3 35 1 2 3
pop2 2 1 1 2 specific-threats 36 2 4 8
community-icmp 2 1 1 2 web-frontpage 38 2 4 9
comm.-inapproprate 3 1 1 2 chat 42 1 2 3
other-ids 3 1 1 2 web-coldfusion 44 2 5 9
community-web-iis 4 2 4 8 community-bot 45 1 2 3
community-policy 4 2 4 8 voip 45 1 2 3
community-exploit 5 1 1 2 imap 60 1 1 3
comm.-web-attacks 5 2 4 8 misc 62 2 4 8
multimedia 5 2 4 9 policy 74 1 2 4
community-game 5 2 4 9 ftp 76 1 3 7
community-dos 6 1 1 2 sql 87 1 3 4
community-smtp 6 1 3 5 icmp-info 93 1 1 1
bad-traffic 6 1 1 2 smtp 94 1 3 5
community-sip 7 1 1 1 web-iis 95 2 5 9
community-web-client 8 2 4 9 web-client 135 2 5 9
community-imap 8 1 1 2 web-php 142 2 5 9
comm.-sql-injection 9 2 4 9 rpc 168 1 3 4
community-virus 10 2 4 9 comm.-web-misc 190 2 5 10
info 10 1 1 2 exploit 208 2 5 10
scan 12 1 1 2 oracle 310 2 6 11
finger 13 1 1 2 web-cgi 357 2 6 11
rservices 13 1 1 2 web-misc 370 3 6 12
comm.-web-cgi 13 2 4 9 netbios 430 3 7 13
nntp 13 1 1 2 comm.-web-php 463 3 7 12
tftp 16 1 3 7 web-activex 587 3 8 14
snmp 16 1 1 2 backdoor-frag1 172 6 8 15
attack-response 17 1 1 2 backdoor-frag2 172 4 9 16
telnet 19 1 3 6 backdoor-frag3 172 4 9 17
dos 20 1 1 2 backdoor-frag4 171 6 10 18
porn 21 1 1 2 spyware-put-frag1 196 4 10 19
dns 22 1 1 2 spyware-put-frag2 196 5 11 20
mysql 22 1 1 2 spyware-put-frag3 195 5 11 21
icmp 22 1 1 1 spyware-put-frag4 195 5 12 22
p2p 23 2 4 8 spyware-put-frag5 195 6 12 23
community-misc 24 2 4 8

Configuration ID
Mem.

ID
Mem

(%) (%)

6-Module
M1 13.32 M4 17.33
M2 14.66 M5 14.66
M3 13.04 M6 17.33

12-Module

M1 3.40 M7 6.99
M2 5.14 M8 9.57
M3 3.75 M9 9.03
M4 4.52 M10 9.53
M5 5.49 M11 8.77
M6 6.13 M12 8.81
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Table 2: List of Snort rule files used by the R2A tool for generating exploit against each detection module and the number of
generated alarms by each module

Mod. ID Rule File #Alarms Mod. ID Rule File #Alarms

M1
other-ids 3

M7
community-web-php 2

dns 17 netbios 15

M2
ddos 16 M8 backdoor-frag1 33
chat 33

M9
backdoor-frag2 51

M3
rpc 9 backdoor-frag3 36
telnet 4

M10
backdoor-frag4 31

M4
p2p 18 spyware-put-frag1 30
misc 26

M11
spyware-put-frag2 32

M5 exploit 10 spyware-put-frag3 31

M6
oracle 4

M12
spyware-put-frag4 44

web-cgi 3 spyware-put-frag5 29
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Figure 9: 12-module configuration: effect of λ and PL on a) Intrusion detection rate, and b) Average estimated memory load.
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Figure 10: The difference between estimated and actual average memory load: a) 6-Module configuration, and b) 12-Module
configuration.
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Figure 11: ILP solver execution time for different modularizations, path lengths and memory thresholds.
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Figure 12: Average detection rate for PRIDE-aware attacks: a) 6-Module configuration, and b) 12-Module configuration.
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Figure 13: Distributed approach based on random module selection: effect of λ and PL on the intrusion detection rates in a)
6-Module Configuration, and b) 12-Module Configuration.
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Table 3: Table of Symbols used throughout this article

Symbol Description

N Number of all WMN nodes
Q Number of all WMN backbone links
G Reduced graph by removing idle nodes/links
V Set of nodes in the reduced graph G
E Set of links in the reduced graph G
P Set of routing paths in the reduced graph G
n Number of all nodes contributing in routing
q Number of all links contributing in routing
l Number of all active paths in the WMN
pi Routing path i in the WMN
vj Node j actively contributing in traffic routing
ek Link k actively contributing in traffic routing
Pi Set of all nodes located on the path pi

Tl×n Matrix of mapping between nodes and paths
tij Entity of matrix T (vj is located on pi)
F Set of all IDS functions
K Number of all IDS functions
fk An IDS function (set of detection rules)
C Set of IDS preprocessors
R Number of all IDS preprocessors
cr An IDS preprocessor

DK×R Matrix of dependencies between fks and crs
dkr Entity of matrix D (fk requires cr)

w Assigns memory load to all fks and crs

wf
k Memory load caused by IDS function fk

wc
r Memory load caused by preprocessor cr

W f Vector of all wf
k (load of all functions in F)

W c Vector of all wc
r (load of preprocessors in C)

bj Base (initial) memory load of node vj
B Vector of all bj (base load of all nodes in V )
λj Memory threshold in node vj
Λ Vector of all memory thresholds λj

A An IDS function and preprocessor distribution
Xn×K Matrix representation of assigned fks to vjs
xjk Entity of matrix X (vj performs fk)

Zn×R Matrix representation of required crs to vjs
zjr Entity of matrix Z (vj has to performs cr)
Fj Set of IDS functions assigned to vj
Cj Set of IDS preprocessors assigned to vj
Lj Total memory load on node vj after running

assigned IDS functions and preprocessors
CRi Coverage ratio of path pi
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